538 research outputs found

    Reaction with Fructose Detoxifies Fumonisin B1 while Stimulating Liver-Associated Natural Killer Cell Activity in Rats

    Get PDF
    Fumonisin B1 (FB1) was reacted with fructose in an attempt to detoxify this mycotoxin. Fischer 344/N rats were initiated with diethylnitrosamine (15 mg/kg body weight) and then fed 69.3 μmol FB1/kg diet or 69.3 μmol FB1 reacted with fructose (FB1−fructose)/kg diet for 4 weeks. In comparison with the rats fed basal diet or FB1−fructose, the FB1-fed rats had significantly increased plasma cholesterol (P \u3c 0.01), plasma alanine aminotransferase activity (P \u3c 0.05), and endogenous hepatic prostaglandin production (P \u3c 0.05). Placental glutathione S-transferase-positive and γ-glutamyl transferase-positive altered hepatic foci occurred only in the FB1-fed rats. Liver-associated natural killer (NK) cell activity was significantly decreased in the FB1-fed rats and increased in the group fed FB1-fructose, as compared with the basal group (P \u3c 0.03). Therefore, modifying FB1 with fructose seems to prevent FB1-induced hepatotoxicity and promotion of hepatocarcinogenesis while stimulating liver-associated NK cell activity in rats

    The Methyl-CpG Binding Proteins Mecp2, Mbd2 and Kaiso Are Dispensable for Mouse Embryogenesis, but Play a Redundant Function in Neural Differentiation

    Get PDF
    The precise molecular changes that occur when a neural stem (NS) cell switches from a programme of self-renewal to commit towards a specific lineage are not currently well understood. However it is clear that control of gene expression plays an important role in this process. DNA methylation, a mark of transcriptionally silent chromatin, has similarly been shown to play important roles in neural cell fate commitment in vivo. While DNA methylation is known to play important roles in neural specification during embryonic development, no such role has been shown for any of the methyl-CpG binding proteins (Mecps) in mice.. No evidence for functional redundancy between these genes in embryonic development or in the derivation or maintenance of neural stem cells in culture was detectable. However evidence for a defect in neuronal commitment of triple knockout NS cells was found.Although DNA methylation is indispensable for mammalian embryonic development, we show that simultaneous deficiency of three methyl-CpG binding proteins genes is compatible with apparently normal mouse embryogenesis. Nevertheless, we provide genetic evidence for redundancy of function between methyl-CpG binding proteins in postnatal mice

    Mutants in the Mouse NuRD/Mi2 Component P66α Are Embryonic Lethal

    Get PDF
    The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66alpha and p66beta. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems.We made loss of function mutants in the mouse p66alpha gene (mp66alpha, official name Gatad2a, MGI:2384585). We found that mp66alpha is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66alpha in gene silencing.mp66alpha is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing

    Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    Get PDF
    MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate

    Healing built-environment effects on health outcomes: environment–occupant–health framework

    Get PDF
    An investigation examined the structured scientific evidence on healthcare facilities (the healing built environment – HBE) and its impact on patients’ health outcomes under a holistic conceptual evaluative framework. The integrative review considered 127 papers (of which 59 were review papers). It found there was no adequate framework that could integrate existing research findings holistically. Such a holistic framework needs to demonstrate the cumulative and interactive effects of various HBE characteristics on patients’ health outcomes and wellbeing. An environment–occupant–health (E-O-H) framework is proposed, taking a holistic perspective to identify and evaluate different HBE characteristics. The E-O-H framework should support future research by (1) identifying the HBE characteristics that affect health outcomes; (2) defining appropriate future research designs; and (3) understanding the need for holistic analysis of the integrated effects of diverse HBE characteristics on health outcomes

    Genetic and epigenetic analyses of MBD3 in colon and lung cancer

    Get PDF
    MBD3: is a member of the methyl-CpG-binding domain family and is located on chromosome 19p13.3, a region of loss of heterozygosity in colon and lung cancers. We therefore screened samples for abnormalities in MBD3. Our results indicate that MBD3 is not a major target of genetic and epigenetic alteration in these cancers.Publisher PDFPeer reviewe

    Ecological Niche Modelling and nDNA Sequencing Support a New, Morphologically Cryptic Beetle Species Unveiled by DNA Barcoding

    Get PDF
    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species

    Epigenetics as a mechanism driving polygenic clinical drug resistance

    Get PDF
    Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance

    A human cancer-associated truncation of MBD4 causes dominant negative impairment of DNA repair in colon cancer cells

    Get PDF
    MBD4 binds to methylated DNA and acts as a thymine DNA glycosylase in base excision repair. Deficiency of MBD4 in mice enhances mutation at CpG sites and alters apoptosis in response to DNA damage, but does not increase tumorigenesis in mismatch repair-deficient mice. However, in humans, frameshift mutation of MBD4, rather than deletion, is what occurs in up to 43% of microsatellite unstable colon cancers. There is no murine equivalent of this mutation. We now show that recombinant truncated MBD4 (MBD4tru) inhibits glycosylase activities of normal MBD4 or Uracil DNA glycosylase in cell-free assays as a dominant negative effect. Furthermore, overexpression of MBD4tru in Big Blue (lacI)-transfected, MSI human colorectal carcinoma cells doubled mutation frequency, indicating that the modest dominant negative effect on DNA repair can occur in living cells in short-term experiments. Intriguingly, the whole mutation spectrum was increased, not only at CpG sites, suggesting that truncated MBD4 has a more widespread effect on genomic stability. This demonstration of a dominant negative effect may be of significance in tumour progression and acquisition of drug resistance
    • …
    corecore