33,974 research outputs found

    Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy

    Full text link
    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon~II direct electron detector using 300 keV electrons. We observe Thon rings \cite{Thon1966} in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by mean squared distance of ∼\sim 1.1 \AA2^{2} for every incident 300 keV e−^{-}/\AA2^2. The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e−^{-}/\AA2^2 per image with which to see Thon rings centred around the strong 3.7{\AA} scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination.Comment: 11 pages, 6 figures, Supplementary information 6 pages with 5 figure

    Renormalized Path Integral in Quantum Mechanics

    Get PDF
    We obtain direct, finite, descriptions of a renormalized quantum mechanical system with no reference to ultraviolet cutoffs and running coupling constants, in both the Hamiltonian and path integral pictures. The path integral description requires a modification to the Wiener measure on continuous paths that describes an unusual diffusion process wherein colliding particles occasionally stick together for a random interval of time before going their separate ways.Comment: 13 pgs, plain TEX fil

    Solitons in a Bilocal Field Theory

    Get PDF
    We obtain a bilocal classical field theory as the large NN limit of the chiral Gross--Neveu (or non--abelian Thirring) model. Exact classical solutions that describe topological solitons are obtained. It is shown that their mass spectrum agrees with the large NN limit of the spectrum of the chiral Gross--Neveu model.Comment: Tex, 18 pages, no figure

    Renormalized Contact Potential in Two Dimensions

    Get PDF
    We obtain for the attractive Dirac delta-function potential in two-dimensional quantum mechanics a renormalized formulation that avoids reference to a cutoff and running coupling constant. Dimensional transmutation is carried out before attempting to solve the system, and leads to an interesting eigenvalue problem in N-2 degrees of freedom (in the center of momentum frame) when there are N particles. The effective Hamiltonian for N-2 particles has a nonlocal attractive interaction, and the Schrodinger equation becomes an eigenvalue problem for the logarithm of this Hamiltonian. The 3-body case is examined in detail, and in this case a variational estimate of the ground-state energy is given.Comment: Plain Te

    Methods of extending signatures and training without ground information

    Get PDF
    Methods of performing signature extension, using LANDSAT-1 data, are explored. The emphasis is on improving the performance and cost-effectiveness of large area wheat surveys. Two methods were developed: ASC, and MASC. Two methods, Ratio, and RADIFF, previously used with aircraft data were adapted to and tested on LANDSAT-1 data. An investigation into the sources and nature of between scene data variations was included. Initial investigations into the selection of training fields without in situ ground truth were undertaken

    Study of the effect of scattering from turbid water on the polarization of a laser beam

    Get PDF
    A Monte Carlo simulation method was used to determine the effect of scattering from turbid water on the polarization of a backscattered beam of laser light. The relationship between the polarization and the type and amount of suspended particulates in the water was investigated

    Gas chromatograph injection system

    Get PDF
    An injection system for a gas chromatograph is described which uses a small injector chamber (available in various configurations). The sample is placed in the chamber while the chamber is not under pressure and is not heated, and there is no chance of leakage caused by either pressure or heat. It is injected into the apparatus by changing the position of a valve and heating the chamber, and is volatilized and swept by a carrier gas into the analysis apparatus

    Determination of scattering functions and their effects on remote sensing of turbidity in natural waters

    Get PDF
    The development of quantitative analytical procedures for relating scattered signals, measured by a remote sensor, was considered. The applications of a Monte Carlo simulation model for radiative transfer in turbid water are discussed. The model is designed to calculate the characteristics of the backscattered signal from an illuminated body of water as a function of the turbidity level, and the spectral properties of the suspended particulates. The optical properties of the environmental waters, necessary for model applications, were derived from available experimental data and/or calculated from Mie formalism. Results of applications of the model are presented

    Short turn-around intercontinental clock synchronization using very-long-baseline interferometry

    Get PDF
    During the past year work was accomplished to bring into regular operation a VLBI system for making intercontinental clock comparisons with a turn around of a few days from the time of data taking. Earlier VLBI systems required several weeks to produce results. The present system, which is not yet complete, incorporates a number of refinements not available in earlier systems, such as dual frequency inosopheric delay cancellation and wider synthesized bandwidths with instrumental phase calibration

    Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    Get PDF
    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included
    • …
    corecore