27,698 research outputs found

    A nonlinear equation for ionic diffusion in a strong binary electrolyte

    Full text link
    The problem of the one dimensional electro-diffusion of ions in a strong binary electrolyte is considered. In such a system the solute dissociates completely into two species of ions with unlike charges. The mathematical description consists of a diffusion equation for each species augmented by transport due to a self consistent electrostatic field determined by the Poisson equation. This mathematical framework also describes other important problems in physics such as electron and hole diffusion across semi-conductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here we derive a more general theory by exploiting the ratio of Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear integro-differential equation which replaces the classical linear equation for ambipolar diffusion but reduces to it in the appropriate limit. Through numerical integration of the full set of equations it is shown that this nonlinear equation provides a better approximation to the exact solution than the linear equation it replaces.Comment: 4 pages, 1 figur

    Multidimensional measurement within adult protective services: design and initial testing of the tool for risk, interventions, and outcomes.

    Get PDF
    This study describes the development, field utility, reliability, and validity of the multidimensional Tool for Risk, Interventions, and Outcomes (TRIO) for use in Adult Protective Services (APS). The TRIO is designed to facilitate consistent APS practice and collect data related to multiple dimensions of typical interactions with APS clients, including the investigation and assessment of risks, the provision of APS interventions, and associated health and safety outcomes. Initial tests of the TRIO indicated high field utility, social worker "relevance and buy-in," and inter-rater reliability. TRIO concurrent validity was demonstrated via appropriate patterns of TRIO item differentiation based on the type of observed confirmed abuse or neglect; and predictive validity was demonstrated by prediction of the risk of actual APS recurrence. The TRIO is a promising new tool that can help meet the challenges of providing and documenting effective APS practices and identifying those at high risk for future APS recurrence

    The effect of operations on the ground noise footprints associated with a large multibladed, nonbanging helicopter

    Get PDF
    In order to expand the data base of helicopter external noise characteristics, a flyover noise measurement program was conducted utilizing the NASA Civil Helicopter Research Aircraft. The remotely operated multiple array acoustics range (ROMAAR) and a 2560-m linear microphone array were utilized for the purpose of documenting the noise characteristics of the test helicopter during flyby and landing operations. By utilizing both ROMAAR concept and the linear array, the data necessary to plot the ground noise footprints and noise radiation patterns were obtained. Examples of the measured noise signature of the test helicopter, the ground noise footprint or contours, and the directivity patterns measured during level flyby and landing operations of a large, multibladed, nonbanging helicopter, the CH-53, are presented

    Role of Activity in Human Dynamics

    Get PDF
    The human society is a very complex system; still, there are several non-trivial, general features. One type of them is the presence of power-law distributed quantities in temporal statistics. In this Letter, we focus on the origin of power-laws in rating of movies. We present a systematic empirical exploration of the time between two consecutive ratings of movies (the interevent time). At an aggregate level, we find a monotonous relation between the activity of individuals and the power-law exponent of the interevent-time distribution. At an individual level, we observe a heavy-tailed distribution for each user, as well as a negative correlation between the activity and the width of the distribution. We support these findings by a similar data set from mobile phone text-message communication. Our results demonstrate a significant role of the activity of individuals on the society-level patterns of human behavior. We believe this is a common character in the interest-driven human dynamics, corresponding to (but different from) the universality classes of task-driven dynamics.Comment: 5 pages, 6 figures. Accepted by EP

    High-resolution imaging of ultracold fermions in microscopically tailored optical potentials

    Full text link
    We report on the local probing and preparation of an ultracold Fermi gas on the length scale of one micrometer, i.e. of the order of the Fermi wavelength. The essential tool of our experimental setup is a pair of identical, high-resolution microscope objectives. One of the microscope objectives allows local imaging of the trapped Fermi gas of 6Li atoms with a maximum resolution of 660 nm, while the other enables the generation of arbitrary optical dipole potentials on the same length scale. Employing a 2D acousto-optical deflector, we demonstrate the formation of several trapping geometries including a tightly focussed single optical dipole trap, a 4x4-site two-dimensional optical lattice and a 8-site ring lattice configuration. Furthermore, we show the ability to load and detect a small number of atoms in these trapping potentials. A site separation of down to one micrometer in combination with the low mass of 6Li results in tunneling rates which are sufficiently large for the implementation of Hubbard-models with the designed geometries.Comment: 15 pages, 6 figure

    Bose-Einstein Condensate Driven by a Kicked Rotor in a Finite Box

    Full text link
    We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of the experimental data suggests that the localization is due to energetic atoms leaking over the barrier. Our data also indicates a correlation between collisions and the destruction of the Bose-Einstein condensate fraction.Comment: 7 pages, 8 figure

    Weak ferromagnetism and glassy state in kappa-(BEDT-TTF)2Hg(SCN)2Br

    Full text link
    Since the first observation of weak ferromagnetism in the charge-transfer salt kappa-(BEDT-TTF)2-Cu[N(CN)2]Cl [U. Welp et al., Phys. Rev. Lett. 69, 840 (1992)], no further evidence of ferromagnetism in this class of organic materials has been reported. Here we present static and dynamic spin susceptibility measurements on kappa-(BEDT-TTF)2Hg(SCN)2Br revealing weak ferromagnetism below about TWF = 20 K. We suggest that frustrated spins in the molecular dimers suppress long-range order, forming a spin-glass ground state in the insulating phase

    Van Allen Probes observations of direct wave-particle interactions

    Get PDF
    Abstract Quasiperiodic increases, or bursts, of 17-26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75-80°, while fluxes at 90° and \u3c60° remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ∼15-35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signals the presence of an Alfvén boundary in the plasma. The cause of the quasiperiodic nature (on the order of a few minutes) of the bursts is not understood at this time
    • …
    corecore