327 research outputs found

    Continuum Variability of Deeply Embedded Protostars as a Probe of Envelope Structure

    Full text link
    Stars may be assembled in large growth spurts, however the evidence for this hypothesis is circumstantial. Directly studying the accretion at the earliest phases of stellar growth is challenging because young stars are deeply embedded in optically thick envelopes, which have spectral energy distributions that peak in the far-IR, where observations are difficult. In this paper, we consider the feasibility of detecting accretion outbursts from these younger stars by investigating the timescales for how the protostellar envelope responds to changes in the emission properties of the central source. The envelope heats up in response to an outburst, brightening at all wavelengths and with the emission peak moving to shorter wavelengths. The timescale for this change depends on the time for dust grains to heat and re-emit photons and the time required for the energy to escape the inner, optically-thick portion of the envelope. We find that the dust response time is much shorter than the photon propagation time and thus the timescale over which the emission varies is set by time delays imposed by geometry. These times are hours to days near the peak of the spectral energy distribution and weeks to months in the sub-mm. The ideal location to quickly detect continuum variability is therefore in the mid- to far-IR, near the peak of the spectral energy distribution, where the change in emission amplitude is largest. Searching for variability in sub-mm continuum emission is also feasible, though with a longer time separation and a weaker relationship between the amount of detected emission amplitude and change in central source luminosity. Such observations would constrain accretion histories of protostars and would help to trace the disk/envelope instabilities that lead to stellar growth.Comment: 25 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Insights from the Outskirts: Chemical and Dynamical Properties in the outer Parts of the Fornax Dwarf Spheroidal Galaxy

    Full text link
    We present radial velocities and [Fe/H] abundances for 340 stars in the Fornax dwarf spheroidal from R~16,000 spectra. The targets have been obtained in the outer parts of the galaxy, a region which has been poorly studied before. Our sample shows a wide range in [Fe/H], between -0.5 and -3.0 dex, in which we detect three subgroups. Removal of stars belonging to the most metal-rich population produces a truncated metallicity distribution function that is identical to Sculptor, indicating that these systems have shared a similar early evolution, only that Fornax experienced a late, intense period of star formation (SF). The derived age-metallicity relation shows a fast increase in [Fe/H] at early ages, after which the enrichment flattens significantly for stars younger than ~8 Gyr. Additionally, the data indicate a strong population of stars around 4 Gyr, followed by a second rapid enrichment in [Fe/H]. A leaky-box chemical enrichment model generally matches the observed relation but does not predict a significant population of young stars nor the strong enrichment at late times. The young population in Fornax may therefore originate from an externally triggered SF event. Our dynamical analysis reveals an increasing velocity dispersion with decreasing [Fe/H] from sigma_sys 7.5 km/s to >14 km/s, indicating an outside-in star formation history in a dark matter dominated halo. The large velocity dispersion at low metallicities is possibly the result of a non-Gaussian velocity distribution amongst stars older than ~8 Gyr. Our sample also includes members from the Fornax GCs H2 and H5. In agreement with past studies we find [Fe/H]=-2.04+-0.04 and a mean radial velocity RV=59.36+-0.31 km/s for H2 and [Fe/H]=-2.02+-0.11 and RV=59.39+-0.44 km/s for H5. Overall, we find large complexity in the chemical and dynamical properties, with signatures that additionally vary with galactocentric distance.Comment: 21 pages, 18 figures, 4 tables, accepted for publication in A&

    Reading the Chemical Evolution of Stellar Populations in Dwarf Galaxies

    Get PDF
    In this thesis I present observations and analyses addressed to understand the individual evolution of dwarf galaxies and the interdependency with their local environment. My study focuses on the Fornax dwarf spheroidal galaxy, which is the most massive galaxy of its type in the Local Group, hosting stars with a broad range in age and metallicity. Additionally, it is the only intact dwarf spheroidal with an own globular cluster system. Therefore, it provides a superb laboratory to gain insights about the formation and chemical enrichment processes of baryonic matter in Galactic halos. In particular, I have used individual alpha-element abundances obtained from high-resolution spectra to characterize, for the first time, the chemical evolution of Fornax over its entire age and find a surprisingly low early chemical enrichment efficiency with respect to other dwarf galaxies. Comparison with chemical evolution models show that Fornax must have experienced a systematically increasing star formation efficiency with time in order to bring the observations in agreement with the model predictions. One emerging evolutionary scenario is that Fornax experienced major accretion events in the past, so that its current properties are not indicative of the chemical enrichment environment at ancient times. A similar chemical analysis for the globular cluster H4 and nearby field stars in Fornax reveals, that H4 is depleted in all analyzed alpha-elements and falls on top of the observed field star [alpha/Fe] sequence, while its abundance pattern disagrees with the properties of Milky Way halo field stars and clusters. Thus, I propose a chemical enrichment coupling of the globular cluster population and field stars in Fornax. This finding provides tight constraints on the origin of alpha-depleted globular clusters in the Milky Way and will enable the chemical enrichment characterization of distant galaxies from integrated-light cluster analysis where field stars are too faint for detailed chemical analysis

    The metal-poor Knee in the Fornax Dwarf Spheroidal Galaxy

    Full text link
    We present alpha-element abundances of Mg, Si, and Ti for a large sample of field stars in two outer fields of the Fornax dwarf spheroidal galaxy (dSph), obtained with VLT/GIRAFFE (R~16,000). Due to the large fraction of metal-poor stars in our sample, we are able to follow the alpha-element evolution from [Fe/H]=-2.5 continuously to [Fe/H]=-0.7 dex. For the first time we are able to resolve the turnover from the Type II supernovae (SNe) dominated, alpha-enhanced plateau down to subsolar [alpha/Fe] values due to the onset of SNe Ia, and thus to trace the chemical enrichment efficiency of the galaxy. Our data support the general concept of an alpha-enhanced plateau at early epochs, followed by a well-defined "knee", caused by the onset of SNe Ia, and finally a second plateau with sub-solar [alpha/Fe] values. We find the position of this knee to be at [Fe/H]=-1.9 and therefore significantly more metal-poor than expected from comparison with other dSphs and standard evolutionary models. Surprisingly, this value is rather comparable to the knee in Sculptor, a dSph about 10 times less luminous than Fornax. Using chemical evolution models, we find that both the position of the knee as well as the subsequent plateau at sub-solar level can hardly be explained unless the galaxy experienced several discrete star formation events with a drastic variation in star formation efficiency, while a uniform star formation can be ruled out. One possible evolutionary scenario is that Fornax experienced one or several major accretion events from gas-rich systems in the past, so that its current stellar mass is not indicative of the chemical evolution environment at ancient times. If Fornax is the product of several smaller building blocks, this may also have implications of the understanding on the formation process of dSphs in general.Comment: 10 pages, 6 Figures, accepted for publication in Ap

    Assimilation of Cosmogenic Neutron Counts for Improved Soil Moisture Prediction in a Distributed Land Surface Model

    Get PDF
    Cosmic-Ray Neutron Sensing (CRNS) offers a non-invasive method for estimating soil moisture at the field scale, in our case a few tens of hectares. The current study uses the Ensemble Adjustment Kalman Filter (EAKF) to assimilate neutron counts observed at four locations within a 655 km2^{2} pre-alpine river catchment into the Noah-MP land surface model (LSM) to improve soil moisture simulations and to optimize model parameters. The model runs with 100 m spatial resolution and uses the EU-SoilHydroGrids soil map along with the Mualem–van Genuchten soil water retention functions. Using the state estimation (ST) and joint state–parameter estimation (STP) technique, soil moisture states and model parameters controlling infiltration and evaporation rates were optimized, respectively. The added value of assimilation was evaluated for local and regional impacts using independent root zone soil moisture observations. The results show that during the assimilation period both ST and STP significantly improved the simulated soil moisture around the neutron sensors locations with improvements of the root mean square errors between 60 and 62% for ST and 55–66% for STP. STP could further enhance the model performance for the validation period at assimilation locations, mainly by reducing the Bias. Nevertheless, due to a lack of convergence of calculated parameters and a shorter evaluation period, performance during the validation phase degraded at a site further away from the assimilation locations. The comparison of modeled soil moisture with field-scale spatial patterns of a dense network of CRNS observations showed that STP helped to improve the average wetness conditions (reduction of spatial Bias from –0.038 cm3^{3} cm−3^{-3} to –0.012 cm3^{3} cm−3^{-3}) for the validation period. However, the assimilation of neutron counts from only four stations showed limited success in enhancing the field-scale soil moisture patterns

    A New Reddening Law for M4

    Full text link
    We have used a combination of broad-band near-infrared and optical Johnson-Cousins photometry to study the dust properties in the line of sight to the Galactic globular cluster M4. We have investigated the reddening effects in terms of absolute strength and variation across the cluster field, as well as the form of the reddening law defined by the type of dust. Here, we determine the ratio of absolute to selective extinction (R_V) in the line of sight towards M4, which is known to be a useful indicator for the type of dust and therefore characterizes the applicable reddening law. Our method is independent of age assumptions and appears to be significantly more precise and accurate than previous approaches. We obtain A_V/E(B-V)=3.76\pm0.07 (random error) for the dust in the line of sight to M4 for our set of filters. With this value, the distance to M4 is found to be 1.80\pm0.05 kpc (random error). A reddening map for M4 has been created, which reveals a spatial differential reddening of delta E(B-V)>0.2 mag across a field within 10' around the cluster centre and a total mean reddening of E(B-V)=0.37\pm0.01. In order to provide accurate zero points for the extinction coefficients of our photometric filters, we investigated the impact of stellar parameters such as temperature, surface gravity and metallicity on the extinction properties in different bandpasses. Using both synthetic ATLAS9 spectra and observed spectral energy distributions, we found similar sized effects for the range of temperature, surface gravity, and metallicity typical of globular cluster stars: each causes a change of about 3% in the necessary correction factor for each filter combination. From our calculations, we provide extinction zero points for Johnson-Cousins and 2MASS filters, spanning a wide range of stellar parameters and dust types, suited for accurate, object-specific extinction corrections.Comment: 24 pages, 19 figures, 13 table

    Thermomechanical Design Criteria for Zr02-Y203 Coated Surfaces

    Get PDF
    Thermocycling of ceramic-coated turbomachine components produces high thermomechanical stresses that are mitigated by plasticity and creep but aggravated by oxidation, with residual stresses exacerbated by all three. These residual stresses, coupled with the thermocyclic loading, lead to high compressive stresses that cause the coating to spall. In the paper a ceramic-coated gas path seal is modeled with consideration given to creep, plasticity, and oxidation. The resulting stresses and possible failure modes are discussed

    Innovations in the Art of Microneurosurgery for Reaching Deep-Seated Cerebral Lesions

    Get PDF
    Deep-seated cerebral lesions have fascinated and frustrated countless surgical innovators since the dawn of the microneurosurgical era. To determine the optimal approach, the microneurosurgeon must take into account the characteristics and location of the pathological lesion as well as the operator’s range of technical expertise. Increasingly, microneurosurgeons must select between multiple operative corridors that can access to the surgical target. Innovative trajectories have emerged for many indications that provide more flexible operative angles and superior exposure but result in longer working distances and more technically demanding maneuvers. In this article, we highlight 4 innovative surgical corridors and compare their strengths and weaknesses against those of more conventional approaches. Our goal is to use these examples to illustrate the following principles of microneurosurgical innovation: (1) discover more efficient and flexible exposures with superior working angles; (2) ensure maximal early protection of critical neurovascular structures; and (3) effectively handle target pathology with minimal disruption of normal tissues

    Thermomechanical Design Criteria for Ceramic-Coated Surfaces

    Get PDF
    Some early history of ceramic applications is presented. Finite element modeling of components to determine service and fabrication loads found inelastic behavior and residual stresses to be significant to component life. Inelastic behavior mitigates peak strains but enhances residual strains. Results of furnace, Mach 0.3 burner, and engine tests are discussed and categorized into design criteria (loading, geometry, fabrication, materials, analysis, and testing). These design rules and finite element analyses are brought to bear on two test cases: turboshaft engine seals, and rocket thrust chambers

    Evidence for a chemical enrichment coupling of globular clusters and field stars in the Fornax dSph

    Get PDF
    The globular cluster H4, located in the center of the Fornax dwarf spheroidal galaxy, is crucial for understanding the formation and chemical evolution of star clusters in low-mass galactic environments. H4 is peculiar because the cluster is significantly more metal-rich than the galaxy’s other clusters, is located near the galaxy center, and may also be the youngest cluster in the galaxy. In this study, we present detailed chemical abundances derived from high-resolution (R ~ 28 000) spectroscopy of an isolated H4 member star for comparison with a sample of 22 nearby Fornax field stars. We find the H4 member to be depleted in the alpha-elements Si, Ca, and Ti with [Si/Fe] = −0.35 ± 0.34, [Ca/Fe] = + 0.05 ± 0.08, and [Ti/Fe] = −0.27 ± 0.23, resulting in an average [α/Fe] = −0.19 ± 0.14. If this result is representative of the average cluster properties, H4 is the only known system with a low [α/Fe] ratio and a moderately low metallicity embedded in an intact birth environment. For the field stars we find a clear sequence, seen as an early depletion in [α/Fe] at low metallicities, in good agreement with previous measurements. H4 falls on top of the observed field star [α/Fe] sequence and clearly disagrees with the properties of Milky Way halo stars. We therefore conclude that within a galaxy, the chemical enrichment of globular clusters may be closely linked to the enrichment pattern of the field star population. The low [α/Fe] ratios of H4 and similar metallicity field stars in Fornax give evidence that slow chemical enrichment environments, such as dwarf galaxies, may be the original hosts of alpha-depleted clusters in the halos of the Milky Way and M31
    • …
    corecore