141 research outputs found

    Bidirectional Brush Seals

    Get PDF
    Presented is a study of the use of a set of I.D./O.D. bidirectional press seals to reduce the leakage losses in a wave rotor. Relative to the baseline configuration, data indicate the use of brush seals enhanced wave rotor efficiency from 36 to 45 percent at low leakages (small rotor endwall gap spacings) and from 15 to 33 percent at high leakages (larger endwall gap spacings). These brush seals are capable of sealing positive or negative pressure drops with respect to the axial direction. Surface tribology for these tests suggested little evidence of grooving although the bristles appeared polished

    Pyrophoric Waste Disposal

    Get PDF
    Ames Laboratory is a National Laboratory operated by Iowa State University on behalf of the U.S. Department of Energy. They are dedicated to creating materials, inspiring minds to solve problems and addressing global challenges. Sarah Morris-Benavides, Matthew Besser and Roger Rink contacted Iowa State University’s ABE Department to find dedicated students to help them with their problems surrounding their gloveboxes, furnaces, and arc melter. The problem that Ames Laboratory faces is safely cleaning and removing hazardous, often pyrophoric, waste materials from the machines. The purpose of this project is to purchase/fabricate equipment and/or create a procedure to clean the gloveboxes, furnaces and arc melter in a safe manner. One unknown surrounding this issue was whether or not our solution will involve fabrication and/or a procedure. Our job was to narrow down the scope and provide the best solution for Ames Laboratory. By doing so, not only will these machines be clean, but the laboratory will have standardized instructions for safe and effective glovebox waste removal

    Ames Laboratory Glovebox Cleaning

    Get PDF
    The removal of pyrophoric materials from inert atmosphere chambers presents the potential for injury or damage to property upon reacting to oxygen or water. In order to minimize the risk of an incident occurring, equipment and/or procedural recommendations need to be developed to create a standard way of disposing of these materials

    Bidirectional Brush Seals: Post-Test Analysis

    Get PDF
    A post-test analysis of a set of inside-diameter/outside-diameter (ID/OD) bidirectional brush seals used in three-port wave rotor tests was undertaken to determine brush bristle and configuration wear, pullout, and rotor coating wear. The results suggest that sharp changes in the pressure profiles were not well reflected in bristle tip configuration patterns or wear. Also, positive-to-negative changes in axial pressure gradients appeared to have little effect on the backing plates. Although the brushes had similar porosities, they had very different unpacked arrays. This difference could explain the departure of experimental data from computational fluid dynamics flow predictions for well-packed arrays at higher pressure drops. The rotor wear led to "car-track" scars (upper and lower wear bands) with a whipped surface between the bands. Those bands may have resulted from bristle stiffening at the fence and gap plates during alternate portions of the rotor cycle. Within the bristle response range the wear surface reflected the pressure distribution effect on bristle motion. No sacrificial metallurgical data were taken. The bristles did wear, with correspondingly more wear on the ID brush configurations than on the OD configurations; the complexity in constructing the ID brush was a factor

    Scientific and technical personnel in energy-related activities : current situation and future requirements / CAC No. 249

    Get PDF
    "By Hugh Folk, Robert DauffenBach, Jack Fiorito, Doug Gilmore, Wallace Hendricks, Thomas P. Milke, Ronald Seeber; Center for Advanced Computation, University of Illinois, Urbana-Champaign.""Based on research supported by the National Science Foundation under Contract C-1045."Cover title.Includes bibliographical references

    The Effectiveness of Lower-Limb Wearable Technology for Improving Activity and Participation in Adult Stroke Survivors: A Systematic Review

    Get PDF
    Background: With advances in technology, the adoption of wearable devices has become a viable adjunct in poststroke rehabilitation. Regaining ambulation is a top priority for an increasing number of stroke survivors. However, despite an increase in research exploring these devices for lower limb rehabilitation, little is known of the effectiveness. Objective: This review aims to assess the effectiveness of lower limb wearable technology for improving activity and participation in adult stroke survivors. Methods: Randomized controlled trials (RCTs) of lower limb wearable technology for poststroke rehabilitation were included. Primary outcome measures were validated measures of activity and participation as defined by the International Classification of Functioning, Disability and Health. Databases searched were MEDLINE, Web of Science (Core collection), CINAHL, and the Cochrane Library. The Cochrane Risk of Bias Tool was used to assess the methodological quality of the RCTs. Results: In the review, we included 11 RCTs with collectively 550 participants at baseline and 474 participants at final follow-up including control groups and participants post stroke. Participants' stroke type and severity varied. Only one study found significant between-group differences for systems functioning and activity. Across the included RCTs, the lowest number of participants was 12 and the highest was 151 with a mean of 49 participants. The lowest number of participants to drop out of an RCT was zero in two of the studies and 19 in one study. Significant between-group differences were found across three of the 11 included trials. Out of the activity and participation measures alone, P values ranged from P=.87 to P≤.001. Conclusions: This review has highlighted a number of reasons for insignificant findings in this area including low sample sizes, appropriateness of the RCT methodology for complex interventions, a lack of appropriate analysis of outcome data, and participant stroke severity

    An Evaluation of the Fe-N Phase Diagram Considering Long-Range Order of N Atoms in γ'-Fe4N1-x and ε-Fe2N1-z

    Get PDF
    The chemical potential of nitrogen was described as a function of nitrogen content for the Fe-N phases α-Fe[N], γ'-Fe4N1-x, and ε-Fe2N1-z. For α-Fe[N], an ideal, random distribution of the nitrogen atoms over the octahedral interstices of the bcc iron lattice was assumed; for γ'-Fe4N1-x and ε-Fe2N1-z, the occurrence of a long-range ordered distribution of the nitrogen atoms over the octahedral interstices of the close packed iron sublattices (fcc and hcp, respectively) was taken into account. The theoretical expressions were fitted to nitrogen-absorption isotherm data for the three Fe-N phases. The α/α + γ', α + γ'/γ', γ'/γ' + ε, and γ' + ε/ε phase boundaries in the Fe-N phase diagram were calculated from combining the quantitative descriptions for the absorption isotherms with the known composition of NH3/H2 gas mixtures in equilibrium with coexisting α and γ' phases and in equilibrium with coexisting γ' and ε phases. Comparison of the present phase boundaries with experimental data and previously calculated phase boundaries showed a major improvement as compared to the previously calculated Fe-N phase diagrams, where long-range order for the nitrogen atoms in the γ' and ε phases was not accounted for

    Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice

    Get PDF
    Wind-driven redistribution of snow on sea ice alters its topography and microstructure, yet the impact of these processes on radar signatures is poorly understood. Here, we examine the effects of snow redistribution over Arctic sea ice on radar waveforms and backscatter signatures obtained from a surface-based, fully polarimetric Ka- and Ku-band radar at incidence angles between 0∘ (nadir) and 50∘. Two wind events in November 2019 during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- and Ku-band radar waveforms and backscatter coefficients at nadir are observed, coincident with surface topography changes measured by a terrestrial laser scanner. At both frequencies, redistribution caused snow densification at the surface and the uppermost layers, increasing the scattering at the air–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previous air–snow interfaces, buried beneath newly deposited snow. The additional scattering from previous air–snow interfaces could therefore affect the range retrieved from Ka- and Ku-band satellite altimeters. With increasing incidence angles, the relative scattering contribution of the air–snow interface decreases, and the snow–sea ice interface scattering increases. Relative to pre-wind event conditions, azimuthally averaged backscatter at nadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scan area at all incidence angles and polarizations, in response to increasing wind speed and changes in wind direction. Our results show that snow redistribution and wind compaction need to be accounted for to interpret airborne and satellite radar measurements of snow-covered sea ice
    • …
    corecore