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ABSTRACT
 

Development of quantitative analytical procedures for relating
 
the water quality parameter to the characteristics of the back­
scattered signals, measured by a remote sensor, necessitates further
 
,physical insight in the area ,of radiative transfer processes in
 
turbid media. The present report discusses the applications of a
 
Monte 'Carlo simulation model for radiative transfer in turbid water.
 
'The model is designed to calculate the characteristics of the back­
scattered signal from an illuminated body of water as a function of
 
the turbidity level, and the spectral vroperties ,of the suspended
 
particulates. The optical properties of the environmental waters,
 

necessary for model applications, have been derived from available
 
,experimental data and/or calculated from Mie formalism. Results of
 
applications of the model, which have been implemented in support
 
of a laboratory program at NASA/Langley Research Center, are presented.
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1.0 INTRODUCTION AND CONCLUSIONS
 

The importance of continuous monitoring of environmental water
 

quality has long been recognized. The recent emphases placed on
 

such operations are due to newly gained insights (1) in the
 

limitations of the cleansing capability of the natural waters, (2) a
 

better understanding of ecological consequences of water pollutants,
 

and (3) availability of better information for assessing economic
 

impacts of various stresses imposed on the water systems. Considering
 

the dynamic character of the environmental waters the monitoring
 

procedures for measuring water quality parameters should be based on
 

timely data collection systems, such as can be provided by applica­

tions of remote sensing technology.
 

Hypothetically, in a remote sensing experiment the optical
 

sensor measures the radiance signal which contains information on
 

spectral and spatial variation of the source of radiation and the
 

intervening media. The received radiance is then "processed"
 

according to an established scheme,'which is a quantitative analytical
 

procedure, and the radiance characteristics are ultimately related
 

to the desired parameters.
 

The data interpretation techniques for remote measurement of
 

water quality parameters are presently in preliminary stages.
 

Although some attempts have been made to develop analytical
 

procedures for data processing, a generally accepted processing
 

scheme has not emerged.
 



Among the quantities that effect the radiance characteristics
 

measured by a remote sensing instrument are:
 

* 	Atmospheric path radiances and signal transmission effects
 

* 	Spatial and spectral variability of atmospheric constitu­
ents such as particulates and molecular species
 

* 	Sun angle
 

* 	Characteristics of air-water interface
 

* 	Vertical non-homogenity of water bodies and bottom reflection
 
properties
 

Considering these effects and the fact that aquatic environments
 

change continuously with the complex interactions between wind, water
 

and land masses; the development of data interpretation schemes, in
 

support of remote sensing, necessitates field experiments and
 

controlled laboratory experiments as well as radiative transfer
 

modeling approaches. A variety of field experiments from low and
 

high flying aircraft and from satellite platforms have been con­

dtcted, or planned for the immediate future.
 

A laboratory program is presently being pursued at the NASA-


Langley Research Center (LaRC). The purpose of this program is to
 

investigate the remote sensing of water quality parameters under
 

controlled conditions. During the first phase of this program,
 

remote sensing applications of suspended particulates (various types
 

of clays) have been investigated. A schematic diagram of LaRC's
 

experimental set-up is shown in Figure 1-1. In this experiment, the
 

beam of a solar simulator is deflected to illuminate a large water
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tank filled with turbid water; the water turbidity in the tank is
 

caused by the stepwise introduction of specific amounts of particu­

lates. An overhead detector system including a spectrometer, elec­

tronics, and a camera, measures the strengths and the characteristics
 

of the upwelling radiance signal.
 

In order to analyze the experimental results and to optimize
 

the experimental conditions a radiative transfer model has been
 

developed for the LaRC's experimental arrangement at The METREK
 

Division of The MITRE Corporation. The description of the modeling
 

approach and the results of a sensitivity study concerning the
 

optimized spot size to be illuminated by the solar simulator have
 

2 )
been reported in two earlier documents.(1,


The present report deals with variations in the characteristics
 

of the backscattered radiance as a result of changes in the scatter­

ing function, for various waters. The scattering function represents
 

one of the important optical parameters of the turbid water and various
 

scattering functions may represent various types of turbid waters.
 

In Section 1.3 specific goals of the present report are described in
 

more detail. Before this is done however, it is necessary to
 

summarize some background material on (1) optical parameters of turbid
 

waters, and (2) on our radiative transfer modeling procedure. These
 

background materials are treated in Sections 1.1, and 1.2 respectively.
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1.1 Optical Parameters of Turbid Water
 

In the absence of polarization the following parameters are
 

necessary for optical characterization of turbid water medium:
 

* total 	absorption coefficient, a.
 

* total scattering coefficient, s.
 

These coefficients have the dimension of meter- 1. The attenuation
 

coefficient, a, is the sum of absorption and scattering coefficients,
 

The last parameter of interest is the scattering function, a(S).
 

This function specifies the angular pattern of the scattering of a
 

collimated beam from an infinitesimal volume of turbid water. The
 

scattering probability function for polar angle, F(O), may be defined
 

in terms of the scattering function by the ratio:
 

F(6) = of a() Sin 6 dO / / a(O) Sin 6 d6 	 (1-1) 

More information on these parameters may be found in Appendix A
 

of Reference 1.
 

1.2 Radiative Transfer Model
 

The development of METREK's radiative transfer model is based
 

on a two step process which is described in this section. The
 

adopted modeling procedure is geared toward handling turbid type
 

waters, and toward saving the computer time necessary for model
 

execution. The model development includes the following steps:
 

Step 1. 	The outgoing radiance distribution just above
 
the air-water interface, due to a narrow beam
 
transmission in the turbid water media is
 

calculated using Monte Carlo simulation tech­

niques.
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,Step 2. The outgoing radiance emerging from the area
 
,withinthe detector's field-of-view, and
 
'traveling in a direction coincident with the
 
range of 'the detector"s acceptance angle is
 
calculated using the interface radiance
 
distribution (Step 1) and integrating over
 
-the 	incident team area. 

The advantage of this approach as compared to conventional
 

Monte Carlo simulation approaches is that the narrow beam considera­

tion 	allows the production of a better set of statistics within 

reasonable computer resources.
 

1.2.1 	Monte Carlo Simulation for Iar.row Beam Transmission
 

The advances i-n laser technology in the last decade have led to
 

a'variety of theoretical considerations ,of the narrow ibeam trans­

,mission an the water media. In general, the theoretical approaches
 

may be sub-divided in two categories,, (1) analytical solution of the
 

,equation of radiative transfer and (2),Monte 'Carlo,simulation methods.
 

The Monte Carlo ,simulation methods avoid many of the mathematical
 

complexities involved in the analytical solution approach, and for
 

this reason are more appropriate for calculating the narrow beam
 

transmission. This is even more true in calculations simulating
 

laboratory experiments where the experimental conditions, such as
 

the tank geometry, significantly complicate the boundary conditions
 

for the solution of the radiative transfer equation. Thus, the
 

Monte Carlo simulation method has been used in the development of
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the analytical model for LaRC's experiment. A description of the
 

Monte Carlo simulation approach, which is geared toward decreasing
 

computer time and handling turbid rather than oceanic type waters
 

is given in References 1 and 2. The procedure leading to the
 

calculation of radiance is based on making use of the distribution
 

of the emerging photons generated by the Monte Carlo program,
 

and the geometry of LaRC's experimental arrangement. (1,2)
 

The listing of the complete computer program, description of
 

the input data, output data, and instructions for analysis of the
 

output data to arrive at the upwelling radiance, are given in
 

Appendix A.
 

1.3 Conclusions and Organization of This Report
 

In our previous reports, (1,2) we have documented the results
 

of our modeling effort concerning the relationship between the spot
 

size of the incident beam and the upwelling radiance, in the LaRC's
 

laboratory experiment. These results, however, were based on the
 

usage of only Morrison's scattering probability function. (3 ) In the
 

present work we report on the effects of various inputs of both
 

measured and calculated scattering probability functions.
 

In Sections 2 and 3 we have (1) summarized the available
 

information on the measurements of the scattering function, and (2)
 

have utilized the Mie formalism to calculate the scattering function
 

for polydispersed suspensions on the basis of size distribution
 

measurements provided through the LaRC laboratory program, and
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reasonable inputs for the index of refraction including its imaginary
 

part. The compiled measured scattering probability functions for
 

natural water, cover a wide range of turbid waters and show
 

considerable variations. The upper and lower bounding measured for
 

the scattering probability functions correspond to San Diego Harbor,
 

and sea water filtered thoroughly. (4-10) The scattering probability
 

(3)

function measured by Morrison , used in Reference (1,2) lies
 

between these limits, closer to the upper bound. Due to the lack
 

of sufficient observations no conclusions could be drawn regarding
 

the changes of the measured scattering functions with wavelength.
 

The calculated results of the scattering probability functions
 

have been obtained for the following cases and their combinations:
 

* 	Size distributions including large particle sizes ("400 V)
 

* 	Size distributions including a cutoff at 10 p
 

* 	Zero or 0.004 for the imaginary part of the index of
 
refraction
 

* 	Two wavelengths values at 500 and 600 nm
 

The conclusions derived from these results are:
 

1) 	Size distributions including large particles sizes
 

("100 V) lead to an extremely large forward scattering 
peak, which shows up as a fast rise in the scattering 
probability function. The scattering probability 
function calculated for this situation is higher than 

the upper bound of the measured functions as may be 
seen by comparing Figures 3-15 and 2-8. 

2) Size distributions including a cutoff at 10 p results
 

in the scattering probability functions which lie
 
between the upper and lower bounding of the measured
 
probability functions shown in Figure 2-8.
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3) The effect of non-zero imaginary part for the index of
 
refraction is to decrease the fast rise of the scattering
 
probability function at small angles, and to put these
 
functions within the bounds of the measured data.
 

4) The functions calculated for wavelengths of 500 nm and
 
600 nm do not show significant differences.
 

Based on the results and the conclusion described above three
 

functions were selected for the investigation of the dependence of
 

the upwelling radiance on the scattering function. These functions,
 

which have been used in the Monte Carlo simulations radiative
 

transfer code of Appendix A are:
 

" The lower bound of the measured scattering probability
 

function
 

* 	The upper bound of the measured scattering probability
 
function, and
 

* 	The upper bound of the calculated scattering probability
 
functions. This function has been calculated for Feldspar
 
soil, a zero value for the imaginary part of the index of
 
(u00 p). This function is higher than the upper bound
 
of the measured scattering functions.
 

The turbidity levels treated in section 4.0 correspond to
 

1
scattering coefficients s = 6.0 and s = 12 meter- ; the wavelength
 

of interest is 500 nm. The maximum number of incident photons
 

traced in most computer runs is 10,000. The values calculated with
 

the input of calculated upper bound scattering function is in good
 

agreement with the measured upper bound scattering function for
 

larger range of exit angle. However, for small range of exit angle
 

-
(s 250 degrees for s = 6.0 meter- 1 and 35 for s = 12 meter ) no 

statistically significant result could be drived for this function, 
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from the ensemble of backscattered events for 10,000 incident photons.
 

For this reason only the results derived from the use of measured
 

upper and lower scattering functions were processed further, and
 

form the basis of our conclusions.
 

-l
 
The results generated for s = 6.0 and s = 12.0 meter are in
 

very good agreement as shown in Figure 4-3 (the figure-of-merit),
 

where the ratio of the backscattered radiances (radiance due to the
 

lower limit measured scattering probability function, divided by the
 

radiance due to the upper limit measured scattering probability
 

function) have been displayed as a function of the upper limit of the
 

exit angle. As can be seen from Figure 4-3, the influence of the
 

scattering probability function is quite significant, but decreases
 

with decreasing exit angle. We expect that this trend will continue
 

to be true for smaller angular ranges (such as 0 to 0.50 which
 

represent the acceptance angle of the LaRC's overhead detector) and,
 

therefore, conclude that the effect of various scattering probability
 

functions is not significant in the LaRC's experimental set-up.
 

The reason the smaller angular ranges were not examined specif­

ically in this report has been due to the constraint on computer
 

resources. It is recommended, therefore, that the computer program
 

developed in this report be executed for a larger number of photons
 

(larger than 10,000 photons considered in this study) to strengthen
 

our conclusions.
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2.0 MEASURED SCATTERING FUNCTIONS
 

In order to measure the complete scattering function, the scat­

terance must be observed at a number of angles between 00 and 1800.
 

Two types of scattering meters have been used in the past for the
 

measurements of the scattering functions. These are: (1) general
 

angle scattering meters, and (2) low angle scattering meters. The
 

mathematical definition of scattering function and an overview of
 

the scattering meters are given in Appendix B.
 

The instrumentation required for in-situ measurements of the
 

scattering functions are very sophisticated, hence only a small
 

number of such measurements have been performed.
 

Figures 2-1 and 2-2 show several in-situ measured scattering
 

functions covering turbid to clear water conditions. Figure 2-1
 

(4) (5)

coastal waters,


represents the observations made in lake water, 


Atlantic surface water, (6) Pacific near-coastal water, (7 ) Mediter­

ranean,(8 ) and Saragasso Sea water. ( 9) Most of these observations
 

are taken between a = 100 and B = 1550. Figure 2-2 illustrates the 

measurements taken by the Scripps Institution of Oceanography (10 ) in 

deep clear oceanic water (tongue of the ocean), near shore ocean
 

water (off shore of Southern California), and very turbid harbor
 

water (San Diego Harbor). The measurements shown in Figure 2-2 are 

*carrieaout-over the entire range 0 e0c 1800. The scattering 
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functions shown in both these figures are similar in general form.
 

The 	differences between the scattering functions are most pronounced
 

in the backward region above 900, and in the forward region below
 

100. Although the differences do reflect real variations in the
 

scattering functions for various areas, they may reflect the inherent
 

experimental difficulties as well.
 

The experimental difficulties become more striking when the
 

scattering functions are measured in-vitro. The observations taken
 

in-vitro by Petzold (1 0 ) are probably the most reliable ones. The
 

measurements were taken to determine the effect of adding scattering
 

and 	absorbing materials in the water. For this, scattering materials
 

(compounds of aluminum hydroxide and magnesium hydroxide), and
 

absorbing materials (black dye nigrosin), were introduced into fresh
 

water pumped through a filter containing diatomaceous earth. The
 

resultant change in scattering functions as observed with the
 

scattering meters are presented in Figure 2-3. It is clear from
 

Figure 2-3 that the scattering functions are insensitive to the
 

absorption properties of the water.
 

2.1 	Variation of Scattering Function with Wavelength A
 

Not many of the experiments either in-situ or in-vitro so far
 

have been performed for different wavelengths. Most of the obser­

vations are in 460 e X 4 655 nm wavelength region. The scattering
 

functions presented in Figures 2-2 and 2-3 were measured at
 

A = 530 nm. Due to a lack of observations at other wavelengths for 
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the same meters and under similar conditions (Figures 2-2 and 2-3),
 

it is difficult to draw any conclusions regarding the changes in
 

scattering functions with wavelength. However, Kullenberg has
 

measured a(6) at 655 nm and 460 nm in the Sargasso Sea. (11) These
 

measurements are shown in Figure 2-4. The scattering function is
 

evidently the same at both these wavelengths, in the forward scat­

.
tering region of 0 s 6 4 350
 

2.2 Scattering Probability Function F(O)
 

The scattering probability function, F(O), has been defined by
 

equation (1-1). F(e) is the ratio of power scattered into angles less
 

than e relative to the total power scattered in all directions. F(O)
 

is an important parameter and is a measure of forward as well as back­

ward scattering in natural environment waters. F(O) is the function
 

used in the Monte Carlo simulation model, as mentioned in the intro­

duction.
 

Figure 2-5 shows the scattering probability function obtained
 

by integrating the function represented in Figure 2-2, while Figure
 

2-6 illustrates F(O) obtained from Figure 2-3. The probability
 

scattering functions presented in Figure 2-6 show the effect of
 

adding scattering and absorbing materials in the waters. Clearly,
 

the addition of scattering material increases the backscattering
 

whereas addition of absorbing material contributes insignificant
 

changes to the scattering probability function.
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To illustrate the effect of varying wavelength on the scattering 

probability function, the functions presented in Figure 2-4 were 

filled in the angular range larger than 10 degree, were extrapolated 

into the angular range smaller than 10 degree, and were integrated 

to obtain F(S) at 655 nm and 540 nm, as shown in Figure 2-7. 

Since one of the objectives of this paper is to record experi­

mentally determined upper and lower bounding scattering probability
 

functions, the information from Figures 2-5, 2-6, and 2-7 are shown
 

collectively in Figure 2-8. The lowest bound on the scattering
 

probability function is given by the pure water, where particulate
 

scattering is insignificant. Natural environmental waters are not
 

usually free of particulates and, therefore, experiments have been
 

performed to define their characteristics. An experiment conducted
 

at Scripps Institution of Oceanography(10 ) examined sea water pumped
 

into the laboratory and measured scattering probability functions
 

for the water as delivered, and after several steps of filtration.
 

After 18 hours of filtering, low-angle foward scattering signals
 

have been found too low to be measurable. The results obtained from
 

this experiment, in addition to the scattering probability functions
 

(3)
 
obtained by Morrison at Long Island Sound stations, are included
 

in Figure 2-8.
 

The work presented in this section indicates that the San Diego
 

Harbor water, the most turbid water, gives the upper bound to the
 

experimentally determined scattering probability functions. The
 

20 



1.0 

0.9­

0.8 -

.114­

0.7 / 

0.6 -

c 0.5 

0.4 -' 

0/ 

655 nm 

0.3 - -'- -460 mn 

0.2­

0.o 

0.1 1.0 10. 
Scattering Angle -G 

100 200 

FIGURE 2-7 
SCATTERING PROBABILITY FUNCTION MEASURED 

AT 2 WAVELENGTHS 
IN SARGASSO SEA 



1.0 
.	 ­

2 f[ a() sinG de 

.8 2" j*a(8) sinG d6 SAN DIEGO HARBOR
 
-


TONGUE OF THE OCEAN 
IY 


.	 r
.6 


SOUTHRN//	 •

.5 OFFSHORE SOUTHERN CALIFORNIA . 

.4 	 \
 

le 
I
N) 


J 

.3 s" SEA WATER FILTERED FOR 18 HRS. 

l //(Visibility Lab. Test Tank) 

.2ISLAND 	 FRESH WATER
 

FRESH WATER + SCATTERING + ABSORBING MATERIAL
 

0.1 	 1.0 10. 100 200
 

Scattering Angle -6
 

FIGURE 2-8
 
SCATTERING PROBABILITY FUNCTIONS FOR NATURAL OCEAN WATERS
 

AND FOR FRESH WATER THAT HAS BEEN FILTERED
 
AND ARTIFICIALLY MODIFIED
 



lower bound is given by the sea water thoroughly filtered. The
 

scatterance characteristics of various waters considered are quite
 

different. Very turbid waters show very high forward scatterance.
 

At 10 scattering angle, the forward scattering measured in San Diego
 

Harbor water is almost 15 times of that measured in filtered water.
 

This ratio reduces to three at 100 scattering angle.
 

The implications of these results on remote detection of water
 

turbidity will be discussed in Section 4.0.
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3.0 	CALCULATED SCATTERING FUNCTIONS
 

This section is devoted to the theoretical treatment of
 

scattering and absorption from suspended particulates. The Mie
 

theory of light scattering from a single particule is treated in
 

Sub-section 3.1. The extension of Mie theory to the case of
 

polydispersed suspensions is then discussed along with the compu­

tational methods used to calculate the scattering function, in Sub­

sections 3.2 and 3.3 (Appendix E discusses the relationships between
 

the Mie parameters and the extiction, scattering and absorption
 

coefficients). Sub-section 3.4 includes a discussion of the size
 

distributions and optical properties of the clay sediments
 

considered in the calculations. Finally, in Section 3.5 the results
 

of the calculation of the scattering function are presented along
 

with a discussion of their implications for the NASA/Langley tank
 

experiment.
 

The following discussion of the Mie theory of scattering and
 

the computational methods is a brief summary. For more detailed
 

discussions of Mie theory for single scattering, the reader is
 

referred to References 13, 14, and 15. Reference 16 contains a
 

good discussion of Mie scattering from polydispersions and reference
 

17 contains the details of the computational procedures and
 

requirements.
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3.1 Mie Theory for Single Particle Scattering
 

When light is incident on a particle, it undergoes both scat­

tering and absorption (we will ignore inelastic scattering processes
 

which result in a change in frequency). The characteristics of the
 

scattered radiation depend on the wavelength, X, of the incident
 

light, the generally complex index of refraction, m, of the particle,
 

and the size, r, and shape of the particle. In this report we will
 

restrict the discussion to spherical particles; for the treatment of
 

inorganic sediments in water this is probably not a serious
 

restriction.
 

If a monochromatic beam of light of intensity I is incident on
o 

a spherical particle at an angle S = 0, then the scattered intensity
 

is given by
 

2
 
I(x,m,8) = -j (x,m,68) I (3-1) 

04w 


IWhere a (x,m,e) is the single particle scattering function, a (x,m,G)
 

depends in general, on the size parameter,
 

x = ---- (3-2) 

and, the complex index of refraction, m. The calculation of a (x,m,08Y
 

requires the solution of Maxwell's equation in spherical coordinates
 

with a discontinuous change in the index of refraction across the
 

26
 



spherical surface. This solution was originally derived by G. Mie(
1 8 )
 

(19)
and independently by P. Debye
 

The scattering function can be written as:
 

a(x,m,O) =[l(x,m,e) + a 2 (x,m,B) (3-3)
 

2
 

and the Mie solution is
 

o1 (x,m,O0) = S1 (x,m,G) S1 (x,m,6) 

*2 (x,m,8) = Sjx,m,G) S2 (x,m,8) 

Where S1 (x,m,e) and S2(x,m,e) are the complex amplitudes for the
 

scattered radiation,
 

T (2n+l)
 

n ( ' n (V)
S(X,mO) = E n(n+l) a x m) (w)+b n (x'm)Tn
 
n=l
 

S2(x'm'e) = MEl(2n+l) b (x,m)wn(u)+an(X,m)1n()
 

2' n1- n(n+l) t)
 

In these expressions n(p) and Tn(P) are derivatives of the Legendre
 

polynomials:
 

dP (p)(ii) = dn~l 

dBi
 

(3-6)

d~n (p)2 


n n dp
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(where p = cos 6). Also
 

'(mx)in(x) - m*n(mxlW(x) 
a (x,m) n 
n m 	 P(mx) n(x) - m4n(mxW(gx)
 

n 
 n 
 (3-7)
 

m '(mx) n(X) - n(mX) '(x)
 
n
b (x,m) = n 

n 	 m(mX) ) -Wq)U(xWV(x) 

and the i's and g's are related to the spherical Bessel functions of
 

the first and second kinds (jn and yn respectively):
 

On(Z) = ZJn(z)
 

n(x) = Xj (X)-iy (X) 
 (3-8) 
M(z)= Zn 1 (z)-njn(z) 

E(x) = xinjl(x)-iyn- (x) -n jn(x)-iyn(x) 

3.2 Mie Theory for Scattering from Polydispersions
 

A polydispersion is a suspension of scattering particles of
 

uniform physical characteristics but of varying number concentration
 

depending on particle size. Because of the existence of different
 

particle sizes it makes little sense to talk of scattering from a
 

single particle. Instead, it is useful to consider the scattering
 

properties of a small volume element containing a number of particles.
 

The size of this volume element is of some, at least theoretical,
 

importance. Clearly, if it is to be used to represent the scattering
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properties of all similar volume elements then it must contain a
 

representative set of particle sizes - this requires that the volume
 

element not be too small. On the other hand, since we are consider­

ing only single scattering from the volume element, it must not be
 

too large. An additional condition that must be imposed is that the
 

inter-particle separation be large compared to the wavelength. The
 

reason for this is that the interaction of light with a particle
 

will be assumed independent of the interactions with all other
 

particles. This conditionrequires that the particle density in the
 

volume element not be too large. For our purposes, it will be assumed
 

that all of the above conditions are satisfied.
 

The polydispersion can be completely specified, for our purposes,
 

by an index of refraction m and a probability density function n(r).
 

The density function gives the relative concentration of each size
 

contained in a volume element.
 

The characteristics of the scattered radiation due to the volume
 

element can then be represented by a volume scattering function
 

a(m,O) in a manner analogous to Equation (3-1):
 

2
 
l(m,O) = 47A (m,))l (3-9)° 


The scattering function can be calculated from the set of particle
 

scattering functions:
 

(m,)= / (x,m,e) n(r)dr (3-10) 
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where
 

0N (3-11)
f n(r)dr = N 

and N is the total number of particles per unit volume. In what
 

follows, N will be assumed to be unity since a(m,O) scales with N.
 

The ability to represent o(m,O) as a linear superposition of the
 

a(s,m,8)s is a direct consequence of our assumption that the inter­

particle separation is much greater than X.
 

The calculation of a(m,8) thus reduces to calculations of the
 

individual o(s,m,e) and then integration over all sizes with the
 

proper weighting given by n(r).
 

3.3 Computational Methods
 

The calculation of the scattering functions and the averaging
 

The
over size distributions was carried out on an IBM 370/148. 


program listings are reproduced in Appendix C.
 

In computing the sums in Equation (3-5), the major difficulty
 

arises in the evaluation of the an(x,m) and bn(x,m). Using the
 

', Ynj ,n and g', and the standard recurrence
definitions of 


relations for the-Bessel functions, Equation (3-7) can be rewritten:
 

A
A(mX) 
+ n/x} 
 ne 
 _Re-n l(X
)

-- Rei n (x e)

a (x,m) I, 

+ 
 C(x) W 

Re [n (x -Re [n-l (x 3-2bn (x,m) n (e) +n/x} 

( x ) 
rn (mX)+n/xI Cn (x) -En3l 

OF PO UIV 



Where 

A = 
p(mx) 

mn 
(-3
(3-13) 

n r n(mx) 

the logarithmic derivative of ipn(mx), and Re denotes the real part. 

The natural approach to the evaluation of Equation (3-12) is to employ 

a standard upward recurrence procedure. Unfortunately, if the 

imaginary part of m, Im(m), is not zero and n is larger then the up­

ward recurrence procedure results in larger instabilities in the 

calculation of A (mx). For this reason, the DBMIE subroutine employsn 

a downward recurrence procedure to calculate the An(mx)s. These 

values are then stored for use in the evaluation of Equation (3-12). 

Because of the large storage requirements resulting from this proce­

dure (n % 7000), and the fact that double precision is employed in 

all of the calculations, a virtual machine with 512 K bytes of 

storage is required for the implementation of the DBMIE and POLYMIE 

routines.
 

While the scattering functions are computed in the DBMIE 

subroutine, the average, Equation (3-10), is computed in the calling 

routine POLYMIE. While analytic functions have been used for the 

size distributions, n(r), the integral has been approximated by a 

summation over a discrete set of radii. Tests to determine the 

effect of using a summing procedure have shown that this results in 

no loss of accuracy. In addition, test runs were made to compare 

the results when Ar = 0.lv (0.1 micron) and Ar = lV-were used in the 
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00 

summing procedure. The use of Ar =ll resulted in no significant
 

= 
change in the results from those obtained using Ar 0.11 over the
 

range 0 <-r < 10011. Calculations were made using rmax 


(Ar l and r 10p (Ar 0.1p).
1I) = = A discussion of the proper upper
 

limit for r is given in Section 3.4.
 

The amount of virtual CPU time required for these calculations
 

is significant and has been a major factor in determining r and
-	 max 

Ar. As an example, the calculation of the volume scattering function 

for a polydispersion with m = 1.144 - 0.0i, X =0.5i,rmax = loop 

and Ar = lp requires approximately 26 minutes of virtual CPU 

time. 

3.4 Properties of Clay Samples
 

Data on four different clay samples were provided by NASA/LaRC.
 

This data consisted of empirical size distribution curves as well as
 

brief descriptions of chemical composition. The physical character­

istics of the clay are discussed in Section 3.4.1 while the size dis­

tributions are presented in Section 3.4.2.
 

3.4.1 Physical Characteristics of Clay Samples
 

Four types of clay were selected by NASA/LaRC. These were:
 

Feldspar, Calvert, Ball and Jordan. According to the analysis of
 

these clays performed by NASA/LaRC( 20 ) the compositions are:
 

* 	Feldspar - Feldspar and Quartz minerals
 

* 	Calvert and Jordan - Kaolinite and Illite
 

Ball - Montmormlloite, Kaolinite and Illite
 

32
 



The real refractive index and chemical components of these
 

minerals is shown in Table 3.1. (21) For reasons which will be dis­

cussed in Section 3.4.2, Feldspar and Ball clay were chosen to be
 

included in this study.
 

To estimate the index of refraction of the clay samples, we
 

take a simple average of the indices of refraction of the components.
 

Thus, for both Feldspar and Ball clay, the real part of the index of
 

refraction is estimated as
 

RE (mAir) = 1.53 

This, of course, is the index of refraction with respect to air and
 

we require the index of refraction with respect to water which can
 

be obtained by dividing Re(mAir) by the index of refraction of water
 

1.337 (for wavelengths of approximately 500 nm).
 

Thus 

Re(mwate) = 1.144 

Estimating the imaginary part of the index of refraction is not
 

so straightforward, since direct measurements of Im(m) have not been
 

made. Since these minerals have very low conductivity, it is expected
 

that the imaginary part of m will be quite small. The imaginary part
 

of m has been measured for soil aerosols and has been found to be
 

about .005 (with respect to air). (22 ) For-this study two values for
 

Im(m) will be used: 

0 Non-absorbing 
Im(mwater) 

0.005 = 0.004, Weakly-absorbing 
1.337 
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TABLE 3.1 

CHEMICAL COMPOSITION AND INDEX OF REFRACTION
 
OF CLAY CONSTITUENTS
 

NAME CHEMICAL COMPOSITION INDEX OF REFRACTION
 

Kaolinite A1203.2Si02. 2H20 1.36
 

Illite K1-1.5A4Si7-6.5AI -1.502(OH)4 1.54
 

Montmorilloite (.5Ca,Na). 7)A,Mn,Fe)4 (si,A1)8)2 0 (HO)4nH20 1.48
 

Feldspars-


Microcline K20 Al2036i02 1.52
 

Andesine (CaO1Na20)Al203 4Si02 1.55
 

Anthoclase (Na,K)20.A1203.6Si02 1.53
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3.4.2 	 Particle Size Distributions
 

Emperical cumulative size distributions for the four samples
 

were provided by NASA/LaRC and are shown in Figures 3-1, 3-2, 3-3 and
 

3-4. It is apparent from these figures that the size distributions
 

for Ball, Jordan, and Calvert differ significantly from the size
 

distribution for Feldspar. Since it was planned that two distri­

butions would be employed, Feldspar and Ball clay were chosen.
 

This choice allows the investigation of the effect of radically
 

different size distributions.
 

To utilize the size distribution information, it is necessary
 

to determine size distribution density functions, n(r), which specify
 

the relative number of particles with radius r per unit volume. If
 

we denote the cumulative size distribution as provided by NASA/LaRC
 

as N(ro) then the relationship between N(ro) and n(r) is given by:
 

r 

N(r) = 1- jon(r) dr, (3-14) 

0 

or 
oro 

n(r) =dN(ro0) 

dr0 r0 = r (3-15) 

A general curve fitting routine (See Appendix D) was used to deter­

mine the best distribution for both the Ball clay and Feldspar.
 

For the Feldspar sample, it was found that the data was well
 

represented by a modified Gamma distribution:
 

(3-16)

n(r) 	= a1ra2exp a3ra4) 
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The parameters were determined, using a minimum mean square error
 

criterion, to be
 

* = 2.05089
 

a2 
= 0.671066
 

a3 
= 3.58393
 

a4 
= 0.218499
 

A plot of this size distribution density function is shown in Figure
 

3-5, while a plot of the corresponding cumulative size distribution
 

function (as obtained from Equation 3-16) is shown in Figure 3-6. As
 

can be seen in Figure 3-6, the modified Gamma distribution gives a
 

good fit to the data points obtained in the NASA/LaRCanalysis.
 

To fit the size distribution of the Ball clay sample, Junge's
 

distribution model was chosen;
 

n(r) = aI r-a2 (3-17)
 

with the parameters,
 

a, = .2006
 

a2 = 1.624746
 

determined using the same curve fitting routine employed for Feldspar.
 

The size distribution density function and the cumulative size dis­

tribution function for Ball clay using Junge's distribution are shown
 

in Figures 3-7 and 3-8. It is apparent from Figure 3-7 that Junge's
 

distribution function is not, strictly speaking, a probability dis­

tribution since the integral (Equation 3-11),
 

f n(r) dr = N 
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can not be normalized, i.e., N is infinite. However, Junge's distri­

bution has been found to accurately represent particle sizes of ocean
 

sediments. (2 3 ) In addition, the lower and upper limits of integration
 

in Equations (3-11) and (3-10) are not set equal to zero and infinity,
 

in practice, allowing Equation (3-11) to be normalized.
 

The question of the proper upper limit for Equation (3-10) and
 

Equation (3-11) is of more than theoretical interest. From the
 

empirical size distributions provided by NASA/LaRC, it appears that
 

an upper limit in Equation (3-10) should be chosen as 100 microns
 

(pm). However, as can be seen in Table 3.2(24 ) the settling rate
 

for 100 pm particles is on the order of forty seconds. Thus, the
 

history of the particulates in the body of water is important. If
 

the particulates have been allowed to settle, then the size distri­

butions determined before the particles are introduced into the water
 

are inappropriate. In the NASA/LaRC water tank experiment the water
 

is continuously mixed, thus forcing the large particles to remain in
 

suspension. In order to investigate the effect of settling, two
 

upper limits, 100 pm and 10 pm, were chosen for the integrals of
 

Equations (3-10) and (3-11). Equation (3-11) was used to properly
 

normalize Equation (3-10) with respect to the choice of upper limit.
 

3.5 Results of Computations
 

The tesults of th 'computation of the volume scattering
 

functions (3.5.1) and the volume scattering distribution functions
 

(3.5.2), using the size distributions of Section 3.4, are presented
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TABLE 3.2 

SETTLING VELOCITIES OF SAND AND SILT IN STILL WATER
 

(Source- Amer Water Works Assoc.) 

[Temperature 500 F, all particles assumed to ha e a specific gravity of 2 651 

Diameter of 
particle Order of Size 

1n. 
10 0 Gravel 
1.0 
08 
06 
04
04 

Coarse Sand 

03 
02 
0.15 
010 
008 
006
006004 FineSand 

003 
0 02 
0015 
0010 
0008 
0 006 
0005 Sit 
0004 
0003 
0 002 
00015 
0001 Bacteria 
00001 Clay Particles 
000001 Col'oidal Particles 

Settling Time Required to 
Velocity Settle 1 Foot 

mm Isec 
1,000 0 3 seconds 

100 3 0 seconds 
83 
63 
43
42 

32 
21 
15 

8 38 0 seconds 
6 
38 
2921 

13 
062 
035 
0154 33 0 minutes 
0098 
0065 
00385 
00247 
00138 
00062 
0 0035 
000154 55 0 hours 
00000154 230 0 days 
0000000154 63 0 years 

Q 
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in this section. In addition to examining the effect of settling
 

on the calculations, the wavelength dependence of the scattering
 

functions are also investigated.
 

3.5.1 	Volume Scattering Functions
 

The computed volume scattering functions are shown in
 

Figures 3.9 through 3.14.
 

Figures 3.9 and 3.14 display the extremely large forward scat­

tering peak which is primarily the result of including the large 

(nlOO pm) particulates in the size distributions. Both the Feldspar 

and Ball clay phase functions show considerable difference between 

the non-absorbing and absorbing cases at large angle. While it is 

not evident in the figures, the forward scattering peak is larger 

for the absorbing case at small but non-zero angles (e- 0.5 ). 

Figures 3-11 and 3-12 demonstrate the effect of cutting the size
 

distributions off at 10 pm instead of 100 pm. The relative size of
 

the forward peak is reduced and the difference between the absorbing
 

and non-absorbing cases at large angles is reduced. It is inter­

esting to note that, although the shape of the Feldspar and Ball
 

clay size distributions are very different, the upper limit on the
 

size appears to be much more important in terms of the difference in
 

phase functions.
 

Figures 3-13 and 3-14 show the scattering functions computed for
 

X = 600 nm (with a 10 pm cutoff) instead of X = 500 nm as in Figures
 

3-11 and 3-12. It can be seen that the phase functions are not heavily
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wavelength dependent. In fact, it can be shown that for a uniform
 

size distribution and upper and lower limits of zero and infinity in
 

Equation (3-10), the volume scattering function will be strictly
 

independent of wavelength.
 

3.5.2 	 Volume Scattering Distribution Functions
 

While the volume scattering function describes the angular
 

dependence of scattered radiation, a more important function for use
 

with the Monte Carlo simulation is the volume scattering distri­

bution function, F(8), defined by equation (1-1). The distribution
 

function gives the normalized probability that a photon is scattered
 

in the range 0 to 0 degrees. The volume scattering distribution
 

functions for the cases considered in Section 3.5 are shown in Figures
 

3-15 through 3-20.
 

It is again apparent in Figures 3-15 and 3-16 that there is a
 

considerable difference between the absorbing and non-absorbing case.
 

The difference due to the Feldspar and Ball clay size distributions
 

is small.
 

As with the scattering functions, the use of a 10 pm cutoff decreases
 

the difference between the absorbing and non-absorbing cases. In
 

addition, the volume scattering distribution functions are changed
 

consdierably when the 10 Um cutoff is imposed.
 

Figures 3-19 and 3-20 demonstrate the small change in the
 

volume scattering distribution functions when the wavelength is
 

changed.
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4.0 DEPENDENCE OF UPWELLING RADIANCE ON SCATTERING FUNCTION
 

In this section we describe our results on the dependence of the
 

upwelling radiance as it relates to the variations of the scattering
 

function, or equivalently to its integrated form the scattering pro­

bability function. Before this is done, however, we will summarize
 

the information on the scattering probability functions derived earlier.
 

In the previous two sections, we have (1) summarized the available
 

information on the measurements of the scattering function, and (2)
 

have utilized the Mie formalism to calculate the scattering function
 

for polydispersed suspensions on the basis of size distribution
 

measurements provided through the LaRC laboratory program. The
 

compiled measured scattering probability functions for natural water,
 

Figure 2-8, cover a wide range of turbid waters and show considerable
 

variations. The upper and lower bounding measured for the scattering
 

probability functions correspond to San Diego Harbor, sea water
 

filtered thoroughly. The scattering probability function measured
 

by Morrison (3 ) , used in Reference (1,2) lies between these limits,
 

closer to the upper bound. Due to the lack of sufficient observations
 

no conclusions could be drawn regarding the changes of the measured
 

scattering functions with wavelenth. The calculated results of the
 

scattering probability functions have been obtained for the following
 

cases and their combinations:
 

* Size distributions including large particle sizes (-100 im)
 

" Size distributions including a cutoff at 10 im
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* Zero or 0.004 for the imaginary part of the index of refraction
 

* Two wavelengths values at 500 and 600 nm
 

The conclusions which may be derived from these results are:
 

1) 	Size distributions including large particles sizes
 
(-i00 p) lead to an extremely large forward scattering
 
peak, which shows up as a fast rise in the scattering
 
probability function. The scattering probability
 
function calculated for this situation is higher than
 
the upper bound of the measured functions as may be
 
seen by comparing Figures 3-15 and 2-8.
 

2) 	Size distributions including a cutoff at 10 V results
 
in the scattering probability functions which lie
 
between the upper and lower bounding of the measured
 
probability functions shown in Figure 2-8.
 

3) 	The effect of non-zero imaginary part for the index of
 
refraction is to decrease the fast rise of the scattering
 
probability function at small angles, and to put these
 
functions within the bounds of the measured data.
 

4) The functions calculated for wavelengths of 500 nm and
 
600 nm do not show significant differences.
 

Based on the results and the conclusion described above three
 

functions were selected for the investigation of the dependence of
 

the upwelling radiance on the scattering function. These functions,
 

which were input to the Monte Carlo simulations radiative transfer
 

code of Appendix A, have been designated by SCATR 1, SCATR 2, and
 

SCATR 3. SCATR 2 is the lower bound of the measured scattering
 

probability function shown in Figure 2-8. SCATR I is the upper bound
 

of the measured scattering probability function shown in Figure 2-8.
 

SCATR 3 is the upper bound of the calculated scattering probability
 

functions, and is shown in Figure 3-15. This function has been
 

calculated for Felspar soil, a zero value for the imaginary part of
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index 	of refraction, a size distribution including large particles
 

(00 at 500 nm wavelength.
l) 


4.1 	 Results
 

Besides the parameters characterizing the cross sectional radius
 

(1.2 	meters) and the height (2.6 meters) of the LaRC cylindrical
 

water tank, and the reflectivity of the tank walls (3.0 percent) the
 

following input parameters are required for the model:
 

(1) 	Total scattering coefficient s,
 

(2) 	Total absorption coefficient a,
 

(3) 	Scattering probability function.
 

A fourth model input concerns the maximum number of photons to be
 

traced in each computer run.
 

The results presented in the remainder of this section refer to
 

two turbidity levels which have been simulated in the model. These
 

-i -i
 
, and 	s 12 meter
 

turbidity levels correspond to s = 6 meter 
= 


respectively. The wavelength considered is 500 nm. From the
 

functional relationship between a/s ratio and the wavelength, reported
 

in Reference 1, the value of a/s for particles at 500 nm is 0.27.
 

-l
 
Based on this value, absorption coefficients of 1.6 

and 3.2 meter
 

-
have been calculated for s = 6 and s = 12 meter respectively, and
 

are shown in Table 4.1.
 

On making use of the computer code documented in Appendix A the
 

radiances emerging from the area within the field of view of the over­
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TABLE 4.1 

OPTICAL PARAMETERS USED IN THE BACKSCATTERED 
RADIANCE CALCULATIONS
 

TOTAL TOTAL TOTAL
 
WAVELENGTH SCATTERING ABSORPTION ATTENUATION
 

(nm) COEFFICIENT COEFFICIENT COEFFICIENT
 
1)
(meter-l) (meter-1 ) (meter­

s a 

500 6 0 1.6 7.6 

12.0 3.2 15.2 
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head detector in the LaRC's experimental arrangement,* and into the
 

exit angles in the range 0-10 degrees, 0-20 degrees, 0-30 degrees,
 

have been calculated. The results of these calculations in terms of
 

the backscattered radiance vs, the upper limit of the exit angle is
 

shown in Figures 4-1 and 4-2 for s = 6.0 and s = 12.0 meter- . Three
 

scattering probability functions, namely the measured upper and
 

lower bounding functions have been used. The model has been executed
 

for 10,000 photons in each case. The values calculated with the
 

input of calculated upper bounding scattering function is in good
 

agreement (the shape of the respective curves) with the measured
 

upper bounding scattering function for the large range of the exit
 

angles. For the small range of the exit angles, ( 250 degrees for
 

1 ­s = 6 meter- and S 350 for s = 12 meter 1) no statistically
 

significant result could be derived from the ensemble of backscattered
 

photons for 10,000 incident photons. For this reason the reminder
 

of this report will discuss the results concerning the upper two
 

curves in Figure 4-1 and 4-2.
 

The presented results indicate that the upwelling radiance has
 

a strong dependence on the scattering function used. This dependence
 

seems to get less important with decreasing range of the exit angle.
 

If the same trend continues to be true for smaller than 10° angles
 

An area 2.5 cm in radius in the middle of the incident spot which
 
is about 30 cm in diameter (see Figure 1-1 for reference). The
 
incident beam impinges upon the water surface at an angle of 13.5
 
degrees in the air (9.0 degrees in the water).
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Upper Bounding Scattering Function
 

(Measured)
 

-H
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/ 	 (Calculated) 

S = 6 meter
 
Incident Spot Radius 15 cm
 
X = 500 nm
 

i0 	 20 30 40 50 57.3
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FIGURE 4-1
 
BACKSCATTERED RADIANCE VS. UPPER LIMIT OFTHE EXIT ANGLE FORs = 6 METER
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dr 

10 -Upper Bounding Scattering Function 
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/(Calculated) 
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1-1 

S = 12 meter 
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X = 500 nm 
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FIGURE 4-2 
BACKSCATTERED RADIANCE VS. UPPER LIMIT OF 

THE EXIT ANGLE FOR s = 12 METER 1 
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than 100 angles (for which no significant statistic could be derived
 

for 10,000 photons)* then, at 0.50 angle which is the actual accep­

tance angle of the LaRC's detector, the effect of various scattering
 

functions will not be significant. This is displayed graphically
 

by the results presented in Figure 4-3, where the ratio of the
 

backscattered radiances for the upper and lower bounding of the
 

scattering function is shown as a function of the upper limit of
 

the exit angle. These results will be discussed in more detail in
 

section 1.4.
 

20,000 photons were traced to produce the results shown in the
 
lower curve in Figure 4-2.
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Backscattered radiance using lower bounding scattering function
 
Backscattered radiance using upper bounding scattering function
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4-3
FFIGURE 
V) RATIO OF THE BACKSCATTERED RADIANCE FOR UPPER AND LOWER 

BOUNDING SCATTERING FUNCTIONS 





APPENDIX A
 

RADIATIVE TRANSFER COMPUTER PROGRAM
 

In this appendix we have included two versions of our radiative
 

transfer code. These programs are appropriately modified versions of
 

the program listed in Reference 2. The modified computer codes make
 

it easier to incorporate any desired scattering probability function
 

in the model. The functions included in Code 1 of this appendix are,
 

the upper and the lower bounding, measured scattering probability
 

functions shown in Figure 2-8. These functions are represented in
 

the code by SCATER 1, and SCATER 2 respectively. Code 2 of this
 

appendix is designed to handle the calculated scattering functions,
 

specifically, the code includes the upper bound of the calculated
 

functions shown in Figure 3-15. SCATER 3 represents this function.
 

The out-puts of both codes are (1) the probability weights of each
 

emerging photon, and (2) the angles of emergence. The sum of the
 

probability weights for each angular range, normalized to the number
 

of incident photons represents the upwelling radiances shown in
 

Figures 4-1 and 4-2.
 

PRECEDING PAGE BLANK NOT FiLMT) 
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PROGRAMCOMPUTERTRANSFERRADIATIVE 

Code 1 

PRECEDING PAGE BLANK NOT FILMED 

tltL) 
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C
 
C MONTECARLO PROGRAM WITH £OCUMENTATION.
 
C TANK BOUNDARIES AND TOTAL PErLECTION ARE INCLUDED.
 
C
 

COtiMON/BLOCK1/XMAXYMAX,ZMAX,X,Y,Z,T,GAMA,TETAFI.PIDTRC,S,IS.ZD
 

C
 
C PEAD DATA FROM THE CA'A 

C
 

READ( 5,25) MAXNPH, NMAX,I S
 
25 FORMAT(3(2X.II2))
 

READ(5,30)TETAI,FII
 
30 FORMT(2(5X,F8.3))
 

READ(5,35)XMAXYMAX,ZMAX
 
35 FORMAT(3(5X,F8.3))
 

READ(5,37)S
 
37 rORMAT(F8.3)
 

READ(5,24)A400,5OO,A600
 
24 FORMAT(3(5XF8.3))
 

WRITE(6,26) MAXNPH
 

FILE.
 

26 rORMAT('C','MAXIVUM NC. CF PHOTONS TC BE TPACED= 'tI9)
 
WRITE(6,27)NMAX
 

27 FORMAT( 01,FMAXIMUM NO. CF EVENTS FOR EACH PIHOTON= ,112)
 
WRITE(6,29)!S
 

29 FORMAT(tO',tINITIAL SEED FOR RANDOM NO. GENERATOR= 4,1121
 
WRITE(6,31)TETAI,FII
 

31 tORMAT(10,'INITIAL TETA IN CEGREES= 1,F8.3,' INITIAL F! IN DEGR
 
1EES= t,;8.3)
 
WRITE(6,36)XMAX,YMAX,ZMAX
 

36 tORMAT(lO','TANK DIMENSIONS IN METERS:',' XMAX=',FS.3,
 
11 YMAX=',FS.3,t ZMPlX=',F8.33
 
WRITE(6,38)S
 

38 FORMAT(SOITSCATTERING CCEFFICIENT IN INVERSED METERS= ',F8.3)
 
WRITE(6,23)A4CO,ASOC,A600
 

23 FORMAT(1O','ABSORPTTON COEFFICIENTS AT 40C, 500, 600 Nil IN INVERSE
 
IMETERS:',' A400=',F8.3,' A500=',F8.3,' A600=',F8.3,//////)
 
RNW=1.334 

C 
C RNW IS THE REFRACTION INDEX OF 
C 

PI=3.1415S2654 

DTRC=PI/18C. 
XMAX=XMAX-S 
YMAX=YMAXVS 
ZMAX=ZMAX*S 
TETAI=TETAIDTRC 
FII=FII*DTZC 
NPH=I 

I0 IF(NPH .GT. MAXNPH)GCO TO 20CC 

WATER.
 

PAGBjIS 
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http:ZMPlX=',F8.33
http:COtiMON/BLOCK1/XMAXYMAX,ZMAX,X,Y,Z,T,GAMA,TETAFI.PIDTRC,S,IS.ZD


C 
C NPH IS THE NO. OF PHOTONS AT A GIVEN TIME. 

C RECORD NO. OF PHOTONS TRACED AND TEST FOR END OF COMPUTATIONS. 

C INITIALIZE THE COORDINATES OF THE PHOTON ENTERING THE MEDIUM. 

C 
TETA=TETA I 
PI= II 

X=O. 
Y=O. 
Z=0.000001 

C 

C DECIDE HOW FAR PHOTON TRAVELS BEFORE AN EVENT OCCURS. 
C 

CALL RANDNO(IStHCD) 
T=-ALOG(RHOD) 
GAMA=T 

C 
C T IS THE DISTANCE IN SCATTERING LENGTH UNITS PHOTON TRAVELS TO THE 

C EVENT PHOTON IS AT. 
C 

X=X+T*SIN(TETA)*CCS (Fl) 
Y=Y+T*SIN(TE T A)"SIN (FI) 
Z=Z+T*COS(TETA) 
GO To 150 

100 NPH=NPH+1 
C 
C EITHER ABSORPTION HAS OCCUREDOR PHOTON HAS COME OUT OF WATER. THE 
C rORE,START A NEN PHOTON. 
C 

GO To 10 
150 CONTINUE 

KM1 N=2 
IF (Z) 400,500,500 

400 XINT=X-ZxTAN(TETAfrCOS(Fl) 
YINT=Y-Z*TAN( TETA)SIN( FI) 
DINT=SQRT(XINT*v2+Y INT*x2) 
DDINT=DINT/S 
IF(DDINT .GT. 0.20)GO TO 100 
IF (RNW*SIN(TETA) .GT. 1.0) GO 
TETAAR=ARSIN( RNW-SIN (TETA))
 
!F(TETAAR .GT. I.O)GC-O 100
 
XINT=XTNT/S
 
YI NT=YT NT/S 
DINT=DDINT
 
ACT=ABS(COS(TETA) }
 
TCUT=(4BS(ZR)-ABS(Z) ) /AC-
GAMA=GAMA+TCUT 
GA MA =GA MA/S 

TO 604
 

p vOoRQ 
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WRITE (6,410) DINT,TETAAR
 
410 FORMtT(///,2X,'DISTANCE FROM AXIS= ',F8.5,5XOPOLAR ANGLE= 1,F8.5)
 

WRITE (6,420) FI,XINT,YINT
 
420 POPMAT (I t,'AZIM ANGLE= ',FB.5,5X,'XINT= ',FB.5,5X,'YINT= 1,F8.5)


WRTTE(6,109) GAMA
 
109 PORMAT('0,'GAMA = ',E12.3)
 

WRITE(6,888)J
 
888 FORMAT( ',1NO OF EVENTS='IT8)
 

WRITE(6,101)NPH
 
101 cORMAT(EO,INO. OF PHOTONS TRACED = ',T8)
 

. C
C CALCULA T P PH0TON PROFBABiLITY WEIGH--

CALL PHDW(PI,GAMA,DINT,A400,A500,p600)
 
WRITE (6,5999)IS
 

5999 FORMAT(' RANDOM NUMBER USED 

GO TO 100
 

604 KMIN=J+
 
ACT=ABS(COS(TEt )) 
TCUT=(4BS(ZR)-ABS(Z))/ACr 
GAMA=GAkMA+TCUT 
TE'A=PI-TETA 
FI=FI+0I
 

!F(PT .GE. 2.*PI)F:zFI-2. PI
 
X=XINT
 
Y=YTNT
 
Z=0.000001
 
CALL RANDNO(!S,RHOD)
 
T=-ALOG(pHOD)
 
X=X+TSIN(TETA) VCOS(FI)
 
Y=Y+T*SIN(TFTA) SIN(PI)
 
Z=Z+T*C-JS(TETA)
 

500 CALL PSIW(KMIN,NMAX,J,IRTCOC)
 
IF(IRTCOD . 0. I)GO -0 100
 
i (IRTCO) .EQ. 2)GO TO 400
 
GO TO 100
 

2000 WRITE (6,5000) IS
 
T 


lt:12)
 

5000 	 FORMAT (I ','LAS RANDUM NUMBER USED=1,112) 
CTOP 

END
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SUBROUTINE DSIW(KIN,NMAX,J,IRTCOD)
 
C 
C THIS SUBROUTINE VILL BE CALLED ONLY WHEN PHOTON IS STILL IN WATER 
C (WHEN Z>O). 
C IT DETERMINES THE CGORDINATES CF THE END POINT IN THE NON-ROTATED 
C SYSTEM BY =!RST ROTATING THE SYSTEM USING ANGLES TETA AND F!. 
C IT GENETATES THE ROTATION MTRIX,WITH THE CONSTRAINT THAT YSTAR-
C AXIS LIES IN A PLANE PARALLEL TO THE YZ-PLANE.
 
C THE TOTATION MATRIX IS DESIGNATED AS AIJ(I=1,3,J=i,3).
 
C 

COMMON/BLOCK1/XMAX,YMAX, ZMAX,X,Y,Z,T,GAMA,TETA,FI,PI,DTRC,S,IS,ZR
 
!RTCOD=O
 
DO 1290 J=KMINNMAX
 
CT=COS(T TA)
 
CC=COS(F)
 
CT2=CT*CT
 
CF2=CF*CF
 
ST=SIN( T ETA)
 
SF=S!N(FI)
 
ST
 2=STcST
 
SF2=SF*SF
 
SS1=CT2+SF2'ST2
 
SS=SQRT(SS1 
SSD=1./SS
 
AII=SQRT(I.-CF2*ST2)
 
A12=-SF=CF4ST2*SSD
 
A13=-CT ST'CF*SSO
 
A22=CThSSn
 
A23=-SF ST-SSD
 
A31=CF*ST
 
A33=CT
 
432=SF-ST
 

C 
C ROTATION MATRIX HAS BEEN GENERATED.
 
C SCATTERING HAS OCCUPCC.
 
C CALL ANGELS FIP,TETAP TO DISTINGUISH FROM FI,TETA
 
C FI0 ,TETAP ARE DETERMINED IN SYSTEM WITH Z-AXIS PARALLEL TO THE
 
C INCIDENT DIRECTICN.
 
C
 

CALL RANDNO(IS,PHCF)
 
FIP=2.*PI*RHOF
 

CALL RANDNO(IS,RHCT)
 
CALL SCATPl(RHOT,TETA)
 
TETA=TETA DTRC
 
TETAP=TETA
 

C
 
C DETERFINE HOW FAR BEFCRE AN EVENT OCCURS,IN THE ROTATED SYSTEM.
 
C 
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CALL RANCNO(IS,nhOD)
 
T=-ALOG (RHOD)
 

C 
C CALCULA-E COORDINATES OF END POINT IN THE ROTATED SYSTEM.
 
C 

XSTAQ =T* SIf(TET A p) 00CS (FIP)
 
YSTAR=TtSIN(TETAP)rSIN( iP)
 
ZSTAR=TNCOS (TETAP)
 

C APPLY ROTATION MATRIX TO DETERMINE THE COORDINATES OF THE END
 
C POINT IN A SYSTEM PARALLEL TO THE ORIGINAL ONE BUT DISPLACED.
 
C 

XR=AI11 XSTAR+A31*ZSTAR
 
YR=A12"XSTAR+AZ2*YSTAR+A32=ZSTAP
 
ZR=A13"XSTAR+A23*YSTAR+A33* ZSTAR
 

r 
C CALCULATE TTAANC F! IN THE PRESENT 
C THE ORIGINAL ONE.
 
C 

FI=ATAN(ABS(YR) /ABS(XR)) 
Ir (XR LT. 3.0)GO TO 133 
I= (YR) 333,333,633 

333 FI=2.uPI-FI 
GO TO 533 

t33 FI=FI 
GO TO 533 

133 IF (YR) 233,233,433 
233 FI=FI+PT 

Go TO 533 
433 FI=PI-I
 
533 CONTINUE
 

XR2=XR: XR 
YR 2= 'PYR
 
ZR2=ZR* ZR
 
DIt=XR2+YR2+ZR2
 
SQDT=SQRT (DT)
 
TETA=ARCCS(ZR/SQCT)
 

C 
C CALCULATE XY,Z OF THE END PCINT OF 

C THE ORIGINAL AXIS.
 
C 

X=X+XR
 
Y=Y+YR 
X2=X*X
 
Y2=yYY
 

DIS2=X2+Y2
 
XMAX2=XMAX*XMAX
 
YMAX2=YMAX*YMAX
 

SYSTEMWFICH IS PARALLEL TC 

TFE PHOTON WITH RESPECT TO
 

78
 



DIMAX2=XMAX2+YMAX2
 
!F(DIS2 .GE. DIMAX2GO TO 100
 
Z=Z+ZR
 
IF (Z) 400,400,700
 

700 	 IF(ZMAX-Z)702,7C2,701
 
702 	X=X-(Z-ZMAX)*TAN(TETA)*COS(FI)
 

Y=Y-(Z-ZMAX)*TAN(TETA)*SINCI)
 
ACT=ABSCCOS(ETA))
 
TT=T-(Z-ZMAX)/ACT
 
Z=ZMAX
 
CALL RANCNO(IS,RHOB)
 
IF{RHOB-0.03)74,704,100
 

C
 
C CHECK THRFE 0ERCENT REFLECTION WITH UNIFCRM ANGULAR PROBABILITY.
 
C 
704 	CALL RANDNO(IS,RHCBT)
 

TETA=O.5*PI*RHOBT+O.5*PI
 
CALL RANDNO(IS,RHOBF)
 
FI=2.*PI*RHOBF
 
CALL RANDNO(IS,RHODI
 
T=-ALOG(RHOD)
 
X=X+T'SIN(TETA)*COS (I)
 
Y=Y+TSIN(TETA)*SIN(FI)
 
Z=ZMAX+T*COS(TE7A)
 
T=T+TT
 

701 GAMA=GAMA+T
 
1290 CONTINUE
 
100 !PTCOD=I
 

GO TO 500
 
400 IRTCOD=2
 
500 RETURN
 

END
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SUBROUTINE PHPW(PIGAMADINTA4OO,A500,A600) 
C 
C THIS SUBROUTINE CALCULATES T-E PHOTON PRGBABILITY WEIGHT FCR GIVEN 
C WAVELENGTHS. 
C 

TIR=0.0254 
TIR2=TIR*TIR 
CK=PI*T R2 
R=0.15 
WRITE(6,60)R 

860 FORMAT('O',IBEAM RADIUS IN tETERS= ',FS.3) 
R2=R*R 
DINT2=DINT*DINT 
XINT=(R2-TTR2+DINT2)/(2.*DINT) 
XINT2=XINT*XINT 

YINT=SQRT(ABS(R2-XINT2)) 
GCI=ATAN(YINT/XINT) 
GC2=ATAN(YINT/(DINT-XINT)) 
GC3=O-ATAN(YINT/(ABS(XINT-DINT))) 
AAA=GCI*R2+GC2 TIR2-INT*YINT 
BBB=GCI*P2+GC3*TIR2-DINT-YINT 
BIR=PR+TIR 

CIR=-T!R 
IF(DINT .GE. 0.0 .AND. DINT .LT. CIR)AREA=CK 
IF(DONT .GE. CIR .AND. DINT .LT. R)AREA=BBB 
IF(DINT ,GE. R .ANO. DINT .LT. BIR)AREA=AAA 
IF(DINT .GE. BIR)AREA=O. 
E5OO=EX0 (-GAMA"A500) 

C 
C PHOTON 0 ROBABTLITY WEIGHTS c0R 500 NM. 
C 

PPW500=ARFA-E500 
WRITE(6,861)DPW500 

861 PORMAT('0','PHOTON PROB. WT. FOR 500 NM= 0,F10.6) 
RETURN 
END 
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SUBROUTINE RANDNC(IX,RNUM)
 
C
 
C
 
C THIS SUBROUTINE GENERATES UNIFCRM RANDOM NUMBERS BETWEEN o AND 1.
 
C
 
C 

IY=IX-65539
 
!F(!Y) 5,6,6
 

5 !Y=IY+2147483647+1
 
6 RNUM=IY
 

RNUM=RNUMt .46566135-9
 
IX=IY
 
RETURN
 
END
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SUBROUTINE SCATR1(RHOT,TETA)
 
C
 
C
 
C THIS SUBROUTINE DETFRMINES ANGLE 'THETA' FROM A GIVEN SCATT ERING
 
C FUNCTION (,UPPEP BCUNDC)
 
C
 
C
 

IF(RHOT .LE. .150)GO TO I
 
-
IF(RHO .LE. .200)GO TO 2
 

IF(RHOT .LE. .225)GO TO 3
 
IF(RHOT .LE. .250)0 TO 4
 
IF(RHOT .tF. .275)G0 TO 5,
 
IF(RHOT .LE. .30010 TO 6
 
IF(PHOT .LE. .320)G0 TO 7
 
IF(RHOT .LE. .345)G0 TO 8
 
IF(RHOT .LE. .360)GC TO 9
 

IF(RHOT -LE. .385)G0 TO 10,
 
IF(RHOT .LE. .480),G0 TO 11
 
IF(R'HOT .LE. .550)G0 TO 12
 
!F(RHOT .LF. .600)GO TO 13
 
I'F(RHOT .LE. .655)0 TO 14
 
IP('RHCT .. , .6 85),G0 TO 15
 
!F(RHCT .LE. .715)G0 TO 16
 
I-F(RHOT .LE. .730)GO TO 17
 
IF(RHCT .L;. .755)G0 -0 18
 
IF(RHOT .LE. .800)G0 TO 19
 
IF(RH&T .LE. .830)GO TO 20
 
I-F(RHOT .LE. .890)GO TO 21
 
!F(,RHOT .LE. .918)GC TO 22
 
IF(RHOT .LE. .935)G0 TO 23
 
I%(,RHOT .LE. .945)G TO 24
 
IF(-RHOT .E. .960)G0 70 25,
 
IF(RHOT .LE. .97,)G0 TO 26
 
Ir(RHOT .LE. .974)G0 TO 27
 
IF('RHOT .JP..981)GC TO 28
 
Tc(RHOT .LE. .988)GO TO 29
 
IF(PHOT .LE. .994)G0 TO 30
 
IF(RHOT .LE. I.O0)GO TO 31
 

1 TETA=C.i
 
G0 TO 50
 

2 TETA=.0+(RHOT-.15)*(.20-.i0),/(.20-. J5),
 
GO TO 50
 

3 TETA=.20+(RHOT-.20),'(,.30-.20)/(,.225-.20)
 
GO TO 50
 

4 TET'A=.30+(RHOT-.225)V(.40-.,30)/(.250-.225)
 
GO tO 50
 

5 TET A= .40+(RHCT-250)"(.50-.40)/(.275-.2B)
 
GO' TO 50
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6 TETA=.50+(RHOT-.275)* (.6C-. 50)/ (.300-.275) 

GO TO 50 
7 TETA=.60+(RHOT-.300)' (.70-.60)/(.320-.300) 

GO TO 50 
8 TETA=.70+(PHOT-.320)-(.80-.70)/(.345-.32O) 

GO TO 50 
9 TETA=.80+(RHOT-.345)--(.90-.80)/(.36O-.345) 

GO TO FO 

10 TETA=.90+(RHOT-.360hc(I.O-.90)/(.385-.360) 
GO TO 50 

11 TETA=1.0+(RHOT-.385)*(2.-ifl/(.480-.385) 
GO TO 50 

12 TETA=2.0+(RHOT-.480)(3.-2.]/(.550-.480) 
GO TO 50 

13 TETA=3.0+(RHOT-.550)(4.-3.2/(.600-.550) 
GO TO 50 

14 TETA=4.O+(RHOT-.600)*(5.-4.f/(.655-.600) 
GO TO 50 

15 TETA=5.O+(RHOT- .o55)*(6.-5.)/(.685-.655) 
GO TO 50 

16 TETA=6.0,(RHOT-.685)" (7.-6./(.715-.685) 
GO TO 50 

17 TETA=7.O+(RHOT-.715)1(8.-7.)/(.730-.715) 
GO TO 50 

18 TETA=8.0+(RHOT-.730)6(9.-8,}/(.755-.730) 
GO TO 50 

19 TETA=9.Q+(RHOT-.755)-]1O.-9.)/(.800-.755) 
GO TO 50 

20 TETA=10.O+(RHOT-.800)*(15.-10.)/(.830-.800) 
GO TO 50 

21 TETA=S.O+(RHOT-.830)S'(20.-15,)/(.890-.830) 
GO TO 50 

22 TETA=20.0+(RHOT-.890)*(25.-20.) /(.918-.890) 
GO TO 50 

23 TETA=25.0+(RHCT-.918)*(30.-25.)/(.935-.918) 
GO TO 50 

24 TETA=30.0+(RHOT-.935)*(35.-30.)/(.945-.935) 
GO TO 50 

25 TETA=35.0+(RHeT-.945)*(40.-35.)/(.960-.945) 
GO TO 50 

26 TETA=40.0+(RHOT-.90)*(45.-40.)/(.967-.960) 
GO TO 50 

27 TETA=45.0+(RHOT-.967)*(50.-45,)/(.974-.967) 
GO TO 50 

28 TETA=50.0+(RHOT-.9743*(60.-50.)/(.981-.974) 
GO TO 50 

29 TETA=60.O+(RHOT-.981t](70.-60.I/(.988-.981) 
GO TO 50 
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30 TETA=70.0+(RHOT-.S88)*(80.-70.)/(.994-988) 
GO TO 50 

31 TETA=80.0+(RHOT-.94)*(180.-80.)/(1.00-.994) 
50 RETURN 

END 
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SUBROUTINE SCATR2(RHOT,TETA)
 
C 
C 
C THIS SUBROUTINE CETFRMINES ANGLE 'THETA' FROM A GIVEN SCATTERING 
C FUNCTION (LOWER BOUND).
 
r
 
C
 

I(RHOW .LE. .00)GO TO 1
 
IF(RHOT .LE. .010)GO TO 2
 
!F(RHOT .LE. .01)GO TO 3
 
!F(RHO' .LE. .018)GC TO 4
 
!F(RHOT .LE. .022)0 TO 5
 
IF(RHOt .LE. .026)G0 TO 6
 
IF(RHOT .LE. .031)GO TO 7
 
I=(RHCT .LE. .034)GC TO 8
 
IH(RHOT .LE. .040)GO TO 9
 
!F(RHOT .LE. .060)GC TO 10
 
IF(RHOT .LE. .OSO)GO TO 11
 
!F(RHOT .LE. .120)GO TO 12
 
IF(RHOT .LE. .150)G TO 13
 
IF(RHCT .LE. .175)GG TO 14
 
IF(RHOT .LE. .200)G0 TO 15
 
IF(RHOT .LE. .220)G0 TO 16
 
Ir(RHOT .LE. .250)GC TO 17
 
IF(RHOT .LE. .280)G0 TO 18
 
IF(PHOT .LF. .380)G0 TO 19
 
IF(RHOT .LE. .530)G0 TO 20
 
IF(RHOT .LE. .580)G0 TO 21
 
IF(RHOT .LE. .635)G0 TO 22
 
IF(RHOT .LE. .665)G0 TO 23
 
IF(RHOT .LE. .YCO)GO TO 24
 
IF(RHCT .LE. .740)GC TO 25
 
IF(RHOT .LE. .750)G0 TO 26
 
IF(RHOT .LE. .770)G0 TO 27
 
IF(RHOT .LE. .780)G0 TO 28
 
TF(RHOT .LE. .800)GO TO 29
 
IF(RHOT .LE. .833)G0 TO 30
 
IF(RHOT .LE. .860)G0 TO 31
 
IF(RHOT .LE. .885)G0 TO 32
 
IF(RHOT .LE. .950)G0 TO 33
 
IF(PHOT .LE. .970)GO TO 34
 
IF(PHOT .LE. .980)G0 TO 35
 
IF(RHOT .LE. .990)G TO 36
 
IF(RHOT .LE. .995)G0 TO 37
 
IF(RHOT .LE. 1.000)GO TO'38
 

I TETA=0.2
 
GO TO 50
 

2 TETA=.20+(RHCT-.000)f(.30-.20)/(.010-.000)
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5 

10 

15 

20 

25 

GO TO 50 
3 TETA=.30+(RHOT-.010)*(.40-.30)/(.014-.O1O) 

GO TO 50 
4 TETA=.40+(RHOT-.O14)*(.50-.40)/(.018-.0I4) 

GO TO 50 
TETA=.50+(RHOT-.018)*(.60-.50)/(.022-.018) 
GO TO 50 

6 TETA=.60+(RHOT.-022)*(.73-.60)/(.026-.022) 
GO TO 50 

7 TETA=.70+(RHOT-.O26) (.80-.70)/U.031-.026) 
GO TO 50 

8 TETA=.80+(RHOT-.031)4(.90-.80)/.034-.031) 
GO TO 50 

9 	TETA=.90-+(DHOT-.034)*(I.O-.90)/( .040-.034)
 
GO TO 50
 
TETA=1.0+(RHOT-.040)/(.060-.040)
 
GO TO 50 

11 TETA=2.0+(RHOT-.C6O)/(.090-.O60) 
GO TO 50
 

12 TETA=3.0+(RHCT-.090)/(.120-.090)
 
GO TO 50
 

13 TETA=4.0+(RHOT-.120)/(.150-.120)
 
GO 	 TO 50 

14 	 TETA=5.O+(RHOT-.150)/(.175-.150)
 
GO TO 50
 
TETA=6.O+(RHCT-.175)/(.200-.175)
 
GO TO EO
 

16 TETA=7.O+(RHOT-.200)/(.220-.200) 
GO TO 50 

17 TETA=8.0+(RHT-.220)/(.250-.220) 
GO TO 50 

18 TETA--e.o+(RHOT-.250)/(.280-.250) 
GO TO 50 

19 TETA=1O.O+(RHOT-.280)5./(.380-.280) 
GO TO 50 
TETA=15.0+(RHOT-.380) 5./(.530-.380)
GO TO 50 

21 TETA=20.O+(PHOT-.530)L5./(.580-.530) 
GO TO 50 

22 TETA=25.0+(RHOT-.58O)*5./(.635-.580) 
GO TO 50 

23 TETA=j 0.O+(RHOTr-.A5),5./(.665-.635) 
GO TO 50 

24 	 rETA=35.0+(RHOT-.665)5./(.700-.665
 
GO TO 50
 
TETA=40.0+(RHOT-.700)5./(.740-.700)
 
GO TO 50
 

26 	 TETA=45.C+(RHT-.740),5./(. 750-.740
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GO TO 50 
27 TETA=50 .0+(RHOT-.150)*5./ (.770-.750)

GO TO 50 
28 TETA=55.0+(RHOT-.770)*5./(.780-.770) 

GO TO 50 
29 TETA=60.0+(RHOT-.780)*10./(.800-.780) 

GO TO 50 
30 TETA=70.0+(RRHOT-.800)*10./(.833-.800) 

GO TO 50 
31 TETA=80.0+(RHOT-.833)*10./(.860-.833) 

GO TO 50 
32 TETA=90.0+(RHOT-.860)*10./(.885-.860) 

GO TO 50 
33 TETA=100.+(RHOT-.885)*10./( .950-.885) 

GO TO 50 
34 TETA=11O.+(RHOT-.950)*10./(.970-.950) 

GO TO 50 
35 TETA=120.+(RHOT-.970)*10./(.980-.970) 

GO TO 50 
36 TETA=130.+(RHOT-.980)*20./(.990-.980) 

GO TO 50 
37 TETA=150.+(RHOT-.990)*15./(.995-.990) 

GO TO 50
 
38 TETA=165.+(RHOT-.995)*15./(1.00-.995)
 
50 RETURN
 

END
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RADIATIVE TRANSFER COMPUTER PROGRAM
 

Code 2
 

BLAK NOT FItMEDPRECEDING 
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C ',TECu. Lu 0
"L iur 4,4 ,ITH YJrC'JiM5TTI.I 

1(.. 4 13'3 ,' IAF Ar.D TOTAL krFLE CT I "N t- I,C LUU) " 
C 

']"h''-,', l, Z IAX yXY, 7 .C -,l L.,ILqC". /XM2, :Y Z Tt,S,-,i ATET-)FJ.1,-"[ l,,. 

r
 

,[ I. 8 9.tALLJ 

tN"/ CAD;T/ At'L ( 50) ,VA LU( 5) 

C r AL' )IT A C. ji SLAT T k IfS FU.ICT IN. 

9I 1 1=1,34 
, =,I-t,1j J rAKL(1I),V4,LU( N
 
'M01 (1 F M V.4,A L M 

I T r- 11).I , D.3­

rFA.) )AT,. FJ.V THE I v0U1 F. TU, AT. 1-IL,,
C
 

Pr A-j 1 ,2,2,) lAXjJPIl , ]iAX, I 
21 F)J Il,T(3(2X, 112)) 

F-A;( D, 30)TETAI ,7 
U, F)94,,T( (5X,F83.3))} 

,EAD( 5,35) XMX,YMAX, ZHAX 
J5CR.,,
TIi(5X, Fd. 3),5 5-) ) ,
,1, ( , .37 

) ,RP,"AT I( V ,2{reO. 3 ) 

,RIT- (6,?,) 4A X'101 
F - &'T )l,''IAX i"0 j F.-F 'ITj'3Tw,J ,1 F- -'tt. '-,I j) 
ir I1=(6, 7)'L1-AX 

2I - '4T( 'O' ,l 1A 
'IT-{,,2))ES 

Idjl iJ. ,F '-VF'TS'ITS E, :-C'I "I ',i1 

)j 1.r )T('3 11,'11TIAL S-E) P I-,'.AN C,4 .0. .,J~r.AT ,= ,12 
KKIT (o, ;I)T T.,i,FI I 

31 1T ! i(J 1',,1 TIAL TET\ 'IN ,RFES= , 3 .3,' IITI -L F l -
S ',r..3) 
-ITki( ,3.)X:IA1X,Y IAX, 'rX 
f0LjI."AT('I'TI'd(lu,4IiiSI3jJS I I 'I"fw:, A'IA= 3 
' Y 'AX= , 3.3,' Z1U ,A=P.3) 
,lT-R-( d,)S 

3, PIP -,T( ')I'SCATT'.R N.; CJ:FFICIFNT I NVZI.5F 0 ,Tc-S ,F, .t 

/3 
,rITf( F ) 
raAT (*V 

A4)3), Ao'J,4600 
) ,3" jrT1')'4QoFF"Ikc6" ENTSI AT 400, 53., ,) 38 1 

,IF."Tr-v*,) )=' ,H 3-.3,' A5OO6 .,F8. 3, AbOJ=',tno ////// 
411r=I. 334 

P ;-! 15 TU !iFdACTION INDEX OF WATFr.
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P1=3. 141592654 
ITRCPI / IkG. 
A:IAX=XMAX S 
Y.IAX=YMAX- S 
/-iAX=Z lAX S 
TETAI=TETAI -DTC 
FTI=FII" JTPC 
!PH= I 

11 IF(,NPH .,.,T.'IAX'IPrIGd TO 2000 
C 
C 111H IS THL "i. DF 0HUIONS AT 
C 6[CT? ,j-. OF PH'TJ S TkACED 

I'JlTIALIZE TiH CC,0)I0iATES OF 

T I =T;TA I 
fl=FlII 

X=0. 

Z=0. 000011 

C IXtit: 11)6 F I, PH3TtN T.-A VELS 

ACALL KA"DNIjU( I S,QIHOD)
"T =_ALu3 (tH JO) 

C 

A GIVEN TIME. 
AND TFST FOR END Cr i.ip TATI IL 

THE PHOTON i m--0E..:,iU 

PEF,)RE t:EVLiT ,r . 

c 
r 

T IS Ti D1STA'ICE I,', 
;VL-,,T PiJT.3" IS AT. 

SCATTE-In' LFI,GTH utI',ITS PII_-T- Ts ,¢VLS T' I 

XzX1TS I',TFTA) CiS( FI) 
Y=Y+IlSII (TET 4) ' Si'4 PI) 
Z=+T Cj3 (TTA) 
Ci TO 150 

i30 NPH=:IPH+l 
C 
C 
C 

FlTri--, AESSR.PTD'IIJ H43 COU-D, 
Fi2E,STAT A ,EW PpidT.N. 

P,-'TQ HA, Ci' -jJT i F ir­

" T,_' IJ 

150 CCNTINUz 
CI I N 2 

4-C 
IF (7) .UJ,5J3,533 
XIT:IT=X-Z TA'N(TFTA) CJS(FII 
YIN T= Y-Z' TAN ( - T A) -S INI 
rj IrNT= So%.( xI NjT 2t+YI1XNT, 2) 
DDI NT=D1IT/S 
IF( LI4T .GT. .2))GJ Ti I) 
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iF (,'MWJSI(TETA) GT. 1.0) GO TO 664 
T7TAAP=ARS IN (I,NI.3IN (TETA)) 
IF(TTA\ .GT. I.O)GO T"I 100 
XI NT=XI'IT/S 
YVIlT=YI'A T/S 
DINT'-001 NT 
tCT=A53S(C3S(T TA)) 
TCUT=(AS(L)-ABS(Z))/ACT 
,,-= GA," ,+TC UT 

-ij 

"FJ 

0-

,RIT" (&',41u) DI T,TFTA4n 
?lIki.T(/I, XtISTAjC FRJ i 

4qITL (',-201 FI, XINTYINT 
";,'.AT (I %' ZI I A,,IGLE= IFP.5, 
.*ITL(6, 1 -)) -,AIA 
;ORM'T(.f0 ,1"All4 ',E12.3) 

-X15 t 

5X,'A!%T= 

5X, p'PL,-- 1.,L'= 

,F..,SA, 'YI 1T F 

83,1 

1017 

F !kMAT(' I,'"j i OF £V ,:4TS=: 
qPITE{o,IIJIIPI 
r '.1,T('J','N J. CF PIIJTF b' 

,I3) 

TZC uu = ',FI8) 

C 
C 

CALCJLAT'r PlifiT3.J OIKOA,3ILITY WFIGET. 

9P)t 

6fl4 

C\LL PHPWCP ,(P Al DINTA-0.AJ0,A&0) 
.b ITr(o, 5999) .S 
Pi-'4AT(' RA, )I .'.U1oR USE) '1112) 
'.jirqli 
le111J-' Ij 

CT = ( C3 (T-T.) 
TCUT=(AoS(ZR-AS(Z))/CT 

GANiA)=G\ IAITCIJT 
TETA--PI-T_-Tf, 
TI:FI+PI 

IF(FI act. 2. P1)I=FI-2.PI 

X=XI IT 

Y=Y I-J1T 
Z=O.O0)O01 

CALL RA4.);Nu(ISKHJJD) 

y T-ST-,(TETA) SCS(FI)
Y=YfT'SI{'fTcTAl SIW(FI) 
Z=Z+T-C0S (ETA) 

500 

230J 
53) 

CALL PSI W(KIII N,-NrAX,J IRTCOD) 
IF(I.)TC ') .EQ. I )GJ TO 103 
IF(ITC')jf .EQ. 2)GO TO 400 

GO TO 1)) 
itRIT - (j,500) IS 

FIJR'IA. (I ','L.ST '.A,rUM NUMBER USED=',112) 
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STOP 
END 
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StdROIUTINE PSI 4(K IiN,'AAX,J, IPTCDU) 

THIS SUdR.UTIItE WILL 3E CALLED 'NLY W'HEN PF[OTCN ib STiLL Il, ,'' 
(U;HEN I>)).
 
IT DETEmIIJ'JES THE CL'JaDINATES OF THE EiO PGINT I ' TIIE , 1,--.,T- T
 

SYSTEM 3Y FIAST kOTATING THE SYSTEMA USING ANGLES TET;A 4,1'r Fl.
 
IT 3:-TATES THE s OTATION MATRIX,WITH THE CONSTRAINT TH,,T YSTA--
AXIS LIES IN A PLANE PARALLEL TiO THE YL-PLANE. 
THE TOTTION 'IATRIX IS DESIGNATED AS AIJ(I1,3,J=L,31.
 

EAL-8 4ALU 
Gfl'M'L.NISC ADAT/IA-rL S)) ,VAIU(53 1 
C,.M'IO,/nLJ.CKL/X iAX,YMAX ,ZMAX ,X :,YyZ,T ,b l.IA, TETAt ",1,PI,Uhi,-C ,. ,15S,4'
 

TPTC&]D=J
 
5, 12-0 J=KMI,, h4AX 
CT=ul]S (T TA I 
CF=CCOS(rI I 
CT2=CTSCT 
"F2=CF CF
 
ST=SIN(T ETA) 
F=SIN,(& I 

3T2=3T-S T
 
)F2=S, SF
 
SSI=uT2+SF2 312 
SS=S3,ET(SSI. 
SS,=I./SS 
413, T(I.-CF2 ST2) 
-42=-SF CF"ST2 SSD 
UI3=-CT'ST CF SSD 
A220CT 53, 
'123=-SF ST-SSD 
31:CF Sr 

A3 3=0T 
A;32=SF ST 

,,]TATIfl1 lATIX HAS BEEN GEtN'ERATED. 
SCAT rEk, 1 HAS OCCJe ED. 
CALL AhGELS FIP,TMTAP TJ DISTTHGUISH FPO[ FI,TTA 
FIP,TETAP A- DETEkMIjE, IN SYsT54 WITH Z-,xIS PA-A.LeL T, ThE 
INCIDENT OI-ECTI O3", 

CALL AtrlDrO I S3, ,kIlOFI
 
FIP=2 ."PIRi-IF 
'ALL RADNUL(IS,RHJT)
 
.ALL SCA-T3RIIT,TETA)
 
TFT k=TtT,",&TC
 
TETAP=TET 
A
 

PRECEDING PAGE BLANK NOT FTm1 
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C 
C 

C 

r 

C 

613 

133 

233 


-33 


331 

OETE lhl j- HOW FAk BEFORE A' EVE JT OCCURS,IN THE "tJTT-hf SYTE 

CALCALL RA.Nu&qU( IS, e.li1']) 

T=-ALOL (P H) 

' 
CALCULATK COLIPOINAT5S P END) PUilNT IN THE L TgTE. SYSFt . 

XS FA,=T SI,\{T:-TAP)hCS(FIP) 
YSTA =T )Uj(T.TAP)hSIN(FIP) 
ZSTAN=r CUS(TTAP)
 

APPLY P'1TATI )I: ,AATkIX Ttj DETF'4I1E ThE CO'}R3iNA-T=S )F Tt.E 'rj 
POI,,T IN A SYSTEH PARALLEL TJ TIHE OFIGINIAL cLu rslJT DISPL 'ALc). 

Ai 1 XT.I+ A31 LSTAR
 

Y,=4.2 X3TAfl*22YSTAR+A32'ZSfAj,
 
Zm=A13eXSTAs+A2-'YSTAR+A33 ZSTA-


CALCULATC TETA,AND FI IN THE P3SErJT 3YSTEt,,eHIC'i IS PAl.LLEL 
THE 01kIGIAL 'HE. 

FI=4TAN(AKS(Y,)/ABS(XR))
 
IF (X .LT. J.O)GO TU 133 
IF (YR) 333,333,633 

hJ TC 533 
FI=Fi 
,0 TO 533 
IF ((yRI 233,233,433
 
FI=FI+PI 
GO T" 533 
FI=PI-FI
 
CONTINUE 
XF2=AR' X 
YpR2=YR',YR
 
ZP9 =Z&'Z 
DT=XR21-Y 2+Z- 2 
SQDT=S ).T (DT) 
T--TA=APC IS( ZR/SOJT) 

CALCULATE X,Y,Z JF THE FND POINT Om TH3 PH'OTON WITH PESP:CT Tu 

THE 3RIGINML AXIS. 

X=A XR 

Y=Y+YP 
X2=X' X 
Y2=Y'Y
 
DIS2=X2+Y2
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X'AX2=XliAX X M AX 
YM4A X2=YMAX YMAX 
0I MAX2=XMAX2+YMAX2 
[F(01S2 .GE. 
Z=Z+ZR 

DIMAX21GO TO 100 

IF (Z) tOO,400,700 
73) IF(ZMAX-Z)70?,702?7O1 
702 X=X-(Z-ZMAXJ'TAN (TETA) -,C0S(FI) 

Y=Y-(L-L,4AX) .TAN(TETA)PSIN(FI.) 
ACT=ARS (COS (TETA) 
TT=T-(Z-VIAX) /ACT 
L=L MAX 
CALL RANuNO(IS,RHOR) 
IF(PHO)-J.03)704, 104,1OJ 

" C CHECK THiPEE ERCENT REFLECTIOI 4rTH UNIF AW"GULr, P,AbILITY. 

7)- CALL RANDN(IS1 RHJBT) 
TETA=0.5 PI'RHQBT+0.5 PI 
CALL RANON(ISRHOBF) 
FI=2.PIRHOBF 
CALL RANUN0h1SRHOJ) 
T=-ALjG ( RHOD)
X=X+T SIj(TETA),CUS(FI) 
Y=Y+TlSl;N(TnT )'SIN(FI)I'S T(i1 SIIFI 
Z=ZNAX+T COSITCTA) 
T=T+TT 

7)1 -A,4A=GA.!A+T 
1290 CONT I NUE 
13) IFTCDD=1 

GO TO 500 
4)J IRTC-'0=2 
500 -ETUAN 

FN D 
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SUROUTIAE SCATR3(RHOT,TETA) 
C 

C TtiIS SUb rUTIW[E DETFRMINFS ANGLE 'THcTA' FRU.M A GIVEN {ALU'cUY 
C CALCULATED FROM tIlE THEOPY) SCATTERING FUNCTIChq. 

C 

kEAL ,3 VALU 
C(OMMCN/S CADAT/ \NGL( 50) , VALIJU3W 

0) 13 1=1,33 
IF (KH- T .E. VALU(I) .AO. -HOT .LE. VALU(I+I)),f Tk 2i 

iJ COIT INUE 
20 TETA=AtlL I I)+ (ANuL (I+1 )-ANGL I I)) (RHtT-VALU ( I )/(VALJ ( + 1)-

IVAL J I)) 
RE T U-*' 
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C 
SIUij RCUTNE PH PW (PI 1,GAMA 70I'NT, A40O, A500,t A'60 ) 

C THIS StFSR&UTINE CALCULATES THE PHOTO iPRORASILIT'Y WLICHT f-J UIVL! 
C WAV EL EN uT FS. 
C 

TI P=O,.)254 
TIR2=TIRTIlr 

CK= P'I': T I Q 2 
=O.15 
4RITE(6,86))R 

•360 F(JRNAT(1O','BEAM RADIUS IN METERS= ',F8.3) 
,2 =k- R 

;)I NT2=DIJTCDI NT 
XINT= (R2-TIP2+INT2J/(2. xUPITJ 
XINT2=Xl JT, XI NT 
YI NT=SQkT (DS3(R2-XINT2) ) 
,GC I=ATAJ CYI,.T/XI NT) 
GC2=PTANI(YINT/ (OINT-XINT)OT
GC3=P 1-, T,10 (YI PIT/ (ABS ( XINT-L) IN T) I 

AAA=GCIt92 Gl2-TIR2-0INT*YINT 
t3FEB=GCI R2+GC3,TIR2-OINTxYIiNT 
13TRd+T1K, 
CIR=R-TI R 
IF(CINT .GE. C.0 .AND. DINT LT. CIP)ARE',=CK 
IF(DINT .LE. CIP .AND. DINT LT. -­)AREA=BRB 
EF(DIHT .GE. R .ANrP. DINT .LT. BIR)ARcA=4A4 
IF(')INT .GE. UIR)APEA=0. 
r50J=EXP(-GAlIA,A,0) 

C PHOTON P-S)J,,A6ILITY WEIGHTS FOR 500 NN. 

PPWSJOO:AcA [500 
.RITF(6,861 IPP4500 

d-l FORIAT(4O,'P1JTO; PROB. WT. FOR 500 ,4= ',FIO.o) 
RETUPN 
EN9 

'98 



SUB- UUTUJE FANDNF)(1XRf%,Ufll 
r 
c 

THIJ SUBROUTINE GENEkATES Uf4lF;)R,,l RAND3M ILJIBFRI, & Tq cO J 
c 
c 

IY=Ix'b3539 
IF(IY) 5,o,6 

5 IY=IY+21474d3647i-I 
PNU.14= ly 
'rJJM=RNLJM-.465oo13 -9 
IX=IY 
- ETUPIl 
-Nf) 
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FILE 
04: SCATR3 

).J 


0.2000 

0.4000 

0.6000 

0.8000 

1.33) 

1.2000 

1.4200 

1.6))) 

1.8300 

2.0300 

13.0000 

18.0000 

26.33JJ 

34.0J00 

42.0000 

53.J)3) 

58.0000 

66.0000 

74.0000 

82.0000 


1)6.)333 
114.0000 

122.0000 

133.3)33 

138.0000 

14o.0000 

154.0000 

162.0000 

173.0) 

178.2000 

178.6000 

179.23)3 

180.0000 


DATA A
 

J.0JJJJD+J')
 

0.253470D 00
 
0.577508D+00
 
0.6 18157D+00
 
0.72562D+00
 
).7516860+))
 
3. 169d29D+00
 
3.732822D+00
 
3.792812D+))
 
0.8005860D00
 
0.8068250+00
 
3.9301860+00
 
0.949330D+00
 
3.963)730+33
 
3.973075D+00
 
0.980206D+00
 
3.985354D+3)
 
3.9384060+00
 
J.9907740+00
 
0.9925100+00
 
0.9938340+00
 
3.9966930+33
 
3.9973770+00
 
0.9919600+00
 
).998464D+))
 
0.998898D+00
 
0.999265D+00
 
).99955r)+30
 
0.999780D+00
 
).9999270+)J
 
0.999997D+00
 
0.9999980+00
 
3.999999D+33
 
0.100000D+01
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FILE 
05tFOTON DATA A 

12 
9.700 
1.217 

12.000 
4.800 

100 
0. 
1.211 

3.200 

53479 

2.oOO 

2.400 
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FILE: MFOTON EXEC A
 

GL TXTLIB 'FORTMODI 
Fl 04 OISK SCATR3 'DATA Al 
Fl 35 DISK MFOTON DATA Al 
FI 06 PRINTER 
LOAD MFOTON 

START
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APPENDIX B
 

MEASUREMENT OF SCATTERING FUNCTIONS
 

B.1 	Scattering Functions
 

Scattering is an inherent property of the water which is useful
 

as an optical parameter. Detailed knowledge of the scattering
 

functions, in fact, can yield information about the particle size
 

distribution and the composition.
 

The scattering function a(6) is defined by the relation
 

- I - l 	 ()

a(O) 	 = dJ() (meter Str
HdV
 

where dJ(e) is an element of radiant intensity scattered in the
 

direction 8 from the incident beam by the volume element dV. H is
 

the irradiance received by the sample volume.
 

B.2 	Determination of Volume Scattering Function
 

Both the sample volume and the small solid angle, within which
 

the radiant intensity is measured, are determined by the optical
 

geometry of the instrument used. The instruments usually use a
 

finite sample volume and collect the energy scattered at angle 6
 

over some solid angle. The equation (1) is then written as
 

J(e)
-

H.V
 

= J(A) 
H.A.9£
 

P(6) 

OF eOOR (1j 
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where
 

P(O) = the total light flux entering the sample volume 

P(6) = the light flux entering a small solid angle 2 about 
the angle 0 at which the measurement is made 

= 	 the solid angle over which the measurement of P(G) 
is made 

£ = 	 length of sample volume 

A = 	 the projected area of the sample volume V, as seen in 

the direction of P(O) 

It is 	necessary to know either P(8) or P(O) in absolute terms.
 

The scattering instruments allow P(6)/P(O) to be computed. The
 

length, £, and the solid angle, 2 are determined by the geometry of
 

the instruments.
 

When 	a scattering measurement is made using a finite volume of
 

water, an unavoidable error is caused by absorption in the sample
 

volume. If the instrument used had a sample path length that is
 

small relative to the attenuation length of the water, this error
 

is small and is less than the instrument errors. If the measurement
 

is made using a path length that is not small relative to the
 

attenuation length, the results have to be corrected. One such
 

correction applied can be referred in Reference 10.
 

B.3 	 Scatterance Meters
 

The scattering quantities have exact mathematical definitions
 

which dictate the design of the meters to be used. In principle,
 
* 	 it, C., 

I'measurements of scatterance involve irradiation of sample volume by
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a beam of light and recording of the light scattered by the volume
 

through various angles.
 

Several types of scatterance meters have been developed.
 

Typical types are: Fixed angle, Free angle, and Integrating meters.
 

One ground of subdivision is to distinguish in-vitro and in-situ
 

meters.
 

It is not our intent to describe in detail various scattering
 

meters used by researchers in this area, however, a brief discussion
 

may be warranted regarding the differences between general type and
 

small angle scattering meters. Typical scattering meters used by
 

Scripps Institution of Oceanography(1
0) are briefed below.
 

B.3.l 	General Angle Scattering Meter
 

Its purpose is to determine volume scattering function between
 

the limits of 100 S 8 1700. It has a projector which rotates 

0 0° 
about 	the sample volume from 6 = 0 through 0 = 180 . The measure­

ment at 6 = 0 indicates total power in the projected beam, while
 

the measurement at 1800 records the background ambient light level.
 

_
<
The 	rest of the readings (100 8 1700) measure scattered light.
 

The output of this instrument contains analog voltage signals
 

representing depth, scan angle position and the photometer signal.
 

A continuous trace of photometer signal versus depth at any fixed
 

angle between 10 and 170 degrees and a continuous trace of photometer
 

signal versus scattering angle at a fixed depth are the two methods
 

of data collection using general angle scattering meters.
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B.3.2 Small Angle Scattering Meter
 

Small angle scattering meter (with which the results used in
 

Reference 1 were measured) is essentially that which was modified
 

and used by Morrison. (3 ) Main problems in low angle scattering
 

meters are; scattering within the instrument and limitations in
 

defining the limits of solid angle of the measurements.
 

In the low angle scattering meters used in Reference 10, and
 

attempt is made to reduce the instrument's over internal scattering,
 

it is still significant relative to the small angle forward scat­

tering of clear waters.
 

The instrument has a projector which having a small point source
 

of light, produces a beam of highly collimated light. After tra­

versing the sample path, the light enters a long focal length lens
 

in the receiver and an image of the point source is formed at its
 

focal length. The light which traverses the water and is neither
 

absorbed nor scattered falls within this small image. Light which
 

is scattered arrives at the image plane displaced from the axis at
 

a distance proportional to the angle through which it has been
 

scattered and is the focal length of the receiver lens. The scat­

tered light is allowed to pass through four field stops before
 

reaching the detector. The first field stop is a small hole and the
 

other three field stops are annulus. The inner and outer radii of
 

the annulus determine the angular interval over which the scattered
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light is accepted. The solid angle, Q, in equation (2) is limited 

by the angles el, 2 imposed by the annulus field stops and is 

calculated, from 0 = 2u (92 - 62), where Ol, and 62 are in radians. 

The value computed for the volume scattering function a(0) is 

an average value for a(6) between the angular limits, 1, and 2' 

of the solid angle. 

ORIGINAL PAGE IS
 
OF POOR QUALRY
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APPENDIX C
 

LISTINGS FOR POLYMIE AND DBMIE ROUTINES USED TO
 
CALCULATE THE VOLUME SCATTERING FUNCTIONS
 

PRECDING PAGE BLANK NOT FITMED
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C 

MAI N
 

C MAIN PROG POLYMIEIVECTOR)
 
C THE FOLLOWING, DOUBLE PRECISION INPUTS ARE REQUIRED:
 
c RFi<=RFAL PART OF REFRACTIVE INDEX
 
C RFI=IIMAGINARY PART OF REFRACTIVE INDEX
 
C RADU=UPPERBOUND ON RADIUS(MICRONS)
 
C wAVE=WAVELENGTH IN MICRONS
 
C A(I)=PAAMETERS FOR DISTRIBUTION ONE
 
r B(I)=PARAMETERS FOR DISTIBUTION TWO
 
C THPTD(J)=VECTOR OF ANGLES FROM 0-90 (COMPLIMENTS ARE ALSO CALC)
 
C OTHER INPUTS ARE:
 
C JX=NUMBER OF ANGLES FROM 0-90
 
C NPAD=NUMBER OF RADII BETWEEN O-RADU
 
C NPARA=NUMBER OF PARAMETERS IN DISTRIBUTION ONE
 
C NPARA2=NUMBER OF PARAMETERS 1N DISTRIBUTION TWO
 
c TWO=LOGICAL VARIABLE TO ENABLE THE USE OF TWO DISTRIBUTIONS
 
c
 

TwO FUNCTION SUBPROGRAMS DIST(RAD,A) AND DIST2(RADB ARE REQUIRED
 
C IN ADDITION TO PDBMIE SUBROUTINE
 

C TWO DATA SETS (6 AND 8) ARE USED FOR OUTPUT; NORMALLY 6=PRINTER 
C AND B=TAPE 
C 
C 

10 FORMAT(3D15.5)
 
11 FORMAT(2015.5)
 
12 FORMAT(D15.5)
 
13 FORMAT(DI5.5,I5)
 
14 FORMAT(215)
 
15 FORMAT(L5)
 
16 FORMAT(15)
 
17 FORMAT(D15.5)
 
20 FORMAT(IHI
 
25 FORMAT(//TIO,'ELEMENTS OF THE TRANSFORMATION MATRIX FOR A SPHERE
 

IWITH SIZE PARAMETER = 1,F15.5)
 
30 FORMAT(//TIO,'REFRACTIVE INDEX. REAL = t,D15.5,T6O,IMAGINARY',DI5
 

1.5,//)
 
35 FORMAT(T3,'ANGLE',T17,'SIGMAI',T31,'SIGMA2',T46,'SIGMA3',T6I,'SIGM
 

IA4,T76,'INTENSITY',T91,'POLARIZATION'//2
 
40 FORMAT(FIO.4,5EI5.6,F15.4)
 

,, -5 -FRMT-(/ /T-13',<EFFIC'IENCY.FACTOR FOR EXTINCTION$,E15.6) 
50 FORMAT(//rIO,' EFFICIENCY FACTOR FOR SCATTERING' ,E15.61
 
55 FORMAT(l/TI', EFFICIENCY FACTOR FOR ABSORPTION',EIS.6)
 
60 FORMAT(//TIO ASYMMETRY FACTORIE15.6//)
 

7) FORMAT(//TIO,' TOTAL TIME FOR THIS CASE IN SECONDS= ',F15.3//)
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MAIN
 

2 FORMAT(I/T1O,'PROBABILITY FOR THIS SIZE PARAMETER = 0,D5.5,//)

3 FORiAAT(//T1J,'NORMALIZATION FACTOR FOR THIS SET OF SIZE PARA=',
 
1D15. 5,//)
 
?FAL-8 RFRRFI,XQEXTQSCATQABSTHETDO100)fPQEXT,PQSCATPQABS
 

dO 	FORMAT(//TIO,'SCATTERING CROSS SECTIONI,E15.6)
 
REAL'8 ELTRIIX(4,1],2),ALAMCONCTBRQS,AVCSTHPELTMX(4,100,2)
 
REALk8 PAVCTH,THE(100),PBSCAT
 
REAL 4 AIN(lOO,2),POLR(100,2)
 
REAL-4 PAIN(100,21,PPOLR(100,2)
 
REAL 4 PAI(100,2),PPOL(100,2)
 
REAL-8 PROB2,PNORMZ
 
REAL 8 PQEXPQSCAPQABPBSCAPAVCTPELTM(4,100,2)
 
KEAL 8 RADUDRADWAVEGAMMAA(20),PROBB(20)
 
LOGICAL WRNTWO
 
WRN=.FALSE.
 
CON=3.1415926535897932D O
 
INTEGER NPARA,NPARA2
 

90 	READ (5,10) RFRRFIWAVE
 
READ (5,14) JXNPARA
 
READ (5,12) (THETD(I|,I=1,JX)
 
READ (5,13) RAOU,NRAD
 

I FORMAT (015.5)
 

DO 5 I=I,NPARA
 
READ (5,1) A(I)
 

5 CONTINUE
 
PEAD(5,j5) TWO
 
DO 95 I=IJX
 

95 THE(I)=THETD(I)
 
IF (TWO) GO TO 61
 
GO TO 62
 

61 READ(5,16J NPARA2
 
DO 62 I=I,NPARA2
 
READ(5,17) B(1)
 

62 CONTINUE
 
PwEXT=O.ODO
 

PQEX=O.ODO
 
PQSCA=O.ODOA
 
PQAVC=O.ODO 	 ML p00 G 
PBSCA=O.ODO 	 QUA.Invy 
PQSCAT=O.ODO
 
PQABS=O.0DO
 
PBSCAT=O.ODO
 
PAVCTH=O.000
 
DRAD=RADU/NRAD
 
DO 1000 J=1,JX
 
DO 1000 K=i,2
 
DO 999 I=1,4
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MAIN 

PELTMX(I ,J,K)=O.ODO
 
PELTM( 1,J ,K)=0.ODO
 

999 CONTINUE
 
PAIN(JK 1=0.000
 
PA I(J,K) =0.000
 
PPOL (J,K)=0.OD0
 
PPOLR(JK)=0.000 

1000 CONTINUE 
RAD=O.O 

,PNORM2=O.ODO
 
IF (TWOD GO TO 91
 
PNORM2=1 .000 

91 CONTINUE
 
Pj'ORJ=.OJD3
 
TI ME 1=0. 0
 
0l0 3)3) L=I,NRAD
 
7AD=PAD+DRAD
 
DO 1J J=1,JX
 

100 	THETD(Jl=THE(J)
 
X=2.)DJ CON-RAD/WAVE
 
PROB=OIST(RAD,A)
 
IF (TWO) GO TO 63 
PROB 2=0.ODO 
GO Tb 64
 

63 PKCB2=DIST2(RAD,B)
 
b4 CALL SETCLK
 

CALL POBNIIE I XRFRRFITHETD,JX,QEXTQSCATCTBRQSELTRMXWRN)
 
CALL READCL(TIME)
 
IF (WRN) GO TO 1001
 
PNURM=PNORM PROB
 
PNORM2=PNORM2+PRO82
 
TI MEI=TIME1T-TIME 
.4ABS=QEXT-QSCAT
 
AVCSTH=CTSRQS/.JSCAT
 
DO 150 K=1,2 
DO 15) J=1,JX
 
AINLJ,K)= ELTRMX( ,JK)IELTRMX(2,J,K)
 
POLR(J,K)= (ELTRNX(2,JKI-ELTRMX(I,J,K))/AIN(J,K)

AIilr(°J,K ]= .5"A IN({J ,K )
 

PA'lt (J,Kh=AIN(J,K)t PROB+PAIN(J,KI
 
PAI(J,K):AIN(J,K'PROBZ+PAI(J,K)
 

PPOL( J,K)=POLR(J ,K)"PROB2+PPOL(J,K)
 
PPOLR(J,K)=PPOLR(JK )1POLR(J,KI PROB
 

150 CONTINUE
 
00 2000 I=1,4
 
DO 2000 J=1,JX
 
DO 2)3) K=1,2 
PELTMX(I,J,K)=PELTMX(I,J,K) ELTRMX(I,JK) PROB
 

112
 



MAIN 

PELTM(I,J,K)=PELTM(I,JK)+ELTRMX(I,J,KP PROB2
 
2000 CONTINUE
 

WRITE(6,20)
 
hRITE(6,253 X
 
WRITE(6,30) RFR,RFI
 
WRITE(6,35)
 

) ) I
dRITE(6,40) ((THETD(J),(ELTRMX(IJ,i),I=1,4),AIN(JI),POLR(J,1

IJ=l,JX)
 

C WRITE(8,43) ((THETO(J),(ELTRMX(I,J,I,I=1,4),AIN(J,i),POLR(J,I)),
 
C IJ=1,JX)
 

DO 233 J=1,JX
 
THETD(J)= 180.OOO-THETD(J)
 

23j 	CONTINUE
 
JMX=JX-I
 
00 213 J=I,JMX
 
JJ =JX-J
 
IRITE(,4)(THETDJJ),(ELTRMX(I,JJ,21,1=1,4|,AIN(JJ,21,POLR(JJ,2))


2 ) I
C WRITE(8,40)(THETD(JJ),(ELTRMX(IJJ,2),I=I,4),AIN(JJ,2)PPOLR(JJ
 
21) 	CONTINUE
 

WRITE1o,45) QFXT
 
NRITE(6,50) QSCAT
 
WRITE(6,55) QAI3S
 
WRITE(o,60) AVCSTH
 
WRITE(6,2) PROB
 

wRITE(6,2) PROB2
 
WRITE(b,20)
 
wRITE(6,70) TIME
 

PQSCAT=PQSCAT QSCAT-PROB
 
PQSCM=PQSCA+QSCATDPROB2
 
PQEX=PQbX+QEXTPROB2
 
PuAB=PQA QABS PROB2
 
PBSCA=PBSCA QSCAT'(RAW,'.2 hPROB2
 
PAVCT=PAVCT+AVCSTH*PRtB2
 
PQEXT=PQEXT+QEXThPROB
 
PQABS=PuABS+QABS-PROB
 
PBSCAT=PBSCAT+QSCATh(RADr42)-PROB
 
PAVCTH=PAVCTH+AVCSTH*PROB
 

1001 WRN= .FALSE.
 
3000 CONTINUE
 

DO 4000 J=l,JX
 
DO 4000 K=1,2
 
DO 43)1 1=1,4
 
PELTMX(I,J,K)=PELTMX(I,J,K)/PNORM
 
PELTM(I,J,K)=PELTM(I,J,K)/PNORM2
 

4001 CONTINUE
 

PAIN(J,K=PAIN(J,KJ/PNORM
 
PAI(J,K)=PAI(J,K)/PNORM2
 
PPOL(J,K)=PPOL(J,KI/PNORM2
 

ORIGINAL PAGE IS
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MAIN
 

PPOLR(JK)=PPOLR(J,K)/PNORM
 
4))3 CONTINUE
 

C 	 END FILE 8
 
Pk)SCAT=PQSCAT/PNORM
 
PQEXT=PQEXT/PNORH
 
PQABS=PwABS/PNORM
 
PBSCAT=PBSCATCON/PNORM
 
PAVCTH=PAVCTH/PNORM
 
PQSCA=PQSCAIPNORM2
 
pQOX=PQEX/PNORM2
 
PQAB=P4AB/PNORM2
 
PF SCA=PBSCA* CON/ PNORM2 
PAVCT=PAVCT/PNORM2
 
DO 6000 J=I,JX 

6000 TiEO(JI=THE(J) 
wRITE(6,20) 

65 PORNAT(//T1OtELEMENTS OF TRANFORMATION MATRIX FOR POLYDISPERSION' 

WRITE(6,65)
 
WRITE(6,30) RFR,RFI
 
WRITE(6,35)
 
vRITE(6,40) ((THETD(J),(PELTMX(IJ,I),I=1,4),PAIN(J-i ),PPOLR(J,l)
 
1),J=I,JX)
 

C vRITE(8,40) ((THETD(J),(PELTMX(IJ,1),1=1,4),PAIN(Jl),PPOLR(Jl)
 
C 1),J=l,JX)
 

DO 5000 J=I,JX
 
THETO(J)=18).,DO-THETD(J)
 

5000 CONTINUE
 
JMX=JX-1
 
DO 5001 J=IJMX
 
JJ=JX-J
 
WRITE(6,40) (THETD(JJ),(PELTMX(I,JJ,2),I=1,4)tPAIN(JJ,2),PPOLR
 
l(JJ,2))
 

C 	 WRITE(8,40) (THETD(JJ),(PELTMX(I,JJ,2)1=1,4bPAINJJ,2),PPOLR
 
C l(JJ,2))
 
5001 CONTINUE
 

C 	 END FILE 8
 
wPITE(6,45) PQEXT
 
WRITE(6,50) PQSCAT
 
WRITE(6,55) PWABS
 
WRITE(6,80) PBSCAT
 
WRITE(6,60) PAVCTH
 
WRITE(6,3) PNORM
 
WRITE(6,70) TIMEl
 
WRITE(6,20)
 
DO 5010 J=i,JX
 

5010 	 THETD(J)=THE(J)
 
IF (TWO) GOTO 5)02
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MAIN
 

GO TO 	5003
 
5002 	 WRITE(6,20)
 

WRITE(6,65)
 
WRITE(6,301 RFRRFI
 
WRITE(6,35)
 
WRITE(6,40) ((TrETD(Jb(PELTM(IJul),1=1,4),PAI(J1)jPPOL(Jl)
 
L),J=1,JX)
 

C WRITE(8,43) ((THETD(J),(PELTM(I,JI),I=1,4),PAI(J,1),PPOL(JiI
 
C I),J=,JX)
 

DO 5JD04 J=I,JX
 
THETD(J)=180.OOO-THETD(J)
 

5)3% 	 CONTINUE
 
JMX=JX-1
 
DO 5J35 J=I,JMX
 
JJ=JX-J
 
.RITE(b,43) (THETD(JJ),(PELTM(I,JJ,2),I=1,4),PAE(JJ,2JPPOL
 
I(JJ,2))
 

C WRITH(8,40) (THETD(JJ),(PELTM(I,JJ,2),I1=,4),PAI(JJ, 2),PPOL
 
c l(JJ,2))
 
5005 CONTINUE
 

C 	 END FILE 8
 
WRITE(6,45) PQEX
 
WRITE(6,5J) PQSCA
 
WRITE(6,55) PQAB
 
WRITE(6,83) PBSCA
 
WRITE(6,60) PAVCT
 
WRITE(6,3) PNORM2
 
NRITE(6,70 TIMEI
 
WRITE(6,2))
 

5003 	STOP
 
END
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POBMIE 

SUBRCUTINE POBMIE (X,RFR,RFITHETDJXQEXT,QSCAT,CTBRQS,ELTRMX,WRN 
1) 
aADIATION SCATTERED BY A SPHERE. THIS SUBROUTINE CARRIES OUT ALL 
SUBROUTINE FOR COMPUTING THE PARAMETERS OF THE ELECTROMAGNETIC 

C COMPUTATIONS IN SINGLE PRECISION ARITHMETIC. 
C THIS SUBROUTINE COMPUTES THE CAPITAL A FUNCTION BY MAKING USE OF 
C DOWNWARD RECURRENCE RELATIONSHIP, 
C X 3 SIZE PARAMETER OF THE SPHERE,( 2 PI RADIUS OF THE SPHERE)/ 

IAVELENGTH OF THE INCIDENT RADIATION). 
C RFJ REFRACTIVE INDEX OF THE MATERIAL OF THE SPHERE. COMPLEX 
C UANTITY..FORM0 (RFR - I = RFI I 
C THETD(J)J ANGLE IN DEGREES BETWEEN THE DIRECTIONS OF THE INCIDENT 
C AND THE SCATTERED RADIATION. THETD(J) IS - OR = 90.0. 
C IF THETD(J) SHOULD HAPPEN TO BE GREATER THAN 90.0, ENTER WITH 
C .UPPLEMENTAkY VALUEO SEE COMMENTS BELOW ON ELTRMX.. 
C JXO TOTAL NUMBER OF THETO FOR WHICH THE COMPUTATION AREREQUIRDE. 
C JX SHOULD NOT EXCEED 200 UNLESS THE DIMENSIONS STATEMENTS 
C ARE APPRUPRIATELY MODIFIED. 
C MAIN PROGRAM SHOULD ALSO HAVE REAL THETDI20O),ELTRMX(4,2OJ,2). 
C OEFINITIONS FOR THE FOLLOWING SYMBOLS CAN BE FOUND IN I LIGHT 
C SCATTERING BY SMALL PARTICLES, H. C. VAN DE HULST, JOHN WILEY + 
C SONS, INC., NEW YORK, 1957 1. 
C QEXT82 cFFIECIENCY FACTOR FOR EXTINCTION, VAN DE HULST, P.14 + 127 

tSCAT82 FFFIECIENCY FACTOR FOR SCATTERING,VAN DE HULST,P.14 + 127. 
C CTBRQS) AVERAGECCOSINE THETA) , QSCAT,VAN DE HULST, P. 128. 
C rLTRMX(I,J,K)O ELEMENTS OF .THE TRANSFORMATION MATRIX F,VAN DE HUL 
C )T,P.34,45 + 125. I = 13 ELEMENT M SUB 2..I = 23ELEMENT .4SUB l.. 
C I = 30 ELEMENT S SUB 21.. 1 = 40 ELEMENT D SUB 21... 
L ELTRMX(I,J,1) REPRESENTS THE ITH ELEMENT OF THE MATRIX FOR 
C THE ANGLE THETD(JI.. ELTRMX(I,J,2) REPRESENTS THE ITH ELEMFNT 
o CF THE MATRIX FOR THE ANGLE iO.O - THETD(J) 
5 FOPr4AT(I)X' THE VALUE OF THE SCATTERING ANGLE IS GREATER THAN 93.3 

$ OEGREES. IT IS 1,E15.4) 
o FORMAT(f/i3X' PLEASE READ THE COMMENTSI//) 
7 FORMAT(//IOX' THE VALUE OF THE ARGUMENT JX IS GREATER THE 100') 
? FORMAT(//IJX'THE UPPER LIMIT FOR ACAP IS NOT ENOUGH. SUGGEST GET 

IDETAILED OUTPUT AND MODIFY SUBROUTINE'//) 
REAL 8 X,RX,RFR,RFI,LEXT,QSCAT,T(5),TA(4),TB(2),TC(21,TD(2),TE(2), 
2 CTBRQS,FLTRMX14,1OO,2),PI(3,I0O),TAU(3,100), 

3 CSTHT(100,SI2THT(100,THETD(100) 
COMPLEX'16 RF,RRF,RkFX,WMI,FNA,FNB,TCI,TC2,WFN(2),ACAP(800), 
2 FNAPFNBP 
LOGICAL WRN 

9 FORMAT(//TIO,'WARNING,ACCURACY NOT ACHIEVED*//) 
C TA(I,OREAL PART OF WFN(l).. TA(2)O IMAGINARY PART OF WFN(1).. 
C TA(3)O REAL PART-0P. WFN(2).. TA(4)O IMAGINARY PART OF WFN(2l.. 
C TB(1)O1EAL P4RT OF FNA...TB(2)J IMAGINARY PART OF FNA... 
C TC(1)O REAL PAR OF'FNB...TC(2)O IMAGINARY PART OF FNB... 
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POBM I E
 

C TD(1)O REAL PART OF FNAP.. TD(2) IMAGINARY PART OF FNAP...
 
C TC(1)O REAL PART OF FNBP... TE(2)O IMAGINARY PART OF FNBP...
 
C FNAP + FNBP ARE THE PRECEDING VALUES OF FNA + FNB RESPECTIVELY.
 

EQUIVALENCE (WFN(I), TA(C)), (ENA, TB(l), (FNB, TC(1))
 
EQUIVALENCE (FNAP, TOM), (FNBP, TECI))
 
IF ( JX .LT. 101 J GO TO 20
 
4RITE (6t 7)
 
'RITE(6, 6)
 
STOP I
 

20 	AF =0C MPL X (RFR ,-RFI)
 
-,RF =1.)DJ/RF
 
,)x = 1.OOO/X
 
RRFX = PAF , RX
 

T(1)=(Xt 2) (RFR"'2+RFI"2)

rml =DSQi<T(T { ) }
 

NMXI = 1.1000 -' T(N)
 
IF (NMX1 LT. 7999) GO TO 21
 
wRITE(6, 8)
 
STOP 2
 

21 	 NMX2 = T(l)
 
IF (NMXI .GT. 150) GO TO 22
 
NMX1 = 150
 
NMX2 = 135 

22 ACAP(NMXI + I 1 O.ODO, O.ODO 
DO 23 N = 1, NMXI 
Ni = NMXI - N + 1 
ACAP(NN) = (NN+I) RRFX - 1.ODO/(NN+I)}RRFX + ACAP(NN+Ii) 

23 CONTINUE 
Dt) 30 J = 1, JX
 
IF ( THETD(J) .LT. 3.0D3 3 THETD(J) = DABS(THETDJ))
 
IF ( THETO(J) .GT. O.ODO 1 GO TO 24
 
CSTHT(J) = 1.)D,
 
SI2THT(J) = O.ODO
 
GO TC 33
 

24 	IF ( THETD(J) .GE. 90.0DO I GO TO 25
 
T(I) = ( 3.141592b535897932D+3 , THETD(J))/180.DO
 
CSTHT(J) = OCOS(T(1))
 
SI2THT(J) = 1.D - CSTHT(J)* '2
 
GO TO 30
 

2: 	 IF ( THETD(JI .GT. 90.ODO | GU TO 28
 
CSTHT(J= O.ODO
 
SIZTHT(J) = 1.0DO
 
GO TO 30
 

28 	 wRITE (6, 5) THETD(J)
 
WRITE(6,6|
 
STOP 3
 

30 	 CONTINUE
 
DO 35 J = 1, JX
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PI(l,J) = O.ODO
 
PI(2,J) = I.ODO
 
TAU(I,J) = O.ODO
 
TAU (2, J) = CSTHIT(J)
 
CuNTINUE
 
T(1l) = OCOS[X)
 
T(2) = )SIN(X)
 
wtI1=DCMPLX(TI 1),-T(2)1
 
nFN(I)=OCPLXT(2),T(1))
 
WFN(2) = RX r WFN(1) - W'I
 
TC1 = ACAP(l))- RRF + RX
 
TC2 = AGAP(Il) RF + RX
 
FNA = (TCI TA3) - TAM1) / (TC " WFN(2) - WFN(I )]
 
FNB = (TC2 ' TA(3) - TAM1)j / (TC2 WFN(2) - WFN(I))
 
;7NAP = FNA
 
FNP = FNB
 
TIll = 1.5000
 
TB(1) = TI) T3(1)
 
TB(2) = Ti1) TB(2)
 
TC(I) = T(I) - TC(l)
 
TC(2) = T(I) TC(2)
 
DO 6J J =I,JX
 
ELTRMX(I,J,1J = TB{I) PII2,J) 4 TCCI) TAU(2,J)
 
FLTRMX(2,J,1) TB(2) . PI(2,J) +TC(2) TAU(2,J)
 
ELTRiIX(3,J,1) = TC(I) -PI(2,J) + Ti(l) TAU(2,J)
 
CLTRMX(4,J,1) = TC(2) PI(2,J) + TB(2) TAU(2,J)
 
ELTRMlX(I,J,2) = TB(1) PI(2,J) - TC(I) TAU(2,J)
 
tLTR;X(2,J,2) = TB(2) PI(2,J) - TC(2) S TAU(2,J)
 
ELTF,4X(3,J,2) Tll) PI(2,J) -TB(1) TAU(2,J)
 
FLTRHX(4,J,2) = TC(2) -- PI(2,JI - TB(2) TAU(2,J)
 
CONTINUE
 
JEXT = 2.Oij ( TB(I + T+ .)
 
tSCAT =(TB(1)-,'2 + TB(2) *2 + TCIIIL-"2 + TC(2) 2)IJ.75D0
 
CTBR'S = 0.000
 
N = 2
 
T(il)=2 N -I
 
T(2) = N - I
 
T(3) = 2 N 11
 
OO70J=1 ,JX
 o
P (3,J)=(T(l)- PI (2,J) CSTHT(J)-N'-PI (iJ) )/T{2J
 

TAU(3,J}=CSTHT(J) (PI(3,J)-PI(1,J))-T(1) SI2THT(J)ePI(2,J)TAU(1tJ
 
I)
 
CONTINUE
 
AMI = WFN(I)
 
wFN(l) = WFHI(2)
 
WFN(2) = T(I) RX - WFN(I) - WMI
 
TCl = ACAP(N) RRF + N RX
 
TC2 = ACAP(N) ' RF + N RX 
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F-iA = tTC1 -TA(3 - TAM.)) / (TCi - WFN(2) - WFN(1))
 
FNB = (TC2 TA(3) - TAMl)) / (TC2 WFN(2) - WFN(l))
 
T(5) = N
 
T(41 = TM1 (T(5) T(2))
 

T(2) = (T(2)'(T(5) + I.ODO))/T(5)
 
CTBRQS = - (TOM TB(I) TO(2) + TE(i)
CTBROS + T(2) 1 + TB(2) -

sTC(j) + TE(2) ' TC(2)) + T(4) r (TO(1) * TECI) + TO02) TE(2)) 
JEXT = iEXT + T3) (TB(1) + TC(1)) 
T(4) = TB(l} 2 + TB(2)*$'2 f TC(t)2 + TC(2)"2 
QSCAT = QSCAT + TM3) T(4)
 
T(2) = N -(N + 1)
 
TMu = T(3) / T(2)
 
K = (N / 2) 2
 
D 8) J = 1, JX
 
LTRIXi,J,i)=ELTKMX(I,J,1)+T(I)"(TB({)PI(3,J)+TC(1kTAU(3,J))
 
ELTRMX(2,J,1I=ELTRNX(2,JI)+T(1),'(TB(2)'PI(3,J)+TC(2)PTAU(3,J))
 
ELTRMX(3,J,1) ELTRMX(3,J,l) T(I)-(TC(1)'PI(3,J)+TB(I1VTAU(3,J)
 
£LTRkX(4,J,It=ELTRMX(4,J,I)+T(lP-(TC(2)-'PI(3,J)+TB(2) TAU(3,J))
 
IF(K.EQ.N) GO TO 75
 
FLTRMX(I,J,2)=ELTRMX(I,,2)T(I )(TH1(V)PI(3,J)-TC(1l)TAU(3,J))
 
LTRtX(2,J,21=ELTMX(2,J,2)+T(1h(TB(2),PI(3,J)-TC(2)hTAU(3,J))
 
LTRPX(,J,2)=ELTRMX(3,J,2)+T(1) {TC().PI(3,J)-TB(I) TAU(3,J))
 
ELTkX(.,J,2)=ELTRMX(4,J,21+T(1P4(TC(2)SPI(3,J)-TB(2) TAU(3,J))
 
GOT080
 
ELTRIX(I,J,2)=ELTRNX(1,J,2)+T(1)'(-TB(1)-PI(3,J)+TC(l)1TAU(3,J))
 
ELTk&X(2,J,2)=ELTRMX(2,J,2)+T(1)n(-TB(2)4PI(3,J)+TC(2)'TAU(3,J))
 
ELTR.MX(3,J,2)=ELTRMX(3,J,2)+T()t(-TC(1)rPI(3,J)1TB(1PTAU(3,J))
 
ELTRX(4,J,2)=ELTRmX(,J,2)T()-(-TC(2)WPI(3,J)+TB(2)PTAU(3,JI))
 
CONTINUE
 
IF( T(4) .LT. 1.D-14 GO TO 13)
 
N = .J+ I
 
DJ 9) J = 1, JX
 
PI(I, JJ = PI(2, J)
 
PI(2, J) = PI(3, J)
 
TAiJ(1, J) = TAU(2, J)
 
TAU(2, J) = TAU(3, J)
 
CONTINUE
 
F14AP = FNA
 
FNBP = FNB
 
IF (N .LE. NMX2) GO TO 65
 
WRITE(6, 9)
 
YRN = .TRUE.
 
RETURN
 
OfI2OJ=1,JX ORIGINAL PAGE IS
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T(I)=ELTRMX(I,J,K)
 

CONTINUE
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ELTRMX(2,JKj 
= T(I1JA2 + T(233,z2

ELTRMX(19PJK) = T(3)av2 + T(4)pf,2 
ELTR4X3,J,K) = T(1)' T(3) + T2)"T(4 
ELTRj4X(4,J,K) = T(2)*T(3) - T(4PT(l) 

120 	 CONTINUE 
r(i) = 2.0DO r RX--2 
'QEXT = FEXT TM) 
tSCAT = oSCAT T(1) 
CTbRQS = 2.UDO s' CTBRQS 11T1) 
,ETURN
 
END
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DIST 

FUNCTION DIST(RACA)
 
REAL*8 A(20),RAC
 
REALw'8 DISTBC
 
B=-A( 3)
 
C=RAD**A(4)
 
C=B* c
 
DIST=A(1)t(RAD**A(2))*DEXP(C)
 
RETURN
 
END
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DIST2
 

FUNCTION DIST2(RACB)
 
REAL*8 B(20)RAC
 
REALt8 DIST2,A
 
A=-(8(2[ I)
 
DISTZ=8(1)*R(2)*(RADt*A)
 
RETURN
 
END
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APPENDIX D
 

PROGRAM LISTING FOR CURFIT ROUTINE USED TO FIT THE
 
THEORETICAL SIZE DISTRIBUTIONS TO THE EMPERICAL DATA
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MAIN
 

C SUBROUTINE CURFIT
 
C
 
C MAKES 4 LEAST SQUARES FIT TO A NCN-LINEAR FUNCTION
 
C
 
C DESCRIPTICN OF PARAMETERS
 
C 	X -ARRAY OF IND. VARIABLE DATA POINTS
 
C 	Y -ARRAY OF DEP. VARIABLE DATA POINTS
 
C 	SIGMAY -ARRAY OF STANDARD DEVIATIONS FOR Y DATA POINTS
 
C 	NPTS -NUMBER GF DATA PCINTS
 
C 	NTERMS -NUMBER OF PARAMETERS
 
C 	NODE -DETERMINES kEIGHTING FOR LEAST SQUARES FIT
 
C 	 .1(INSTRUMENTAL) (I)=1./SIGMAY(I)**2
 
C 	 O(NO WEIGHTING)k(1)=I.
 
C -I(STATISTICAL) wId)=I./Y(l)
 
C A -ARRAY OF PARAMETERS
 
C DELTAA -ARRAY OF INCREMENTS FOR PARAMETERS
 
C FLAMDA -PROPORTION CF GRADIENT SEARCH INCLUDED
 
C YFIT -ARRAY OF CALCULATED VALUES OF Y
 
C CHISQR -REDUCED CHI SQUARE FOR FIT
 
C
 
C SUBPOUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 
C FUNCTN(X,I,A)
 
C EVALUATES THE FITTINC FUNCTION FOR THE ITH TERM
 
C SSP ROUTINE DSINV
 
C INVERTS CURVATUPE MATRIX
 
C
 
C COMMENTS
 
C DATA FORMAT
 
C NPTSNTERMSMOCE(315)
 
C XCI),Y(1),(SIGMAY(I)),C2C3)El2.6)
 

OIMENSION X(100)tY(IOO)SIGMAY(100),A(20),DELTAA(20),SIGMAA(201,
 
IYFIT(100),YFITI(100)
 
LOGICAL GRAD,CURGRID
 

21 	FORMAT(3L5)
 
R'EAD(5,21) GRAD,CLR,GRID
 
READ(5,1) NPTSNTERMS,MOCE
 

I FORMAT(315)
 
IF (VCOE) 2,2,4
 

2 REAO(5,3) (X(I|,Y(IhI=ltNPTS)

3 FORMAT(2Ei2.6)
 

GO TC 6
 
4 REAO(5,5) (X(I),Y(I),SIGMAY(I),I=1,NPTS)
 
5 FORMAT(3E12.6)
 
6 READ(5,7) (A(J),CELTAA(J),J=1,NTERMS) 


7 FORMAT(2E12.6) 

ISUM=O
 
CHISQI=L.0
 

14 	FLAMDA=.OO1
 

ORIGINAL PAGE 1S 
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IF(CUR) GC TO 22
 
IF(GRID) GO TO 23
 
CALL GRADLS(X,Y,SIGMAYNPTSNTERMSMCDE,ADELTAA,
 
IYFIT,CHISQR)
 
GO TO 24
 

22 CALL CUPFIT(X,Y,SIGWAY,NPTS,NTERMS,MODE,A,DELTAA,SIGMAA,FLAMDA,
 
lYFITCHISQR)
 
GO TO 24
 

23 CALL GRIDLS(X,YSIGMAYNFTS,NTERMStMODE,A,OELTAA,
 
ISIGMAAYFIT,CHISQR)
 
GO TO 24
 

24 PRINT 8t (A(J),J=ltNTERMSJ
 
8 FORMAT(' 1,E12.61
 

PRINT 9,CHISCR
 
9 FORMAT($ t,'CHISQR=t, IX,E12.6,/)
 

IF (CHISOI-CHISQR) IZ,13,12
 
12 CHISCI=CHISQR
 

ISUM=ISUftI
 
IF [ISUM-jO) 14,13,13
 

13 00 11 I=INPTS
 
II YFITI(I)=l./YFIT(I)
 

PRINT 10
 
10 FORMAT($ *tL3X,'INO.VAR.,12XIDEP.VAR.',11XIINV.DEP.VAR.',/)
 

PRINT 15,(X(I),YFIT(I),YFITI(I),I=INPTS)
 
15 FORMAT(' #,1OX,E12.6,8X,E12.6,8X,E12.6)
 

STOP
 
END
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CUR FIT
 

SUBROUTINE CURFIT(XYSIGMAVNPTSNTERMS MODEIA
 
1,DELTAAtSIGMAAFLAMCAYFITCFISQRI
 
OCUBLE PRECISION ARRAY
 
DIMENSION X(lOOh)Y(100),SIGMAY(100),A(2O},DELTAA(20),SIGMAA(20),
 
IYFIT(100),WEIGHT(100),ALPHAC2O,20),BETA(20),DERIV(20),ARRAY(20,
 

120),B(20)
 
11 NFREE=NPTS-NTERMS
 

IF (NFREE) 13,13120
 
13 CHISQR=O.
 

Gn 	TC 110 
C EVALUATE WEIGHTS 

20 DO 30 I=I,NPTS
 
21 IF (NCDE) 22,27,29
 
22 IF (Y(I)) 25,27,23
 
23 WEIGHT(I)=I./Y(I)
 

GO TO 30
 
25 WEIGHT(I)=I./(-Y(1))
 

GC TC 30
 
27 WEIGHT(I)=I.
 

GO TO 30
 
29 WEIGHT(I)=I./SIGMAY(I)**2
 
30 CONTINUE
 

C EVALUATE ALPHA AND BETA MATRICES
 
31 	DO 34 JzINTERMS
 

BETA(J)=O.
 
DO 34 K=I,J
 

34 ALPHA(JtK)O.
 
41 DO 50 I=I,NPTS
 

CALL FDERIV(X,I,A,DELTAA,NTERMSDERIV)
 
00 46 J=INTERMS
 
BETA(J)=BETA(J)+44EIGHT(I)*(Y(I)-FUNCTN(XIA))*DERIV(J)
 
DO 46 K=1,J
 

46 ALPHA(JK)=ALPHA(JK)+WEIGHT(I)hDERIV(J)PDERIV(K)
 
50 CONTINUE
 
51 DO 53 J=1,NTERMS
 

DO 53 K=1,J
 
53 ALPHA(KJ)=ALPHA(JK)
 

C EVALUATE CHISOR AT STARTING POINT
 
61 	DO 62 I=INPTS
 
62 YFIT(I)=FUNCTN(X,I,A)
 
63..CHISQI=FCHISQfYSIGMAYNPTS,NFREE,MODEYFIT)
 

C INVFRtxCURVATURE MATRIX TO FIND NEW PARAMETERS
 
71 DO74 lJ=1,NTERM'S
 

72 DO 73' K=I,NTERNS
 
73 ARRAY4JK)=ALPH(JK)/SQRT(ALPHA(JJ)*ALPHA(KK))
 
74 ARRAY(JJ)=1.+FLAMDA
 
80 CALL MATINV(ARRAY,NTERMS,1)
 
81 D 84 J=INTERMS
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B(J)=A(J)
 
00 84 K=INTERMS
 

84 B(J)=E(J)+BETA( K)*ARRAY(JK)/SQRT(ALPHA(JJ)*ALPA(K,K))
 
C IF CHI SQUARE INCREASED,IfICREASE FLAMDA 

91 DO 92 I=I,NPTS
 
92 YFIT(I)=FUNCTN(X,IB)
 
93 CHISQR=FCHISQ(YSIGMAYNPTSNFREEMODE,YFIT)
 

IF (CHISC1-CHISQR) 95,101,101
 
95 FLAMDA=10.*FLAMDA
 

GO TO 71
 
101 00 103 J=INTERMS
 
103 A(J)=B(J)
 

FLAMDA=FLAMDA/10.
 
110 RETURN
 

END
 

ORIGINAL PAGE IS 
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SUBROUTINE FDERIV(XItACELTAANTERMSDERIVJ
 
DIMENSION X(100),A(2OtDELTAA(20bDERIV(20)
 

11 	DO 18 J=ItNTERMS
 
AJ=A(J)
 
DELTA=DELTAA(J)
 
A(J)=AJ+DELTA
 
YFIT=FUNCTN(XIA)
 
A(J)=AJ-DELTA
 
DERIVLJ)=(YFIT-FUNCTN(XtIA))/(2.*DELTA
 

18 	A(J)=hJ
 
RETURN
 
END
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SUBROUTINE MATINV(ARRAYtNTEhMSMCODE) 
DOUBLE PRECISION ARRAY,B 
DIMENSICN ARRAY(20,20),B(2101 
DO 1 I=iNTERMS 
DO 1 J=1,NTERMS 
CALL LCC(I,J,IJ,NTERMS,NTERMSMCCDE) 

I 	 B(IJ)=ARRAY(I,J)
 
EPS=I.OE-16
 
CALL DSINV(B,NTERPS,EPS, IER) 
IF IERI 2,4,3 

2 PRINT 10 
10 FORMAT($ ','NO RESULT',/) 

GO TO 4 
3 PRINT 11 

II FORMAT(' ',WARNING',/) 
4 DO 5 =1,NTERMS 

DO 5 J=1,NTERMS 
CALL LOC(IJIJNTERMSNTERPS,MCCDE) 

5 ARRAY(I,J)=B(IJ) 
RETURN 
END 

ORGIAL PAGE IS
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FUNCTION FCHISQ(Y,SIGMAYNPTSNFREEMODEYFIT)
 
DIMENSION Y(100),SIGMAY(OO).,YFIT(O0)
 
SUM=O.
 
D0 5 I=1,NPTS
 
IF(MODEI 1,2,3
 

1 W=L./Y(I)
 
GO TO 4
 

2 W= .
 
GO TO 4
 

3 W=.I/(SIGMAY(I)**2)
 
4 SUM=(V(I)-YFIT(I))*(Y(I)-YFIT( I )*W
 
5 CONTINUE
 

FCHISQ=SUM/NFREE
 
RETURN
 
END
 

*"
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Cc
C SUBROUTINE OSINV 
C 

C PURPOSE 
C 
C 

INVERT A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX 

C USAGE 
C 
C 

CALL DSINV(A,N,EPS,IERI 

')LSCRIPTION OF PARAMETERS 
C A - DOUBLE PRECISION UPPER TRIANGULAR PART OF GIVEN 
C SYMMETRIC POSITIVE DEF-INITE N BY N COEFFICIENT 
C MATRIX. 
C ON RETURN A CONTAINS THE RESULTANT UPPER 
C TRIANGULAR MATRIX In DOUBLE PRECISION. 

c N - THp NUABER OF ROWS (COLUMNS) IN GIVEN MATRIX. 
C EPS - SINGLE PRECISION INPUT CONSTANT wHICH IS USED 
C AS RELATIVE TOLERANCE FOk TEST ON LOSS OF 
C SIGNIFICANCE. 

IER - RESULTING ERROR PARAMETER CUDED AS FOLLOWS 
c IER=J - NO ERROR 

IER=-I - NO RESULT BECAUSE OF WRONG INPUT PARAME-
C TER N OR BECAUSE SOME RADICAND IS NON-

C POSITIVE (MATRIX A IS NOT POSITIVE 
C DEFINITE, POSSIBLY DUE TO LOSS OF SIGNI­
c FICANCE) 
C IER=K - WARNING WHICH INDICATES LOSS OF SIGNIFI-
C CANCE. THE RAOICAND FORMED AT FACTORIZA-
C TION STEP Kl WAS STILL POSITIVE BUT NO 

C LONGER GREATER THAN ABS(EPS'A(K+1,K+1). 
C 
C REMARKS 
C THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE 
C STORED COLUMNWISE IN Nt(N+I)/2 SUCCESSIVE STORAGE LOCATIONS. 
C IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU-
C LAR MATRIX IS STORED COLUMNWISE TOO. 
C THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL 
C CALCULATED RADICANDS ARE POSITIVE. 
C 
C SUBR'IUTINES AND FUNCTION SUBPROGRAMS REwUIRED 
r DAFSD 
C 

METHOD 
C SOLUTION IS DONE USING FACTORIZATION BY SUBROUTINE DMFSD. 
C 
C . ................................................................ 

13i
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C 
SUBRUUTINE OSINV(4,NEPS, IER) 

C 
C 

DIMENSION A(210) 
DOUBLE PRECISION ADINtWORK 

C 
C FACTORIZE GIVEN MATRIX BY MEANS OF SUBROUTINE DMFSD 
C A = TRANSPOSE(T) k T 

CALL EMFSD(A,NEPSIER) 

C 
IF(IER) 9t,1, 

C INVEkT UPPER TRIANGULAR MATRIX T 
C PREPARE INVERSION-LOOP 

I IPIV=Nr(N+1)/2
IND=IPIV 

C 

C INITIALIZE INVERSION-LOOP 
DO 6 I=L,N 
1)N=I.D/A(IPIV) 
A(IPIV)=DIN 
MI N=N 
KENO=I-I 
LANF=N-KEND 
IF(KEND) 5,5,2 

2 J=IND 
C 
C INITIALIZE ROW-LOOP 

00 4 K=I,KEND 
WORK=).Oi 
MIN=MIN-I 
LHR=I'PI V 
LVER=J 

C 
C START INNER LOOP 

00 3 L=LANF,MIN 
LVER=LVER+I 
LHOR=LHOR+L 

3 'OPRK=WORK+A(LVER)'A(LHOR) 
C END OF INNER LOOP 
C 

A(J) =-WORK--DI N 
4 J=J-MIN 

C 
C 

END OF ROW-LOOP 

5 IPIV=IPIV-MIN 
6 IND=IND-l 

C END OF INVERSION-LOOP 
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DSINV 

C 
C CALCULATE INVERSECA) BY MEANS OF INVERSECT) 
C INVERSE(A) = INVERSE(TI TRANSPOSE(INVERSECT)) 
C INITIALIZE MULTIPLICATION-LOOP 

DO 8 I=IN 
IPIV=IPIV I 
J=IPIV 

C 
C INITIALIZE ROW-LOOP 

DO 8 K=I,N 
WORK=O.DO 
LHOR=J 

C 
C START INNER LOOP 

DO 7 L=K,N 
LVER=LHOR+K-I 
wORK=WORK+A(LHOR)+A(LVER) 

7 LHOR=LHOR+L 
C END OF INNER LOOP 
C 

A(J)=WORK 
8 J=J K 

C END OF ROW- AND MULTIPLICATION-LOOP 
C 

9 RETURN 
END 
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C
 
C 

C SUBROUTINE DMFSD
 
r
 

C PURPOSE
 
C FACTOR A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX
 
C
 

USAGE
 
C CALL DMFSD(AtN,EPSIER)
 
C
 
C DESCRIPTION OF PARAMETERS
 
C A - DOUBLE PRECISION UPPER TRIANGULAR PART OF GIVEN
 
c SYMMETRIC POSITIVE DEFINITE N BY N COEFFICIENT
 
C MATRIX.
 
C ON RETURN A CONTAINS THE RESULTANT UPPER
 
r 	 TRIANGULAR MATRIX IN DOUBLE PRECISION.
 
C N - THE NUMBER OF ROWS (COLUMNS) IN GIVEN MATRIX.
 
C EPS - SINGLE PRECISION INPUT CONSTANT WHICH IS USED
 
c AS RELATIVE TOLERANCE FOR TEST ON LOSS OF
 
zSIGNIFICANCE.
 
C [Ek - RESULTING ERROR PARAMETER CODED AS FOLLOWS
 
c IER=O - NG ERROR
 
C IER=-1 - NO RESULT BECAUSE OF WRONG INPUT PARAME­
c TER N OR BECAUSE SOME RADICAND IS NON-

C POSITIVE (MATRIX A IS NOT POSITIVE
 
C DEFINITE, POSSIBLY DUE TO LOSS OF SIGNI-

C 	 FICANCE)
 
C IEA=K - WARNING WHICH INDICATES LOSS OF SIGNIFI-

C CANCE. THE RADICAND FORMED AT FACTORIZA-

C TION STEP Ki WAS STILL POSITIVE BUT NO
 
C 	 LONGER GREATER THAN ABS(EPSvA(K+,K+1)).
 
C 
C REMARKS
 
C THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE
 
C STORED COLUMNWISE IN N,(N+II/2 SUCCESSIVE STORAGE LOCATIONS.
 
C IN THE SAME STORAGE LOCATIONS THE RESULTING UPP-R TRIANGU-

C LAk MATRIX IS STORED COLUMNWISE TOO.
 
C THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL
 
C CALCULATED RADICANDS ARE POSITIVE.
 
,G 	 THE PRODUCT OF RETURNED DIAGONAL TERMS IS EQUAL TO THE
 

Sk)UARE-AOOT OF THE DETERMINANT OF THE GIVEN MATRIX.
 

C 'SUB-)dTINES AND FUNCTION SUBPROGRAMS REQUIRED
 
NONE
 

C
 
C -METHOD
 
C SOLUTION IS DONE USING THE SQUARE-ROOT METHOD OF CHOLESKY.
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c THiE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TWO TRIANGULAR
 

C MATRICES, WHERE THE LEFT HAND FACTOR IS THE TRANSPOSF OF
 

C THE RETURNED RIGHT HAND FACTOR.
 
C
 
C ................................ .......... .......... ..........
 
C 

SU6RUUTINE DMFSD(A,NEPS, IER) 
C 

OIMENSIJN A(210) 
DNU3LE PRECISION DPIV,DSUM,A
 

C 
C TEST ON WRUNG INPUT PARAMETER N 

IF(N-I) 12,1,1 
I IER=O 

C INITIALIZE DIAGONAL-LOOP 
KPIV=O 
DO 11 K=I,N 
KPIV=KPIV+K
 
IND=KPIV
 
LEND=K-1
 

C
 
CALCULATE TOLERANCE
 

TOL=ABS(EPS SNGL(A4KPIV))
 

C START FACTORIZATION-LOOP OVER K-TH ROW
 

DO 11 I=K,N
 
DSUM=O.DO
 

IF(LEND) 2,4,2

C 

C START INNER LOOP
 
2 DO 3 L=I,LEND
 

LANF=KPIV-L
 
LIND=IND-L
 

3 DSUM=DSUMi-A(LANF)rA(LIND)
 
C END JF INNER LOUP
 
C 

C TRANSFORM ELEMENT A(IND)
 
q DSUM=A(IND)-DSUM
 

IF(I-K) 10,5,10
 
C 
C TEST FOA NEGATIVE PIVOT ELEMENT AND FOR LOSS OF SIGNIFICANCE
 

5 IF(SNGL(DSUM)-TOL) 6,6,9
 
6 IF(DSU4) 12,12,7
 
7 IF(IER) 3,8,9
 
8 IER=K-1
 

C
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http:DSUM=O.DO


DMFSD 

C COMPUTE PIVOT ELEMENT 
9 DPIV=DSQRT(DSUM) 

ACKPIV)=DPIV 
OPIV=I°O0/DPIV 
GO TO 11 

C 
C CALCULATE TERMS IN ROW 

10 A(IND)=DSUMDPIV 
11 IND=IND+I 

C END OF DIAGONAL-LOOP 
C 

RETURN 
12 IER=-t 

RETURN 
END 
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APPENDIX E
 

RELATIONSHIP BETWEEN EXTINCTION, SCATTERING, AND
 
ABSORPTION COEFFICIENTS AND THE MIE PARAMETERS 
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The extinction (a), scattering (s), and absorption (a) coeffi­

cients for suspended particulates can be calculated using the Mie
 

formalism. Using the Mie parameters, an(x,m) and bn(x,m) of
 

equations (3-7) the extinction coefficient is given by:
 

U = X2 (2n+l) {Re(an(xm)) + Re(bn(xm))} n(r)dr (E-l) 

where n(r) is the particle size distribution function and x = 2Trr/X.
 

The expression for the scattering coefficient is:
 

S = X2 (2n+l) {jan(xm)j 2 + Ibn(x,m) 12 } n(r)dr (E-2) 

The absorption coefficient is the difference between a and s, thus
 

a = (2n+l) {Re(an(xm)) + Re(bn(x,m)) ­

a,,(X,m) 12 _ jbn(x,m) 21 n(r) dr. (E-3) 

The haaues for a, s, and a used in the Monte Carlo routine were not 

calculatedbi',nthis way because the values explicitly depend on the 

concentration through n(r). Instead a, s, and a were chosen to 

correspond to physically observed values. 

The absorption coefficient depends on the imaginary part of
 

the index of refraction, but in a non-trivial way. If Im(m) = 0
 

then it can be shown(2 5 ) that
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a n (xm) - 12 = (E-4) 

bn(x,m) .12 = 14• 

Expanding equation (E-4) leads to 

[Re(an(x,m))] 2 - Re(an(x,m)) + [Im(an(x,m))] 2 + 4 = 

or
 

2 
 2
 
Re(a(x,m)) = [Re(an(x,m))] + [Im(an(x,m))]

= an(x,m)12 (E-5) 

with a similar result holding for bn(x,m). Using these results in
 

equation (E-3) leads to a=o. Thus if the imaginary part of the
 

index of refraction is zero the absorption coefficient is also zero.
 

(2 5 )

0 then
If Im(m) 1 

an(Xm) - 12 < (E-6) 

bn(x,m) - 2 < 

Which, after expansion, leads to 

Re(an(x,m)) > Ia (x,m)l2 (E-7) 

Re(bn(x,m)) > lb (x,m) 2, 

so that, by equation (E-3), a>o for a non-zero imaginary component
 

in the index of refraction.
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