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ABSTRACT

Development of quantitative analytical procedures for relating
the water .quality parameter to the characteristies of the back-
scattered signals, measured by a remote sensor, necessitates further
physical insight in the area of radiative transfer processes in
turbid media. The present report discusses the applications of a
Monte Carlo simulation model for radiative transfer in turbid water.
‘The model is designed to calculate the characteristics of the back-
scattered signal from an illuminated body of water as a function of
the turbidity level, and the spectral properties .0of the suspended
particulates. The optical properties of the environmental waters,
necessary for model applications, have been derived from available
experimental data and/or calculated from Mie formalism. Results of
applaications of the model, which have been implemented i1n support
of a laboratory program at NASA/Langley Research Center, are presented.
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1.0 INTRODUCTION AND CONCLUSIONS

The importance of continuous monitoring of environmental water
qualaty has long been recognized. The recent emphases placed on
such operations are due to newly gained insights (1) in the
limitations of the cleansing capability of the natural waters, (2) a
better understanding of ecological consequences of water pollutants,
and (3) availability of better information for assessing economic
impacts of wvarious stresses imposed on the water systems. Considering
the dynamic character of the environmental waters the monitoring
procedures for measuring water quality parameters should be based on
timely data collection systems, such as can be provided by applica-
tions of remote sensing technology.

Hypothetically, in a remote sensing experiment the optical
sensor measures the radiance signal which contains information on
gpectral and spatial variation of the source of radiation and the
intervening media. The received radiance 1s then '"processed"
according to an established scheme, which 1s a quantitative analytiecal
procedure, and the radiance characteristics are ultimately related
to the desired parameters,

The data interpretation techniques for remote measurement of
water quality parameters are presently in preliminary stages.
Although some attempts have been made to develop analytical
procedures for data processing, a generally accepted processing

scheme has not emerged.



Among the quantities that effect the radiance characteristics
measured by a remote sensing instrument are:
¢ Atmospheric path radiances and signal transmission effects

" . . . | .
¢ Spatial and spectral variabiality of atmospheric comstitu-
ents such as particulates and molecular species

e Sun angle
s Characteristics of alr-water interface

e Vertical non-homogenity of water bodies and bottom reflection
properties

Considering these effects and the fact that aquatic environments
change continuously with the complex interactions between wind, water
and land masses; the development of data interpretation schemes, in
support of remote sensing, necessitates field experiments and
controlled laboratory experiments as well as radiative transfer
modeling approaches. A variety of field experiments from low and
high flying aircraft and from satellite platforms have been con-
ducted, or planned for the immediate future.

A laboratory program is presently being pursued at the NASA-
Langley Research Center (LaRC). The purpose of this program is to
investigate the remote sensing of water quality parameters under
controlled conditions. During the first phase of this program,
remote sensing applications of suspended particulates (various types
of clays) have been investigated. A schematic diagram of LaRC's
experimental set-up is shown in Figure 1-1. In this experiment, the

beam of a solar simulator is deflected to illuminate a large water
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tank filled with turbid water; the water turbidity in the tank is
caused by the stepwise introduction of specific amounts of particu-
lates. An overhead detector system including a spectrometer, elec-
tronics, and a camera, measures the strengths and the characteristics
of the upwelling radiance signal.

In order to analyze the experimental results and to optimize
the experimental conditions a radiative transfer model has been
developed for the LaRC's experimental arrangement at The METREK
Division of The MITRE Corporation. The description of the modeling
approach and the results of a sensitivity study concerning the
optimized spot size to be illuminated by the solar simulator have
been reperted in two earlier documents.(l’z)

The present report deals with variations in the characteristics
of the backscattered radiance as a result of changes in the scatter-
ing function, for various waters. The scattering function represents
one of the important optical parameters of the turbid water and various
scattering functions may represent various types of turbid waters.
In Section 1.3 specific goals of the present report are described in
more detail. Before this is done however, it is necessary to
summarize some background material on (1) optical parameters of turbid
waters, and (2) on our radiative transfer modeling procedure. These

background materials are treated in Sections 1.1, and 1.2 respectively.



1.1 Optical Parameters of Turbid Water

In the absence of polarization the following parameters are
necesgsary for optical characterization of turbid water medium:

e total absorption coefficient, a.

e total scattering coefficient, s.
These coefficients have the dimension of meter-l. The attenuation
coefficient, o, is the sum of absorption and scattering coefficients,
The last parameter of interest is the scattering function, o(8).
This function specifies the angular pattern of the scattering of a
collimated beam from an infinitesimal volume of turbid water. The
scattering prebability function for polar angle, F(6), may be defined

in terms of the scattering function by the ratio:

F(8) = ./9 c(8) S8in 6 do // _/ﬂ g(B) Sin 8 dB (1-1)
o o

More information on these parameters may be found an Appendix A
of Referemnce 1.

1.2 Radiative Transfer Model

The development of METREK's radiative transfer model is based
on a two step process which 1s described in this section. The
adopted modeling procedure is geared toward handling turbid type
waters, and toward saving the computer time necessary for model
execution., The model development includes the following steps:

Step 1. The outgoing radiance distribution just above

the air-water interface, due to a narrow beam
transmission in the turbid water media is

calculated using Monte Carlo simulation tech-
niques.,



Step 2. The outgoing radiance emerging from the area
within the detector's field-of-view, and
traveling in a direction ceoincident with the
range of the .detector™s acceptance angle is
calculated using the interface radiance
distribution (Step 1) and integrating over
the incident beam area.

The advantage of this .approach as compared to comventienal
Monte -Carlo simulation approaches is ‘that the narrow beam considera-
tion @llows the production of .2 better set of statistics within
reasonable computer resources.

1.2.1 Monte Carlo Simulation for Narrow Beam Transmission

The advances in laser technology in the last decade have led to
a variety of theoretical considerations of the narrow beam trans-
mission 1n the water media. In general, the theoretwcal approaches
may be sub-divided in two categories, (1) analytical solution of the
equation of radiative transfer and (2) Monte Carilo 'simulation methods.

The Monte Carlo simulation methods avoid many of the mathematical

complexities involved in the analytical solution appreach, and for
this reason are more appropriate for calculating the narrow beam
transmission. This is even more true in calculations simulating
laboratory experiments where the experimental conditions, such as
the tank ;geometry, significantly complicate the boundary conditions
for the solution of the radiative transfer equation. Thus, the

Monte Carlo simulation method has been used in the development of



the analytical model for LaRC's experiment. A description of the
Monte Carlo simulation approach, which 1s geared toward decreasing
computer time and handling turbid rather than oceanic type waters
is given in References 1 and 2. The procedure leading to the
calculation of radiance is based on making use of the distribution
of the emerging photons generated by the Monte Carle program,
and the geometry of LaRC's experimental arrangement.(l’z)

The listing of the complete computer program, description of
the input data, output data, and instructions for analysis of the
ocutput data to arrive at the upwelling radiance, are given in

Appendix A.

1.3 Conclusions and Organization of This Report

(1,2)

In our previous reports, we have documented the results
of our modeling effort concerning the relationship between the spot
size of the incident beam and the upwelling radiance, in the LaRC's
laboratory experiment. These results, however, were based on the

(3) In the

usage of only Morrison's scattering probability function.
present work we report on the effects of various inputs of both
measured and calculated scattering probability functions.

In Sections 2 and 3 we have (1) summarized the available
information on the measurements of the scattering function, and (2)
have utilized the Mie formalism to calculate the scattering function

for polydispersed suspensions on the basis of size distribution

nmeasurements provided through the LaRC laboratory program, and



reasonable inputs for the index of refraction including ité imaginary
part. The compiled measured scattering probability functions for
natural water, cover a wide range of turbid waters and show
considerable variations. The upper and lower bounding measured for
the scattering probability functions correspond to San Diego Harbor,

(4-10)

and sea water filtered thoroughly. The scattering probability

(3)

function measured by Morrison , used in Reference (1,2) lies
between these limits, closer to the upper bound. Due to the lack
of sufficient observations no conclusions could be drawn régarding
the changes of the measured scattering functiéns with wavelength,.
The calculated results of the scattering probability functions
have been obtained for the following cases and their combingtions:
e Size distributions including large particle sizes (~100 p)

e Size distributions including a cutoff at 10 n

« Zero or 0.004 for the imaginary part of the index of
refraction

e Two wavelengths values at 500 and 600 nm
The conclusions derived from these results are:

1) Size distributions including large particles sizes
(v100 p) lead to an extremely large forward scattering
peak, which shows up as a fast rise in the scatteriig
probability function. The scattering probability
function calculated for this situation is higher than
the upper bound of the measured functions as may be
gseen by comparing Figures 3-15 and 2-8.

2) Size distributions including a cutoff at 10 y results
in the scattering probability functions which lie
between the upper and lower bounding of the measured
probability functions shown in Figure 2-8,



3) The effect of non-zero imaginary part for the index of
refraction 1s to decrease the fast rise of the scattering
probability function at small angles, and to put these
functions within the bounds of the measured data.

4} The functions calculated for wavelengths of 500 nm and
600 nm do not show significant differences.,

Based on the results and the conclusion described above three
functions were selected for the investigation of the dependence of
the upwelling radiance on the scattering function. These functions,
which have been used in the Monte Carlo simulations radiative
transfer code of Appendix A are:

e The lower bound of the measured scattering probabilaity
function

e The uvpper bound of the measured scattering probability
funetion, and

e The upper bound of the calculated scattering probabality
functions., This function has been calculated for Feldspar
seil, a zero value for the imaginary part of the index of
(w100 p). This function is higher than the upper bound
of the measured scattering functaions.

The turbidity levels treated in section 4.0 correspond to
scattering coefficients s = 6.0 and s = 12 meter_l; the wavelength
of interest is 500 nm. The maximum number of incident photoms
traced in most computer runs is 10,000, The values calculated with
the input of calculated upper bound scattering fumction 1s in good
agreement with the measured upper bound scattering function for
larger range of exit angle. However, for small range of exit angle

(< 259 degrees for s = 6.0 meter_l and < 350 for s = 12 meterul) no

statistically significant result could be drived for this function,



from the ensemble of backscattered events for 10,000 incident photons.
For this reason only the results derived from the use of measured
upper and lower scattering functions were processed further, and

form the basis of our conclusions.

The results generated for s = 6,0 and s = 12.0 meter—l are in
very good agreement as shown in Figure 4~3 (the figure-of-merit),
where the ratio of the backscattered radiances (radiance due to the
lower limit measured scattering probability function, divided by the
radiance due to the upper limit measured scattering probability
function) have been displayed as a function of the upper limit of the
exit angle. As can be seen from Figure 4-3, the influence of the
scattering probabilaity function is quite significant, but decreases
with decreasing exit angle. We expect that this trend will continue
to be true for smaller amngular ranges (such as 0 to 0.5° which
represent the acceptance angle of the LaRC's overhead detector) and,
therefore, ceonclude tﬁét the effect of varigus scattering probability
functions is not significant in the LaRC's experimental set-up.

The reason the smaller angular ranges were not examined specif-
ically in this report has been due to the constraint on computer
resources. It is recommended, therefore, that the computer program
developed 1n this report be executed for a larger number of photons
(larger than 10,000 photons comsidered in this study) to strengthen

our conelusions.
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2.0 MEASURED SCATTERING FUNCTIONS

In order to measure the complete scattering function, the scat-
terance must be observed at a number of angles between 0% and 180°.
Two types of scattering meters have been used in the past for the
measurements of the scattering functions. These are: (1) general
angle scattering meters, and (2) low angle scattering meters. The
mathematical definition of scattering function and an overview of
the scattering meters are given in Appendix B,

The instrumentation required for in-situ measurements of the
scattering functions are very sophisticated, hence only a small
number of such measurements have been performed.

Figures 2-1 and 2-2 show several in-situ measured scattering

functions covering turbid to clear water conditions. Figure 2-1

(4) (5)

coastal waters,

(7)

represents the observations made in lake water,

(6)

Pacific near-coastal water, Mediter—

(9)

Atlantic surface water,

(8)

ranean, and Saragasso Sea water.

Most of these observations
are taken between 8 = 10° and 8 = 155°, Figure 2-2 illustrates the
. . . (10) .
measurements taken by the Scripps Institution of Oceanography in
deep clear oceanic water (tongue of the ocean), near shore ocean

water (off shore of Southern California), and very turbid harbor

water (San Piego Harbor). The measurements shown in Figure 2-2 are

Iy

FICVNY . 0 .
By eg;puﬁjﬁqﬁr the entire range 005 8 < 180 . The scattering
R, e

11
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functions shown in both these figures are similar in general form.
The differences between the scattering functions are most pronounced
in the backward region above 909, and in the forward region below
100, Although the differences do reflect real variations in the
scattering functions for various areas, they may reflect the inherent
experimental difficulties as well,

The experimental difficulties become more striking when the
scattering functions are measured in-vitro. The observations taken

(10) are probably the most reliable ones. The

in-vitro by Petzold
measurements were taken to determine the effect of adding scattering
and absorbing materials imn the water. TFor this, scattering materials
(compounds of aluminum hydroxide and magnesium hydroxide}, and
absorbing materials (black dye nigrosin), were introduced into fresh
water pumped through a filter containing diatomaceous earth. The
resultant change in scattering functions as observed with the
scattering meters are presented im Figure 2-3. It is clear from
Figure 2-3 that the scattering functions are insensitive to the

absorption properties of the water.

2.1 Variation of Scattering Function with Wavelength A

Not many of the experiments either in-situ or in-vitro so far
have been performed for different wavelengths. Most of the obser-
vations are in 460 ¢ X ¢ 655 nm wavelength region. The scattering
functions presented in Figures 2-2 and 2~3 were measured at

CA

+
4

‘530 nm. Due to a lack of observations at other wavelengths for

14 LTI
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the same meters and under similar conditions (Figures 2-2 and 2-3),
it is difficult to draw any conclusions regarding the changes in
scattering functions with wavelength. However, Kullenberg has

(11) These

measured o(8) at 655 nm and 460 nm in the Sargasso Sea.
measurements are shown in Figure 2-4. The scattering function is

evidently the same at both these wavelengths, in the forward scat-
tering region of 0 £ 6 < 35°.

2.2 Scattering Probability Function F(8)

The scattering probability function, F(8), has been defined by
equation (1-1). F(8) is the ratio of power scattered into angles less
than 6 relative to the total power scattered in all directions. F(8)
is an important parameter and is a measure of forward as well as back-
ward scattering in natural enviromment waters, F(8) is the functaon
used in the Monte Carlo simulation model, as mentioned in the intro-
duction.

Figure 2-5 shows the scattering probability function obtained
by integrating the function represented in Figure 2-2, while Figure
2-6 illustrates F(8) obtained from Figure 2-3. The probability
scattering functions presented in Figure 2-6 show the effect of
adding scattering and absorbing materials in the waters. Clearly,
the addition of scattering material increases the backscattering
whereas addition of absorbing material contributes insignificant

changes to the scattering probability function.

16
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To illustrate the effect of varying wavelength on the scattering
probability function, the functions presented in Figure 2-4 were
filled in the angular range larger than 1° degree, were extrapolated
into the angular range smaller than 1° degree, and were integrated
to obtain F(8) at 655 nm and 540 nm, as shown in Figure 2-7,

Since one of the objectives of this paper is to record experi-
mentally determined upper and lower bounding scattering probability
functions, the information from Figures 2-5, 2-6, and 2-~7 are shown
collectively in Figure 2-8. The lowest bound on the scattering
probabilaty function is given by the pure water, where particulate
scattering is insignificant. Natural environmental waters are not
usually free of particulates and, therefore, eXperiments have been
performed to define their characteristics. An experiment conducted

(10)

at Scripps Institution of Oceanography examined sea water pumped
into the laboratory and measured scattering probability functions
for the water as delivered, and after several steps of filtration.
After 18 hours of filtering, low-angle foward scattering signals
have been found too low to be measurable, The results obtained from
this experiment, in addition to the scattering probability functions

(3)

obtained by Morrison at Long Island Sound stations, are included
in Figure 2-8.
The work presented in this section indicates that the San Diego

Harbor water, the most turbid water, gives the upper bound to the

experimentally determined scattering probability functiodons. The

Y
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lower bound is given by the sea water thoroughly filtered., The
scatterance characteristics of various waters considered are quite
different. Very turbid waters show very high forward scatterance.
At 1° scattering angle, the forward scattering measured in San Diego
Harbor water is almost 15 times of that measured in filtered water.
This ratio reduces to three at 10° scattering angle.

The implications of these results on remote detection of water

turbidity will be discussed in Section 4.0.
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3.0 CALCULATED SCATTERING FUNCTIONS

This section is devoted to the theoretical treatment of
scattering and absorption from suspended particulates. The Mie
theory of light scattering from a single particule is treated in
Sub-section 3.1. The extension of Mie theory to the case of
polydispersed suspensions is then discussed along with the compu-
tational methods used to calculate the scattering function, in Sub-
sections 3.2 and 3.3 (Appendix E discusses the relationships between
the Mie parameters and the extiction, scattering and absorption
coefficients), Sub-section 3.4 includes a discussion of the size
distributions and optical properties of the clay sediments
considered in the calculations. Finally, in Section 3.5 the results
of the calculation of the scattering function are presented along
with a discussion of their implications for the NASA/Langley tank
experiment.

The following discussion of the Mie theory of scattering and
the computational methods is a brief summary. For more detailed
discussions of Mie theory for single scattering, the reader is
referred to References 13, 14, and 15. Reference 16 contains a
good discussion of Mie scattering from polydispersions and reference
17 contains the details of the computational procedures and

requirements.
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3.1 Mie Theory for Single Particle Scattering

When light is incident on a particle, it undergoes both scat-
tering and absorption (we will ignore inelastic scattering processes
which result in a change in frequency). The characteristics of the
scattered radiation depend on the wavelength, A, of the incident
light, the generally complex index of refraction, m, of the particle,
and the size, r, and shape of the particle. In this report we will
restrict the discussion to spherical particles; for the treatment of
inorganic sediments in water this is probably not a serious
restriction.

If a monochromatic beam of light of 1ntensity IO is incident on
a spherical particle at an angle 8 = 0, then the scattered intensity

15 given by

2

4ﬂ2

I({x,m,8) = o(x,m,0) I0 (3-1)

Where o (x,m,0) is the single partiecle scattering function, ¢ (x,m,8)

depends in general, on the size parameter,

x = —-—2;[’-‘ (3-2)

and. the complex index of refraction, m. The calculation of ¢ (x,m,0)
requires the solution of Maxwell's equation in spherical coordinates

with a discontinuous change in the index of refraction across the
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(18)

spherical surface. This solution was originally derived by G. Mie

and independently by P. Debye(lg).

The scattering function can be written as:

U(X,m, 6) = Gl(xamge) + Uz(xam’ s) (3-3)
2
and the Mie solution is
%
Gl(x,m,e) = Sl(x,m,e) Sl {x,m,0)
(3-4)
%
oz(x,m,e) = Sz(x,m,e) 52 {(x,m,8)

Where Sl(x,m,e) and Sz(x,m,e) are the complex amplitudes for the

scattered radiation,

R
§,(x,m,8) = n§1 ﬁ%ﬁ;%% 1an(x,m)ﬂn(u)+bn(x,m)tn(u)r
L ] (3-5)
§$ Zntl b (x, +a_(x,m)T_ (1)
Sz(x,m,e) = ni éT%;I% ) n(K m)ﬁn(u) a (x,mt (Wi

In these expressions ﬂn(u) and Tn(p) are derivatives of the Legendre

polynomials:

dP_ ()
m (u) = "n
n an .
, dr_(w) (3-6)
T {w) = um (W) - (1-u) au
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(where u = cos 8). Also

b () (x) - mp_ (mx)p> (%)
po(mx)E (x) - mp (mx)E7(x)

an(x,m) =
(3-7)

mw;(mX)wn(X) - wn(mX)¢;(x)

mp” (mx) & (x) - ¢n<mx)g;(x)

bn(x,m) =

and the U's and £'s are related to the spherical Bessel functions of

the first and second kinds (jn and Y, respectively):

v () = = (2)
() = x4, 09~y () .
W () = 23 (2)n3 (2)

E(x) = x3 _,(0)-1y_ 4 (x) -n j (x)-iy_(¥)

3.2 Mie Theory for Scattering from Polydispersions

A polydispersion is a suspension of scattering particles of
uniform physical characteristics but of varying number concentration
depending on particle size, Because of the existence of different
particle sizes it makes little sense to talk of scattering from a
single particle. 1Instead, it is useful to consider the scattering
properties of a small volume element containing a number of pavticles.
The size of this volume element is of some, at least theoretical,

importance. Clearly, if it is to be used to represent the scattering
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properties of all similar volume elements then it must contain a
representative set of particle sizes - this requires that the volume
element not be too small. On the other hand, since we are consider-—
ing only single scattering from the volume element, it must not be
too large. An additional condition that must be imposed is that the
inter—-particle separation be large compared to the wavelength. The
reason for this is that the interaction of light with a particle
will be assumed independent of the interactions with all other
particles. This conditionrequires that the particle density in the
volume element not be too large. For our purposes, it will be assumed
that all of the above conditions are satisfied.

The polydispersion can be completely specified, for our purposes,
by an index of refraction m and a probability density function n(r).
The density function gives the relative concentration of each size
contained in a volume element.

The characteristics of the scattered radiation due to the volume
element can then be represented by a volume scattering function
o(m,8) in a manner analogous to Equation (3-1):

2

A
> c(m,B)IO (3-9)
4t

I(m,8) =

The scattering function can be calculated from the set of particle

scattering functions:

g(m,8) = g(x,m,8) n(r)dr (3-10)
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where
jﬁ n(r)dr = N (3-11)
o
and ¥ is the total number of particles per unit volume. In what
follows, N will be assumed to be unity since o¢(m,8) scales waith N.
The ability to represent o(m,8) as a linear superposition of the
c{(s,m,0)s is a direct consequence of our assumption that the inter-
particle separation is much greater than A.
The calculation of o{m,8) thus reduces to calculatiocns of the
individual o(s,m,6) and then integration over all sizes with the
proper weighting given by n(x).

3.3 Computational Methods

The calculation of the scattering functioms and the averaging
over size distributione was carried out on an IBM 370/148. The
program listings are reproduced in Appendix C.

In computing the sums in Equation (3-5), the major difficulty
arises in the evaluation of the an(x,m) and bn(x,m). Using the
definitions of wn’ ¢£’ gn, and E&, and the standard recurrence

relations for the Bessel functions, Equation {3-7) can be rewritten:

{i{t;_(n_m_)_ + n/ x} Re[gn ( x)] —Re [En_l (x]

am(x,no - Ah(mx) :
{T‘* + n/x} g (0 - £
(3~12)
U S M [ AT

{mAn(mX)+nIX} ER(X) - ®

1)
GINAL PAG
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Where

(3-13)

the logarithmic derivative of wn(mx), and Re denotes the real part,
The natural approach to the evaluation of Equatien (3-12) is to employ
a standard upward recurrence procedure. Unfortunately, if the
imaginary part of m, Im(m), is not zero and n is larger then the up-
ward recurrence procedure resulis in larger instabilities in the
calculation of An(mx). For this reason, the DBMIE subroutine employs
a downward recurrence procedure to calculate the An(mx)s. These
values are then stored for use in the evaluation of Equation (3-12).
Because of the large storage requirements resulting from this proce-
dure (n v 7000), and the fact that double precision is employed in
all of the calculations, a virtual machine with 512 K bytes of
storage is required for the implementation of the DBMIE and POLYMIE
routines.

While the scattering functions are computed in the DBMIE
subroutine, the average, Equation (3-10), is computed in the calling
routine POLYMIE. While analytic functions have been used for the
gize distributions, n(r), the integral has been approximated by a
summation over a discrete set of radii., Tests to determine the
effect of using a summing procedure have shown that this results in
no loss of accuracy. In addition, test runs were made to compare

the results when Ar = 0,1p (0.1 micron) and Ar = 1y were used in the
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summing procedure. The use of Ar = 1p resulted in no significant
change in the results from those cbtained using Ar = 0.1y over the
range 0 <-r < 100u. Calculations were made using Toax 100y

(Ar = 1p) and rmax = 10u (Ar = Q.1u). A discussion of the proper upper
limit for r 1s given in Section 3.4.

The amount of wirtual CPU time required for these calculations
is significant and has been a major factor in determining rmax and
Ar. As an example, the calculation of the volume scattering function
for a polydispersion with m = 1.144 - 0.0i, A =0.5u,rmax = 100u
and Ar = ly requires approximately 26 minutes of virtual CPU
time,

3.4 Propertiegs of Clay Samples

Data on four different clay samples were provided by NASA/LaRC,
Thigs data consisted of empirical size distribution curves as well ss
prief descriptions of chemical composition. The physical character-
istics of the clay are discussed in Section 3.4.1 while the size dis-

tributions are presented in Section 3.4.2,

3.4.1 Physical Characteristics of Clay Samples

Four types of clay were selected by NASA/LaRC. These were:
Feldspar, Calvert, Ball and Jordan. According to the analysis of

these clays performed by NASA/LaRC(ZO)

the compositions are:
e Feldspar - Feldspar and Quartz minerals

e Calvert and Jordan - Kaolinite and Illite

e Ball - Montmorilloite, Kaolinite and Illite
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The real refractive index and chemical components of these

minerals is shown in Table 3.1.(21)

For reasons which will be dis-
cussed in Section 3.4.2, Feldspar and Ball clay were chosen to be
included in this study.

To estimate the index of refraction of the clay samples, we
take a simple average of the indices of refraction of the components.
Thus, for both Feldspar and Ball clay, the real part of the index of

refraction is estimated as

RE (mAir) = 1,53

This, of course, is the index of refraction with respect to air and
we require the index of refraction with respect to water which can
be obtained by dividing Re(mAir) by the index of refraction of water
1.337 (for wavelengths of approximately 500 nm).

Thus

Re(m . .0 = 1.144

Estimating the imaginary part of the index of refraction 1s not
so straightforward, since direct measurements of Im{m) have not been
made. Since these min;rals have very low conductivity, it is expected
that the imaginary part of m will be quite small. The imaginary part
of m has been measured for soil aerosols and has been found to be

about .005 (with respect to air).(zz) For- this study two values for

Im{m) will be used:

0 ,Non—-absorbing
Im(mwater) - 0.005
1.337 = (0.004, Weakly-absorbing
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TABLE 3.1

CHEMICAL COMPOSITION AND INDEX OF REFRACTION
OF CLAY CONSTITUENTS

NAME CHEMLCAL COMPOSITION INDEX OF REFRACTTONM
Kaolinite A1203.28102.2H20 1.56
Illite Ky _y sAl,Si, o AL ) 0, (0H), 1.54

Montmorilloite (.5Ca,Na) 7)Al,M’n,Fe)4(51,A1)8)20(H0)4n}120 1.48

Feldspars:
Microcline 1(20.15;1203.6510'2 1.52
Andesine (CaOlNaZO)AlZOB«.ASiO2 1.55
Anthoclase (Na,K)zo.A1203.65102 1.53

34



3.4.2 Particle Size Distributions

Emperical cumulative size distributions for the four samples
were provided by NASA/LaRC and are shown in Figures 3-1, 3-2, 3-3 and
3-4., 1t is apparent from these fipures that the size distributions
for Ball, Jordan, and Calvert differ significantly from the size
distribution for Feldspar. Since it was planned that two distri-
butions would be employed, Feldspar and Ball clay were chosen.

This choice allows the investigation of the effect of radically
different size distributions.

To utilize the size dastribution information, it is necessary
to determne size distribution density functions, n(r)}, which speczfy
the relative number of particles with radius r per unit volume. If
we denote the cumulative size distribution as provided by NASA/LaRC

as N(rO) then the relationship between N(ro) and n(r) is given by:

T

Nr ) = 1- /° a(x) dr, (3-14)
]
/
or
_ a(x )
(r) = ar ° r =¥ (3-15)
Q (8]

A general curve fitting routine (See Appendix D) was used to deter-
mine the best distribution for both the Ball clay and Feldspar.
For the Feldspar sample, it was found that the data was well

represented by a modified Gamma distribution:

) 2y (3~16)
T exp {~a.,r

n(r) = a 3

1
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The parameters were determined, using a minimum mean square error

criterion, to be

a, = 2,05089
a, = 0.671066
a, = 3.58393
8, = 0.218499

A plot of this size digstribution density function is shown in Figure
3-5, while a plot of the corresponding cumulative size distrabution
function (as obtained from Equation 3-16) 1s shown in Figure 3-6. As
can be seen in Figure 3-6, the modified Gamma distribution gives a
good it to the data points obtained in the NASA/LaRC analysis.

To fit the size distribution of the Ball clay sample, Junge's
distribution model was chosen:

-—a

n(r) = a; r 2 (3-17)

with the parameters,

a .2006

1

H

a 1.624746

2

determined using the same curve fitting routine employed for Feldspar.
The size distribution density function and the cumulative size dis-
tribution function for Ball clay using Junge's distribution are shown
in Figures 3-7 and 3-8. It is apparent from Figure 3-7 that Junge's
distribution funection is not, strictly speaking, a probabilaty dis-

tribution since the integral (Equation 3-11),

5/‘ n(r) dr = N
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can not be normalized, i.e., N is infinite. However, Junge's distri-
bution has been found to accurately represent particle sizes of ocean

(23)

sediments. In addition, the lower and upper limits of integration

in Equations (3-11) and (3-10) are not set equal to zero and infanity,
in practice, allowing Equation (3-11) to be normalized.

The question of the proper upper limit for Equation (3-10) and
Equation (3-11) is of more than theoretical interest. From the
empirical size distributions provided by NASA/LaRC, it appears that
an upper limit an Equation (3-10} should be chosen as 100 microns

(um). However, as can be seen in Table 3.2(24)

the settling rate
for 100 um particles is on the order of forty seconds. Thus, the
history of the particulates in the body of water is important. If
the particulates have been allowed to settle, then the size distri-
butions determined before the particles are introduced into the water
are inappropriate. In the NASA/LaRC water tank experiment the water
is continuously mixed, thus forcing the large particles to remain in
suspension. In order to investigate the effect of settlimg, two
upper limits, 100 pm and 10 pm, were chosen for the integrals of
Equations (3-10) and (3-11). Equation (3-11) was used to properly
normalize Equation (3-10) with respect to the choice of upper limit.

3.5 Results of Computations
- J'i;’?" i

Th@‘iésuits‘of thé 'computation of the volume scattering
. L

functions (3.5.1) and the volume scattering distribution functions

KLl

(3.5.2), using the size distributions of Section 3.4, are presented
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TABLE 3.2

SETTLING VELOCITIES OF SAND AND SILT IN STILL WATER

{Source- Amer Water Works Assoc.)

[Temperature SO0OF, all particles assumed 1o have a specific gravity of 2 65]

Dhiameter of Settling Time Required to

particle Order of Size Valogity Settle 1 Foot
mmn. mm fsec

100 Graval 1,000 0 3 seconds
1.0 100 3 0 seconds
13 83
06 63
g i Coarsa Sand gg
03 32
o2 21
0.16 16
10 8 38 0 saconds
o o8 6
0 06 38
g ‘0}2 Fine Sand ; ?
003 13
0a2 Q62
0015 < 035
0010 0154 33 0 munutes
0008 0088
0 008 Q055
0 005 Silt 0 0385
0 004 00247
0 003 00138
0 002 00062
0 0015 J 00035
o 001 Bactarla 000154 55 0 hours
0 0001 Clay Particles 0 0000164 230 0 days
0 00001 Col'oidal Particies 0 Q00000154 63 0 years
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in this section. In addition to examining the effect of settling
on the calculations, the wavelength dependence of the scattering
functions are also investigated.

3.5.1 Volume Scattering Functions

The computed volume scattering functions are shown in
Figures 3.9 through 3.14.

Figures 3.9 and 3.14 display the extremely large forward scat-
tering peak which is primarily the result of including the large
(v100 pm) particulates in the size distributions. Both the Feldspar
and Ball clay phase functions show considerable difference between
the non-absorbing and absorbing cases at large angle., While it is
not evident in the figures, the forward scattering peak is larger
for the absorbing case at small but non-zero angles (BA-O.SO).

Figures 3-11 and 3-12 demonstrate the effect of cutting the size
distributions off at 10 pm instead of 100 pm. The relative size of
the forward peak is reduced and the difference between the absorbing
and non—absorbing cases at large angles is reduced. It is inter-
esting to note that, although the shape of the Feldspar and Ball
clay size distributions are very different, the upper limit on the
size appears to be much more important in terms of the difference ain
phase functions.

Figures 3-13 and 3-14 show the scattering functions computed for
A =600 nm (with a 10 ym cutoff) instead of A = 500 nm as in Figures
3-11 and 3-12. It can be seen that the phase functions are not heavily

TLTPL I IO M
f L.‘l‘: qin,f:, (]

i

47



8y
(Un-normalized)

Scattering Function

XIFIVAD 00d JO0
&1 mHVd VN0

1
1
i
1
|
=
il

1.144 - 0.0a
1.144 - lOOZ{'l

=
]

10 20 30 40 50 60 70 80 90 100 1l0 120 130 140 150 160 170 180
Angle, Degrees

, _ FIGURE 39
VOLUME SCATTERING FUNCTIONS FOR FELDSPAR (\ = 500NM)



6y

1300& 30
ﬂ? IO

TV
g1 @ov

Scattering Function

(Un-normalized)

_____ M=1.144 - 0.01
M= 1,144 -0.0041
V4
_
- -
_- \\\ //
- -——T -~ //
{ i i | ] I 1 ] |

90 100 110 120 130 140 150 1s0 170 180

Angle, Degrees

FIGURE 3-10
VOLUME SCATTERING FUNCTIONS FOR BALL CLAY (A = 500NM)



0s

Scattering Function
(Un—normalized)

1,144 - 0.01
1.144 -0.004i

|
!
I
I
I
<G 4
oo

10 200 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Angle, Degrees

FIGURE 3-11
VOLUME SCATTERING FUNCTIONS FOR FELDSPAR (10uM CUTOFF A = 500NM)



ALTTVAOD 4004 d0

SI HOVd TVNIDINO

9

Scattering Function

(Un-normalized)

1.144 - 0.01i
1.144 -0.004i

b

o

|
f
I
1
[
[

= =

non

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Angle, Degrees

FIGURE 3-12
VOLUME SCATTERING FUNCTIONS FOR BALL CLAY (10uM CUTOFF )\ = 500NM)



(49

Scattering Function

{Un-normalized)

o0

1
!
I
I
I
I

=
1

1.144 - 0.02
1.144 -0.0044

=
il

| | | [ DU I Lo t | | |
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Angle, Degrees

FIGURE 3-13
VOLUME SCATTERING FUNCTIONS FOR FELDSPAR (10uM CUTOFF A = 600NM)



£S

& mHvd TYNIDIO

Scattering Function

(Un-normalized)

1.144 - 0.0
1.144 —0.0041

1

|

1

!

!
= X
il L]

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Angle, Degrees

FIGURE 3-14
VOLUME SCATTERING FUNCTIONS FOR BALL CLAY {10uM CUTOFF X = 600NM)



wavelength dependent., In fact, it can be shown that for a uniform
size distribution and upper and lower limits of zero and infinity in
Equation (3~10), the volume scattering function will be strictly
independent of wavelength.

3.5.2 Volume Scattering Distribution Functions

While the volume scatteraing function describes the angular
dependence of scattered radiation, a more important functionm for use
with the Monte Carlo simulation dis the volume scattering distri-
bution function, F(8), defined by equation (1-1). The distribution
function gives the normalized probability that a photon is scattered
in the range 0O to 8 degrees. The volume scattering distribution
functions for the cases considered in Section 3.5 are shown in Figures
3-15 through 3-20.

It is again apparent in Figures 3-15 and 3-16 that there is a
considerable difference between the absorbing and non—~absorbing case.
The difference due to the Feldspar and Ball clay size distributions
is small.

As with the scattering functions, the use of a 10 um cutoff decreases
the difference between the absorbing and ;on—absorbing cases. In
addition, the volume scattering distribution functions are changed
consdierably when the 10 um cutoff is imposed.

Figures 3-19 and 3-20 demonstrate the small change in the
volume scattering distribution functions when the wavelength is

changed.
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4.0 DEPENDENCE OF UPWELLING RADIANCE ON SCATTERING FUNCTIION

In this section we describe our results on the dependence of the
upwelling radiance as it relates to the variations of the scattering
function, or equivalently to its integrated form the scattering pro-
bability function. Before this is done, however, we will summarize
the information on the scattering probability functions derived earlier.

In the previous two sections, we have (1) summarized the available
information on the measurements of the scattering function, and (2)
have utilized the Mie formalism to calculate the scattering function
for polydispersed suspensions on the basis of size distribution
measurements provided through the LaRC laboratory program. The
compiled measured scattering probability functions for natural water,
Figure 2-8, cover a wide range of turbid waters and show considerable
variations. The upper and lower bounding measured for the scattering
probability functions correspond to San Diego Harbor, sea water
filtered thoroughly. The scattering probability function measured
by Morrison(B), used in Referemce (1,2) lies between these limits,
cleser to the upper bound. Due to the lack of sufficient observatiomns
no conclusions could be drawn regarding the changes of the measured
scattering functions with wavelenth., The calculated results of the
scattering probability functions have been obtained for the following
cases and their combinations:

e Size distributions including large particle sizes (~100 um)

e Size distributions including a cutoff at 10 pm
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e Zero or 0.004 for the imaginary part of the index of refraction

s Two wavelengths values at 500 and 600 nm

The conclusions which may be derived from these results are:

1) 8ize distributions including large particles sizes
(~100 p) lead to an extremely large forward scattering
peak, which shows up as a fast rise in the scattering
probability function. The scattering probability
function calculated for this situation is higher than
the upper bound of the measured functions as wmay be
seen by comparing Figures 3-15 and 2-8,

2) Size distributions including a cutoff at 10 p results
in the scattering probability functions which lie
between the upper and lower bounding of the measured
probability functions shown in Figure 2-8.

3) The effect of non~zerc imaginary part for the index of
refraction is to decrease the fast vrise of the scattering
probability function at small angles, and to put these
functions within the bounds of the measured data.

4) The functions calculated for wavelengths of 500 nm and
600 nm do not show significant differences.

Based on the results and the conclusion described above three
functions were selected for the investigation of the dependence of
the ypwelling radiance on the scattering function. These functions,
which were input to the Monte Carlo simulations radiative transfer
code of Appendix A, have been designated by SCATR 1, SCATR 2, and
SCATR 3. SCATR 2 is the lower bound of the measured scattering
probability function shown in Figure 2-8, SCATR 1 is the upper bound
of the measured scattering probability function shown in Figure 2-8,
SCATR 3 is the upper bound of the calculated scattering probability
functions, and is shown in Figure 3-15. This function has been

calculated for Felspar soil, a zero value for the imaginary part of
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index of refraction, a size distribution including large particles
(100 p) at 500 om wavelength.
4.1 Results

Besaides the parameters characterizing the cross sectional radius
(1.2 meters) and the height (2.6 meters) of the LaRC cylindrical
water tank, and the reflectivity of the tank walls (3.0 percent) the
following input parameters are required for the model:

(1) Total scattering coefficient s,

(2) Total absorption coefficient a,

(3) Scattering probability funetion.
A fourth model input concerns the maximum number of photons to be
traced in each computer run.

The results presented in the remainder of this section refer to
two turbidity levels which have been simulated in the model. These
turbidity levels correspond to s = 6 meter—l, and s = 12 meterﬁl
respectively. The wavelength considered 1s 500 nm. From the
functional relationship between a/s ratio and the wavelength, reported
in Reference 1, the value of a/s for particles at 500 nm is 0.27,
Based on this value, absorption coefficients of 1.6 and 3.2 meter_l
have been calculated for s = 6 and s = 12 meter“l respectively, and
are shown in Table 4,1.

On making use of the computer code documented in Appendix A the

radiances emerging from the area within the field of view of the over-
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TABLE 4.1

OPTICAL PARAMETERS USED IN THE BACKSCATTERED
RADTANCE CALCULATIONS

TOTAL TOTAL TOTAL

WAVELENGTH SCATTERING ABSORPTION ATTENUATION
(nm) COEFFICIENT COEFFICIENT COEFFICIENT
(meter—1) (meter—1) (metexr™1)

s a o

500 60 1.6 7.6

12.0 3.2 15.2
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head detector in the LaRC's experimental arrangement,* and into the
exit angles in the range 0-10 degrees, 0-20 degrees, 0-30 degrees,
have been calculated. The results of these calculations in terms of
the backscattered radiance vs, the upper limit of the exit angle is
shown in Figures 4-1 and 4-2 for s = 6.0 and s = 12.0 meter ~. Three
scattering probability functions, namely the measured upper and

lower bounding functions have been used. The model has been executed
for 10,000 photons in each case. The wvalues calculated with the
input of calculated upper bounding scattering function is in good
agreement (the shape of the respective curves) with the measured
upper bounding scattering function for the large range of the exit
angles. For the small range of the exit angles, (< 25° degrees for

L and < 35° for s = 12 meter_l) no statistically

s = 6 meter
significant result could be derived from the ensemble of backscattered
photons for 10,000 incident photons. Tor this reason the reminder
of this report will discuss the results concerning the upper two
curves in Figure 4-1 and 4-2.

The presented results indicate that the upwelling radiance has
a strong dependence on the scattering function used. This dependence

seems to get less important with decreasing range of the exit angle.

If the same trend continues to be true for smaller than 10° angles

*An area 2.5 cm in radius in the middle of the incident spot which
15 about 30 cm in diameter (see Figure 1-1 for reference). The
incident beam impinges upon the water surface at an angle of 13.5
degrees in the air (9.0 degrees in the water).
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than 10° angles (for which no significant statistic could be derived
for 10,000 photons)#* then, at 0.5° angle which is the actual accep-
tance angle of the LaR(C's detector, the effect of various scattering
functiong will not be significant, This is displayed graphically

by the results presented in Figuré 4~3, where the ratio of the
backscattered radiances for the upper and lower bounding of the
scattering function is shown as a function of the upper limit of

the exit angle. These results will be discussed in more detail im

section 1.4,

®
20,000 photons were traced to produce the results shown in the
lower curve in Figure 4-2.
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APPENDIX A

RADTATIVE TRANSFER COMPUTER PROGRAM

In this appendix we have included two versions of our radiative
transfer code. These programs are appropriately modified versions of
the program listed in Reference 2., The modified computer codes make
it easier to incorporate any desired scattering probability function
in the model., The functions included in Code 1 of this appendix are,
the upper and the lower bounding, measured scattering probability
functions shown in Figure 2-8. These functions are represented in
the code by SCATER 1, and SCATER 2 respectively. Code 2 of thas
appendix is designed to handle the calculated scattering functions,
specifically, the code includes the upper bound of the calculated
functions shown in Figure 3-15. SCATER 3 represents this function.
The out—puts of both codes are (1) the probability weights of each
emerging photon, and (2) the angles of emergence., The sum of the
probability weights for each angular range, normalized to the number
of incident photons represents the upwelling radiances shown in

Figures 4-1 and 4-2.

PRECEDING PAGE BLANK NOT FILMED
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RADTATIVE TRANSFER COMPUTER PROGRAM

Code 1

PRECEDING PAGE BLANK NOT FILMED
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[ FaNeNel

oOM

aOOo0

25
30
35
37
24
26
27
29

31

36

38

23

10

MONTZCARLD PROGRAM WITH EQCUMENTATION.
TANK BOUNDARIES AND TOTAL PEFLECTION ARE INCLUDED.

COMMON/BLOCKL/XMAX; YMAX s ZMAX 4 X s Y3 Z s T+ CGAMALTETALFI.PI,DTRC,S,1S5.2ZP
PEAD DATA FROM THE [ATA FILF.

READ( 5,25) MA XNPHNMAX415

FORMAT(3(2X.1123)

READ{5,:3C}VETAI ,FI1

FORMAT(2(5X,F8.3))

READ(5435) XMAXy YMAX s ZMAX

FORMAT({3{5Xy F8.31})

READ(5,371)8§

FORMAT{FB8.3}

READ{5,24)A400, A500, 2600

FORMAT(3(5X4F8.3))

WRITE(&,26) MAXNPH

FORMAT('CT,"MAXINUM NC. CF PFHOTCOANS TC BE TRACED= 1',3iQ)
WRITE(6427)NMAX

FORMAT{'Q", * MAXIMUM NG. CF EVENTS FOR EACH PHCOTON= ',1I12)
WRITE(&,29)18

FORMAT('C%,* INITIAL SEEC FOR RANDCM NO. GENERATQR= %,112)
WRITE(6,3L)TETAI,FII

EORMAT(*0',* INITIAL TETA IN CEGREES= ',F8.3,* INITIAL FI IN DEGR
1EES= 1,F8.3)

WRITE(6:36)XNAX, YMAXy IMAX

FORMAT('Q', *TANK DIMENSIONS IN METERS:',' XMAX=',;F8.3,
1' YMAX=',FB.3," IM&X=',Fg,.3)

WRITE{6,:38)S

FORMAT('0', ' SCATTERING CCEFFICIENT IN IMVERSED METERS= ',F8.3)
WRITE(6,23)A400,AE0CA620

FORMAT{'0', ' ABSORPTION COEFFICIENTS AT 40C, 500, 600 NM IN INVERCSE
IMETERS:T,'  A400=",F8.3,' AS00=',F8.3,"' A6GO0=',F8.3,//////)
RNW=1.33%

RNW I3 THE REFRACTION INDEX OF WATER.

PI=3.141552654

DTRC=PI/18C.

AMAX=XMA X=S

YMAX=YMAX>S

IMAX = MA X255

TETAI=TETAI=DTRC

FII=FII*DTIRC

NPH=1

IF(N?ﬁ «GT. MAXNFHIGD T2 206Co
T e e L ORIGINAL PAGE I8
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http:ZMPlX=',F8.33
http:COtiMON/BLOCK1/XMAXYMAX,ZMAX,X,Y,Z,T,GAMA,TETAFI.PIDTRC,S,IS.ZD

la¥eRale Ryl

aEnEe!

OO0

OO0

100

150

400

MPH IS THE NO. OF PHOTONS AT A GIVIN TIME.

RECORD NO. OF PHCTONS TRACED AND TEST FOR END OF COMPUTATIONS.
INITIALTZE THE COORDINATES QF THE PHOTON ENTERING THE MEDIUM.

TETA=TETAI
FI=FI1
X=0.

¥Y=0.
1=0.,000001

DEC IDE HOW FAR PHCTCN TRAVELS BEFORE AM EVENT OCCURS.

CALL RANDNO(IS,RHCD)
T=—ALOG(RHQD?
GAMA=T

T IS THE DISTANCE IN SCATTERING LENGTH UNITS PHOTON TRAVELS TO THE

EVENT PHOTON 1§ AT.

X=X +T*SIN{TETA)*CCS(FI)
Y=Y+T#SIN(TETAI®SIN(FI)
1=2+T=CAS{TETA)

GO TO 150

NPH=NPH+1

EITHER ABSORPTION HAS OCCURED,OR PHCTOW HAS COME OUT CF WATER. THE

FORE,START A NEW PHCTCN.

GO TO 10

CONTINUE

KMIN=2

TF (Z) 400,506,500
XINT=X-Z=TAN{TETA}=COS(FI1}
YINT=Y-Z#TAN(TETAI*SIN(FI)
DINT=SQRT{XINTXx¥Z+Y INT*x=2}
DOINT=DINT/S

IF(DDINT .6T. 0.20}G0 YO 10C
IF (RNW=SIN(TETA) .GT. 1.C) GO TGO &64
TET AAR=ARSIN{RNWASIM{TETA))
IF({TETAAR GT. 1.21G0 70 1OC
XINT=XINT/S

YINT=YINT/S

DINT=DDINT
ACT=ABS(COS(TETA})
TCUT=(&BS(ZR)-ABS{Z)}/AL7
GAMA=GAMA+TCUT

GAMA=GAMA /S
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£10
420
109
838

101

O¢e O

5999

&04

2000
5000

WRITE (6,410 DINT, TETAAR

FORMAT(///+2X," DISTANCE FRON AXIS= T;F8.5,5X, "POLAR ANGL E=
WRITE (64420) FI,XINT,YINT

FORMAT (' *,'AZIM ANGLE= ", F8.5,;5X,"XINT= !',FB.5,5X,'YINT=
WRITE(6,109) GAMA

FORMAT{'0' ,'GLMS = ',E12.3)

WRITE (A, 888}

FORMAT(* ', 'NO OF EVENTS=',18)

WRITZ(&,101)NPH

FORMAT(*0', *NO. OF PHOTONS TRACED = 1,718}

CALCULATF PHOTGN PRIBASILITY WEIGHT.

CALL PH®WI(PI,GAMA,DINT+AZ00+,A5004+0600)
WRITR(£,5999)1S

FORMAT(®* RANDOM NUMBER USED ',712)
GO 1O 100

KMIN=J+1

ACT=ABS{COS{TE™ 2))
TCUT=(LBS{ZR}-ABSI(Z))/ACT
GAMA=GAMA+TCUT

TETA=PI-TETA

FI=FI+01

TF(FTI ,GF. 2.%PI}FI=f1-2.%P1I
X=XINT

Y=Y INT

L=0.0009001

CALL RaNDNO(IS, RHOD}
T=-ALOG{FHDOD )

X=X +THSIN(TETA) *COS(FI)
Y=Y+T=SIN{T-TA} SSIN(FI}
Z=7+T=CIS{TETA)

CALL PSTIW({KMIN, NMAX,J,IRTCOL}
TR{IRTCAOD .50Q. 1)G0 70 100
IS(IRTECON .EG. 2160 TO 400

G TC 100

WRITE {&,5000} 1S

FORMAT (v %, 9LAS™ RANGUM NUMBER USED=',112)
<TQP

END
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SUSROUTINE PSIW(KNMINgNMAX,J+IRTCQD)

THIS SUBROUTINE WILL BE CALLED GONLY WHEN PHCGTON IS S7TILL IN WATER
(WHEN Z>0}).

IT DETERMINES THE CGORDINATEE CF THE END POINT IN THE NON-ROTATED
SYSTEM BY =TRST ROTATING THE SYSTEM JSING ANGLES TETA AWNDC F1I.

IT GENETATES THE ROTATION MATRIX,WITH THE CONSTRAINT THAT YSTaR-
AXIS LIES IN A PLANE PARALLFL TO THE YZ-PLANE.

THE TOTATION MATRIX IS CESICNATED AS AIJ(I=1.,3,J=1,3).

COMMON/ BLOCKL/XMAXy YMAXy ZMAX XY 92+ Ty GAMA 4TETA,F14PI,DTRC551S, IR
TRTCOD=0

N0 1290 J=KMIN, NMAX
CT=COS{TFTA)
CF=COS(FI)
CT2=CT%CT

CE2=CE%CF
ST=SIN(TETA)
SF=SIN(FI}
ST2=STXST

SF2=SF*SF
SS1=CT2+SF2%3T2
SS=SQRT(SS1)
$SD=1./5$S
Al1=SQRT(1l.~CF2%5T2)
812=-SF=(F2$T2%SSD
Al3=-CT*ST=CF*SSD
A22=CT=SSN
A23=-SFa5T=5SD
A31=CF*ST

A33=CT

A32=SF=ST

ROTATION MATRIX HAS BEEN GENERATED.

SCATTERING HAS CCCUPFC.

CALL ANGELS FIP,TETAP TO DISTINGUISH FROM FILTETA

FIPyTETAP ARE DETERMINED IN SYSTEM WITH Z-AXIS PARALLEL TO THE
INCIDENT DIRECTICN.

CALL RANDNO{IS,RHCF)
FIP=2,%PI*RHOF

CALL RANDNO{IS,RHCT}
CALL SCATF1(RHOT,TETA)
TETA=TETA=DTRC
TETAP=TETA

DETERVINZ HOW FAR BEFCRE AN EVENT OCCURS,IN THE ROTATED SYSTEM.
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CALL RANDNO(IS,rhOD)
T=—ALOG (RHOD)

CALCULA™E COOQRDINATES OF END POINT IN THE ROTATED SYSTEM.

XSTAR=T#SIN(TETAF)=CCS(FIP)
YSTAR=T®SIN{ TETAP}TSIN(FIP)
ISTAR=T=COS{TET AP)

APPLY ROTATIGN MATRIX TO DETERMINE THE COCROINATES OF THE END
POINT IN A SYSTEM PARALLEL TG THE ORIGINAL ONE BUT DBISPLACED.

XR=A11=XSTAR+A31%*IS5TAR
YR=AL2%XSTAR+AZ2*XYSTAR+AZ2=LSTAR
IR=A13*XSTAR+A23*YSTAR+A33* I5TAR

CALCULATE TETA,ANC FI IN THE PRESENT SYSTEM,WHICH IS PARALLEL TC

OO0 M

o000

THE ORIGINAL ONE.

FI=ATAN(ABS(YR) /ABS({XR))
I {XR .1.T. J.0)GC TO 133
1= (YR) 333,333,633
FI=2.=PI-FI

G0 TO 533

FI=F1I

GO0 TQO 533

IF (YR) 233,233,433
FI1=FI+P1

GO TO 533

FI=pI-¥1

CONTTNUE

XRZ =XR¥ XR

YR2=YREYR

IRZ2=7R%ZR

DT=XR2+YR2+ZR2
SQNT=SQART(DT)

TETA=ARCCS{ ZR/SQCT)

CALCULATE X,Y,Z OF THE END
THE ORIGINAL AXTS.

X=X+XR

Y=Y +YR

X2=X%X

Y2=Y®Y
DIS2=X2+Y2
XMAX2=XMAXEXMAX
YMAX2=YMAXE YMAX

PCINT OF TFHE PHOTON WITH RESPECT TO
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700
702

QOO

704

701
1250
100

400
500

DIMAXZ2=XMAX2+YMAX2

IF(DIS2 .GE. DIMAX2YGO TO 100
I=L+IR

IF {Z) 400,400,700
IF(ZIMAX-2)702,7C2,701
X=X-{Z-ZMAXI+*TAN(TETAIRCAS(FD)
Y=Y~ (Z-ZMAX) *TANITETA}=SIN(FI}
ACT=ABS(CCOS(TETA))
TT=T-{Z-ZMAX}/ACT

Z=2MAX

CALL RANDND(IS,RHOB)
IF{RHOB~-0.03)704,704%,100

CHECK THRFE PERCENT REFLECTION

CALL RANDNG{IS,RHCBT)
TETA=0.5*PI*RHOBT+0Q«5#%P1
CALL RANDNO{IS,RHOBF)
FI1=2.*%PI*RHOBF

CALL RANDNO(IS,RHCDI)
T=—ALOG(RHOD)
X=X+T=SIN{TETA)*COS(F1)
Y=Y+T#SIN{TETA)*SIN(FI)
L=ZMAX+T*COS (TETR)
T=T+TT

GAMA= GAMA+T

CONTINUE

IRTCOD=1

GO0 TO 500

IRTCOD=2

RETURN

END
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SUBROUTINE PHPW{PI,GAMA,DINTA400,A500,A600)

THIS SUBROUTINE CALCULATES THE PHOTON PRGBABILITY WEIGHT

WAVELENGTHS »

TIR=0.0254%

TIRZ=TIR*TIR

CK=PI*TIRZ2

R=0015

WRITE{ 64+860}R

FORMAT {101, '3EAM RADIUS IN METERS= ',F8.3)
RZ2=R*R

DINT2=DINT*DINT
XINT=(R2-TIRZ24DINTZ2}/(2.%DINT)
XINT2=XINT=XINT

YINT=SQRT(ABS(RZ2-XINT2))
GCLI=ATAN(YINT/XINT)
GC2=ATAN(YINT/({DINT-XINT]}
GC3=PI-ATAN{YINT/(ABS{XINT-CINT)}}]
AAA=GCL*RZ2+GC2¢¥TIR2-DINT=YINT
BBB=GC1l%R2+GC3*TIRZ-DINT~YINT

BIR=R+TIR

CIR=R-TIR

IF(DINT .GE. IR  .AND. DINT JLT. RIAREA=EBB
IF{DINT +GE. R +AND« DINT .LT. BIRIAREA=AAA
IF{DINT .GE. BIR)AREA=OD.
ES500=EX2{-GAMA*AS500)

PHOTON PROBABILITY WEIGHTS FOR 500 MM.

PPW500=ARFA~ES00
WRITE{ 6,861 ) PPWS00

FORMAT(*0%, "PHOTON PROB. WT. FOP 500 NM= *,F10.8)

RETURN
END
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SUBROUTINE RANDNCI(IX,RNUM)
THIS SUBROUTINE GENERATES UNIFCRM RANDOM NUMBERS BETWEEN C AMD 1.

IY=IX®£5539

IF(IY) 5,6,6
I¥Y=IY+2157483647+1
RNUM=TY
RNUM=RNUM* ,4£56 61355
IX=1Y

RETURN

END
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SUBROUTINE SCATRI(RHOT,TETA)

THIS SUBROUTINE DETFRMINES AMGLE 'THETA' FROM A GIVEN SCATTERING
FUNCTION C(UPPEP BCUNC).

IF(RHOT .LE. .15G)G0 7O 1
IF{RHO™ .LE. .200)GC TO 2
TF(RHOT .LE. .225)G0 TO 3
TF(RHCT LE. .250)G0 TG 4
IF{RHAT LFe +275)GC TO0 5
IF(RHOT LLEe« 300360 T3 6
IF{RHOT .LE. .32Q0)G60C TQ 7
IF(RHOT «.LE« «345)G0 TO &
IF(RHOT JLLE. 360)GC 70 9
IF(RHOT oLE. 385)G0 TO L0
IF(RHET +.iE. .480)G0 7O 1%
IF(RHOT .LE. «550:G0 70 12
TF{RHOT .LF. .600)GGC TO 13
FF{RHOT .LE. .655}G0 T8 14
TF{RHCT L(LE. .6851G0 TJ 15
IF{RHCT .LE. .715}G0 TO la
FF(RHOT .LE. .730)G60 TO 17
IF{RHOT .LE. T7E5IGQ "0 18
IF(RHOT LE. .800)'G60 TO 19
TE(RMCT ,LE. .830)GC TQ 20
ITF(RHET «LE. .890)G0 7O 21
IF(RHCT +LE. «9121GC 70 22
IF(RHOT .LE. .935)69 TQ 23
IFCRHOT JLE. «945)G3 TO 24
TF(RHOT LE. «92601G0O 10 25

IF(RHOT .LE_. 19‘67')60 TD 26_

IF(RHOT .LE. .974)G0O TO 27

IF¢RHOT L LE. .981)GC TQ 28

TE{RHOT .LE. .988)G0 T 29

IF(RHCT .LE. .9941G0 TO 30

IF{RHOT .LE. 1.00)G0 7O 31

TETA=C.L

GO Ta 50

TETA=,10+ (RHOT-.15)%{.20-.10}/ (0.20-.,k5)
GO 70 50
TETA=.20+(RHDT- 22015 (302007 (.225-.20}
GO TO 50
TEPA=.30+{(RR0OT-.225)%{.40-.30}/(.250~.225)
GO 7O 50

TETA=+40+{RHCT-+250)=(.50-.40) /{.275-.2501}
GO TO 50
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http:TETA=.20+(RHOT-.20),'(,.30-.20)/(,.225-.20
http:TETA=.0+(RHOT-.15)*(.20-.i0),/(.20

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

TETA=50+H{ RHOT=~.275)}% (. 6C- 50} /{.300-.275})
GO TO 50
TETA=.60+({RHOT~.300)% (. 7C~. 60}/ (.320~.300)
GO TO 50
TETA=eTCH(PHOT=a320)» (.80~ 701 / {4 345-,320)
G0 TO 50

TETA=.80+{ RHOT-+3451%(.90-.80)/({.360-.345)
GO TO E0

TETA=.90+(RHOT-.360)}=(1.0-.90)/ (.385-.360)
GO TO 50
TETA=1.0+(RHOT-.385)%{2.-1.3/(.480~-.385)

GO T4 50

TETA=2 .0+(RHUT‘.4‘80)*(30_2¢ )/‘ -550_-480’

GO TO 5Q

TETA=3 .0+(RHOT= 550 )% {4+-3,1/{.600-.550)

GO 7O 50

TETA=4. 0+ (RHOT-.600)%(5.-4.)/{ .655~.600)

GO 70 50
TETA=5.0+{RHOT~,055)%(6.-5.)/(.685-.655)

GO TO 50
TETA=6.0+(RHOT-.685)}%(7.~6.1/{.T15-.685)

GO TO 50
TETA=T.0+(RHOT~.T15)>(8.-T}/{ .730-.715)

G0 TO 50

TETA=8 -O+(RHDT--730)*(9-_8¢,/( -755"-730)

GO T2 50

TETA=GS 0+ (RHOT~+755312{10.-9.)/( +800~.755}
GO TO 58
TETA=10.0+(RHOT-.800)1%(15.-10.)/(.830-.300)
GO T4 50
TETA=15.0+(RHOT-.830}*(20.-15.)/(+890=.820
G0 TO 50
TETA=20.0+{RHOT-+890)*({25.-28.1/(.918-.890)
GO 70 50
TETA=25.0+(RHOT-,518)%(30,-25.,}/({.935~,918)
GO TO 50
TETA=30.0+(RHOT-.935)*(35.-30.)/(.945-,935)
GO TO 50
TETA=35.0+(RHOT-.%45)%(40.-35.)/{.9€C~.945)
60 TO 50
TETA=40.0+(RHOT-.%00)%{45.-40.)/(.967—-.960)
GO TO 50

TETA=45 .0+ (RHOT-.967)#(50.-45.)/{.974-.G671}
GO TO 50

TETA=50 0+{RHOT~,974)%{60.-50.)/(.931-.974%)
GO TO 58
TETA=60.0+({RHOT-.981)%{70.—-&0.}/(.988-.581}
GO TO 50
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http:TETA=.50

30

31
50

TETA=70.0+(RHOT~+588)%{80.~70)/(.994~.988)
GO TO 50

TETA=80.0+{RHOT-.994)*%(180.-80.1/(1.00-+994)
RETURN

END
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SUBROUT INE SCATR2(RHOT,TETA)

THIS SUBROUTINE CETFRMINES ANGLE *'THETA* FROM A GIVEN SCATTERING
FUNCTION (LOWER BOUND}.

IF{RHO™ .LE. .000}GC TO
IF(RHOT .LE. .010)G0 TO
TF(RHOT JLE. .01l4)GO TO
ITF{RHCT (LE. ,018)G6C TO
IF{RHOT .LE. .022}G0 TO
IF(RHOY .iE. .02&1GC TO
IF(RHOT «LE«. 0313G0O TO
TE(RHLCT .LE. .034)GC TO
IF(RHOT .LE. .040)GO TO
IF(RHOT JLE. .0€0)GC TO 10
IF{RHOT .LE. .050)G0O T0 11
TF(RHOT LLE. .1201}G0 TO 12
IF{RHOT LtE. .15C}GO TO 13
IF(RHCT «LE. .175}GC TO 14
IF(RHOT «.LE. .200)GGC TO 15
IF(RHOT JLE. .220)G0 TD 16
I¥{RHOT .LE. .250)GC TO 17
IF(RHOT LLE. .2801G0 TO 18
IF{RHOT .LF. .380)G0 TO 19
IF(RHOT .LE. .530:60 TO 20
IF(RHOT .LF. .580)G0 19 21
IF{RHOT .LE. 5635160 T0O 22
IF(RHOT .LE. .665)G0 7O 23
IF({RHOT .LEs .7COIGO T2 24
IF(RHCT JLE. .740)GC TO 25
IF(RHOT .LE. 750060 TO 26
IF(RHOT .LE. .770)}G0O TO 27
IF{RHOT .LE. .780)G0 70O 28
IF{RHOT .LE. .800)GO TO 29
IF{RHOT .LE. .833)G0 TO 30
IF{RHOT .lLE. .860})G0 TO 31
IF(RHOT .LE. .883)G0 7O 32
TF(RHOT «LE. 250160 7O 33
IF(RHOT JLE. .970}G0 70 34
IF(RHOT .LE. .980)G0 7O 35
IF(RHOT .LE. .99Q)GC TO 36
IF(RHOY LLE. .9951G0 79 37
IF{RHOT .LE. 1.000}GO TO 38

1 TETA=0.2
GO TO 50

2 TETA=.20+{RHCT-.000)*(.30-,20]/(.010-.000)

W Wm BN
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10
11
iz
13
14
15
lé
17
18
19
20
21
22
23
24
25

2¢&

GO TO 50
TETA=.30+(RHOT-.010)%(440-.30)7/(.014-.010)
GO0 TG 50
TETA=.40+(RHGT~.014)*(.50~.40)/(.018-.014}
GO TO 50
TETA=.50+(RHDT~.018)1%(.6C-.50}/(.022-.018)
GO TO 50
TETA=.,60+{RHAT-.022)1%(.77-,60)/(.026~-.022)
GO 70 50
TETA=.70+{RHO0T-.026)%{.80-.70}/(.031-.026)
GO TO 50
TETA=480+{RHOT- <031 1% (90~ 83) /{ «0354-.031)
GO TO 50

TETA= S0 +(RHOT-03401%(1a0-490) /{ «040—-+034)
G2 TO 50

TETA=1.0+(RHOT-.040)/{.0&0-.0%0)

G0 TO 50

TETA=2.0+{RHOT-+C60Y /(. 050-.060)

GO T0 50

TETA=3.0+(RHCT-40S0) /(. 120~ 4050}

GO TO 50

TETA=4.0+(RHCT-.120) /(. 150~.120)

GO 7€ 50

TETA=5,0+(RACGT-.150} /(. 175-.150}

GO TO 50

TETA=£.0+(RHCT-.1751/1.200-.175)

GO 7O Fo

TETA=T.0+(RHOT-.200)/{.220~.20C)

GO TO 50

TETA=8-0+( RHOT—-.2201)/ {0250_-220)

GO TO 50

TETA=G.0+{RHOT-.250)/({.280-.250)

GC TO 50
TETA=10.0+{RHOT-,280)%5,./(.380~.280)

GD 70 50
TETA=15.0+(RHOT-.380}%5./{.530-.330)

G0 70 59

TETA=20 .0+(RHAOT-.530145./{ . 580-.530)

GO T0 59
TETA=25.0+(RHOT-+.5801%3. /(4 &35~.580)

GO TC 50
TETA=50.0+(RHGT-.635)55. /[ « £65- 4 £35)

GO TO 50
TETA=35.0+{RHOT~,£65)%5. /(. 700~ .665)

GO TO 50
TETA=40.0+(RHOT-.700}=5./(.740-.700)

GO T4 50

TETA=45 . C+{RHDT-.T740}*5 . /(. 750-.T40}
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http:TETA=.90-+(DHOT-.034)*(I.O-.90

27
28
29
30
31
32
33
34
35
36
37

38
50

GO 7O 50
TETA=50.0+(RHOT-.7501%5./(.770~-.750)
GO TO =0
TETA=55.0+{RHOT~«770)*5./(.780-.770)
GO 70 50
TETA=60.0+(RHOT-.780)#10./( .80G-.780)
GO 70 50 -

TETA=70 «0+{RHOT-+800)%104/( 4833~ 800}
GO TO 50

TETA=80 «0+(RHOT ~+833)*%10./{ «860~+833)
GO TO 50
TETA=S0.0+(RHOT-.860)%10./(.885-.860)
GO 70 50

TETA=100.+{RHOT-.885)*%10./( +550~-.885)
GO TO 50
TETA=110+{RHOT-.950}%104/(.970~.950])
GO TO 50
TETA=120.+{RHOT-.970}%10./(.980=.970}
GO TO 50
TETA=130.+(RHOT~.980)*%20./(.990-.980)
G0 TO 50
TETA=150.+(RHOT =990} %154/ (.995~-.990 )
GO TO 50
TETA=165.+(RHOT-.995}%15./{1.00-.995)
RETURN

END

87



RADIATIVE TRANSTER COMPUTER PROGRAM

Code 2

PRECEDING RAGE BLANK NOT FILMED
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W) Lol e ]

e

[

[of]

—

T uTeCuad by Prudpr bt wl T 20CUMCRTATI O,
Ta K B eAnT RS AnD TUTAL kegFLECTI™ME £« IwDLUDL .

TN DL OCKLFAMAX )Y AKX s 2 1AR ) X Y r Z T dl AgTET oy P02 1hsV oy 29 L ay s

LAL-8 vaLu
< BT/ ST ADAT A ALGL(B0) s VALU(SED)

AL IUTA P SLATT=RINS FUICTION,

MY 1=1,34
RN, LY PALSL{T ) VALUCT )
11l R AT {F Ll ety Floan)
YT s Tl

AF A JAT,. FROP THE INBUT MFITUN LATY RILL.

Friaul{ g2 2)MAYXIPH  dAX, T3
25 Fld 1aT{s{2X,112)}
FLAD(D,30)}TETALLFIL]
33 FIPAnT(2(5X:F8.3))
NEADLD, 3D XA, YMAXy IMAX
15 FIRMAT(3E5XsFd.3 1))
E3ala, 5715
37 T 134T IFs.3)
SEF {9241 L400,05 1Dya063C
24 filR“-\T(_f‘erfr'ﬁ-?’,’
RITZ(Gy20) AL XN

O FORMAT{ 3%y TeiXTdyny 1de JF 2HITONUS Tu sz Te="nu= 'yi )
an IT5 (5,2 7) 314y

1 FO="aT{"O g ianl 1l wid. B VENTS Fioe Ta PRl 2= 'yiii)
~IT=E{L5s22)15

24 Tl ATEIDY,VINTTIAL SCE% Fov wiNICH 40, GSEaaT 0= ¢, 115}
wWhIT#{o, 2L)ITETALE,FI1

310 FORAT{Yuf ' I TTIAL TETN IM UESREES= 4,E3,3,0 THTIL FI T ow-

1575= ’yrdo:’}’
SRITRL 3y 30 XHAL Y 1A K 214K

To b AT {3y VT and LI035 10 15 T 95T
l' Y‘.Z‘.)(:‘,fﬁ..’u,' 7_"-\"\:.!‘:603,
RITZ{%,:2315

23 FuR o TUV2V ' SCATTIARING CAO-FFICIENT IN INVIwsFU «_Te~vS= 1, Fe .z}
WITT(q0 22004305 4000, 2600

23 POSHATCY SRS ke T PITIESUFFIELENTS, AT 400, $3)y o)) B D4 1S, -,
L' Tro33t et aadd=t s F8.3,7  ABOU=",FB.3,1 AGUJI=S ", huala 7277 )
“iw=1l.334

v, AVIAST 7 3.

[l

Fyvod 15 ToD i F<ACTION INDEX OF WATFR,

0 R QUALITY



OO

S dE i ey

Y Y OY

e NeNele

&
Lo

21=3,141592654

JTRC=PI /154,

AIAX=XHAX 5

YHAX=YMAX-5

{AAX=Z248X" 5

TETLI=TZTALI -DTRC

FII=FI1"OTFC

iPH=1

FROMPH o067, Mak'PHIGU TGO 2000

PHOIS THL M7, JF PHUTONS AT A GIVEN TIME.
FECIRD saae F PHOTINS TRACED AND TFST FOR END Cr L aPuTaTidvio,
TWITIALIZE THE COMRODIATES OF THE PHOTON ETEri., 747 aldiu-.

ToT4=TETAL
fI=F11
X=0,

¥Y=3J.
I=3.,0u00M1

S0 Tue ok BFAk PHITUN T<AVZLS BEFIRE 3 SV 0T wLitfes.,

SALL RANDNU{TS4RHOD)
T=—aLu3 (wHID} -
vhila =T

T IS Toik TISTANCE Fry SCATTEATG LELGTH ONITS PH_OTO Y TRAVELS 77 712
FVENT P JTOy I3 AT,

XK=X#T SEm{TFT A} CIS(FI)
V=Y+T«SIN{TzTA}* SIN(FI)
Z=L+TCud3(TETA)

0J TU 159

NPH=PH+1

ITA=R ASSUAPTLION HAS SCIURED, 'R PraTH ) HAL COV: oJT 77 ualle. 17
FARS, STAPT A nwEW PrldTIN,

3T 19

CONTINUZ

=2

IF (7)1 =UJd45303,50

RINT=X—Z TAV(TrTa) CISUFI)
YINT=Y=Z* TAN{TETA)-SIN{FT)
DINT=SWUaT (XIHNT - 2+YINT- 2
DDINT=DINT/S

TF{UIINT WGT. J.22¥GJ T3 1))

? AGE )

oAb
og{}%ooa QoA

91



131

My

D3

&H3 )4

5400

2J9)
5313

tF (w2 STTHTRETA) GT. 1.0) G2 TO LLS
TeTAAR=ARSIN{RNV IS INITETA N
IF(TETAAKR 46T L.0IGOD Tir 100
XENT=XINT/S

YINT=YINT/S

SINT=D01 0T
FLT=A8S(CGS(TETA))

TCUT = (AnS (LR =ABS(ZH/ACT

wah ‘1h:\;1\'. “ +TC UT

SAMA=LATAL S

RITE (5,410} DINT,TETAAR

CURMAT (/774 2%V OISTANCE FRUY SAIS= 0, FSuby 3Xy "B MLy 5 L7 =

AT (oy420) FTZXINT YINT

FORMAT (0 3,7 721 1 AlGLE=s '3 F 8.5+ 54 AT T=
AnTTL (5, 109) oAlA

FORMAT(' 1,155 = 1, E12.31)

WwIT, {6y 030

FAIRMAT(Y .00 JF £VzalfsS=t,1{3)

RFIT={oy LIL)IPH

rOr ANT{P Yyt ) OF PHATO I TrACEu = 1,143)

CALCULATE PHOTGH 2xBpA3ILITY WEIGHT .

VILL PHPWIPI 3494, NINTya400y 2200, A620)
ShITF(0, 5999} .5

FOAAT (Y Bl 2JUApER 1SED teIled
G4 T 1))

KT M=+

WLCT=A8S(ZC3(TET A
TCUT={ApS(ZRI=A35(£))/0CT
SAMA=GAT1A+TCUT

TETA=PI-TZTL

Fl=sF1+P]

IFIFI o5ne 2. PLIFI=FI-2.*P]
X=X117

Y=Y 117

£=0.332091

CALL RAONU{ISy kHUD}
T==AlJdu{AHID}

X=X+T=SI W {TETAY CIS(FI}

Y=Y T =SIp{TcTA) SIN(FI)
E=Z+T~COS(TET A)

CALL PSTWIKNIN,NIAX,J,IRTCOD)
IF{IATCUID LJEQe 16U T 132
IF{IRTCUN ,ile 2)1GO T3 «00
GuU Ta 1))

A ITFE (L,5000) IS

"yF o3 SAy YL 1T

FARMAT % '3 ' LaST nANOUM NUMBER USED=',112}

92
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sTap
END
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SUeROUTINE PST 1 {K 1INy NHMAXyd s IFTCUL)

ThI > SURRIUTING WILL 3E CALLED ONLY wrlEN PHOTCMN Is> >TiLe [ ¢ TH#F
(JHEN 7>1)).
IT DETERSAINES THE COJSADINATES 2F THE &nvg POINT Iy THLD L 14—-oT.771

SYSTEM 3Y FIaST ROTATING THT SYSTEM USINWNG A2NGLES TcTA 4 FIL.,

[T G WTTATES THE SOTATION HATRIXyWITH THE CONSTRAINT THLT ¢STA--—
AXI5 LIFS IN & PLANEZ PARALLEL TN THE YI-PLANE.

THE TATATIOM “ATATX IS DESIGNATED AS Al J{I=1,3,)=1,3}.

<EAL-8 vALU
COMMUN/SC ADAT/a6d6L{53),VALU(SD)
COMUMON/ AL JCKL/X 1AXyYMAX , ZMAX X 3Y 3247 'bh“A,TETA'rI, PlelTel sy IS5,y
TRTLSD=)

71 1230 J=Khl.aeeimAX
CT=LRS(TETA)
CF=COS5(FrT)

LT2=CT+{T

_F2=CF {r
ST=SIN{TRTA)
F=SIn(FL)

ST2=3T+57

»F2=SF ' 5F
331=LT2+5F2° 572
§5=54RT{551}
$5D=1./55

Al 1=5QRT(1l.-CF2 5T72)
AL2=-5F CFvsT2 $50
313=—-C7-57 CLF 55D
\22=CT*5%D

A23=-5F ST7-53D
AS1=0F ST

A3 3=7T

132=3F ST

SOTATION LATKIX rAS BECN GENERATED,
SCATTERING H&S DCTUTED.

CALL AMGELS FIP,TETAP TJ JISTINGUISA FROF Fi,TETA

FIP,TCTAP A7 DETERMINED I8 SYsTéM wiTH Z-oxIS$ PanALLel T3 ThE
ICIVENT QTFECTION.

CALL RAMNDNG(]I SewHNF)
FIP=2,PI.:RHADF

CALL RAVONU(IS,RHUT)
Lall SCAT#F3(RH3T,TETA)
TerTa=TeTaoTrE
TLTAP=TET A

PRECEDING. PAGE BLANK NOT FTLMED
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C-7

OETERT 4T HOW FAR BEFORE AN EVET OCLURS,IN THE TT.T-D S¥sT: .

[ Y

CALL RANUNJITS, w1430
T=—-4ALJG(FHDD)

C CALCULATL COLRDINATES 0OF END PYINT 1K Tdk =LTaTZD SYST. ™.
C
ASTarR=T SIN{T-TAP)} CAS{FIP)
YSTA=T >IN(TETAP)-SIN(FIPI
ISTin=T LOS{T_ TAP)
C
r APPLY RATATIM! AaTRIX TU DETFRMIANE Thi COMWIINATIS Ir Tuib Ted
< POT T IN A SYSTEM PARALLEL T3 THE OFIGLHAL il AUT JISPLACT ).
AR=A1YE ASTabk+AR1 /I5TAR
YR=a12 X3TArR+#A2Z2+YSTAR+AIZ2IS5TARA
In=A13A5TAx+A2242YSTAR+AZ 3 Z5TAX
L
w CALOCULATS TETA,AND FI IN THE P2ZSENT SYSTE4ywHICH 15 Pakaloil TC
. TAE JRIGIHAL Tiz.
g

FI=ATAN{ABS{Y~)/ABS{XR])})
IF (X3 LTe J.0162 7O 133
IF (YR] 333,333,633
353 Fl=2.'PI-F1I
33 TC 533
533 Fi=fF1
30 TO 533
133 IF (YR}i 233,233.+4433
233 FI=FI+PI
GO T2 533
4533 FIi=PI-FI
535 CAONTINUE
XRZ2=AR* A '
YRZ=YRT YR
IR2=7IR"ZR
NT=AI2¥YR2+232
SUDT=8 )T (DT}
TETA=ARC IS{ZR/500T)

CALCJULATE X,Y,2 JF THE END POINT 05 THZ PHASTON wWITH PESPICT Tu
THE 3JRIGINal AXIS.

[ IS I T

A=A+4L%
Y=Y+YR
A2=K+ X
Y2=Y'Y
DIS2=X2+Y2

ORIGINAL PAGE I3
OF POOR QUALITY

95



729
702

CF ™)

73

7)1
1290
123

43)
500

XUMAX2=XNAXMXMAX
YMAXZ2=YMAX>YMAX
DIMAXZ=XHAXZ2+YMAX2Z

IF{2152 .GE. DIMAX2)GO TO 100
I=7+7R

IF {2} 290,400,700
[F{ZMAX—Z1TI2 4 TQ24701

XK= X={ 228X} 2 TAN(TETA)=CIS(FT)
Y=Y~ (Z2-LAAX)+* TANITETA) #STh{F 1)
ACT=ARS(COS{TETA})
TT=T-(Z~ZmAX )/ ACT

L=1MAX

CALL RANUNOI(IS sRHUB}
IF{RHCB-0.03) 704,704+ 100

CHECK THPEE 2ERCENT REFLECTIO WITH UNIFDMIY

CALL RANDNO{IS+«RHJIBTI
TETA=0.5 PI-RHIBT+0.5+P1
CALL RANING(IS,RHOBF)
FI=2,~P1=KHQBF

CALL RANLNCL{IS,RHID!
=—ALJs (RHOD)

X=X+T SIN{TETA)«COS{FI}
Y=sY+T<S5IN{TeTA) - SINIFI}
Z=ZMAX+T CT5(TeTA)
T=T+TT

SAAA=GANA+T

CTONTINUE

IFTC30=1

0 T3 5409

IKTC D=2

RETURN

FHD
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Lo B uFins B B I ¥

1)
20

SUBRUUTINE SCATRI(AHOT,TETAL

THIS SULKCUTINE DETERMINES ANGLE 'THeTA' FRUM A GIVEN {ALPLIOY
CALCULATED FROM MIE THELRY) SCATTERING FUNCT IO,

XEAL 3 VALU

COMMEN/SCADAT/ AGLI5D) , VALU(54)

M L) I=1,33

IF (RHOT LGE. VALUCI)  WAND.  “HOT WLE. VALUCT+11)of Tu 2D
COMT INUE

TETA=ANSL{T )+ (ANGLUT+L)=ANGLLT)) < (RHUT=VALU (1) }/ (vALJC T+ 1)~
1VALULT))

RETURN

Eny
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e NeNaNe]

Cry Oy

340

d61

SUBRCUTIENE PHPW (P nGAMADINT,y 4400, A530, A60U))

THIS SU3RAUTINE CALCULATES THe "PHOTOw -PROBAITILITY

WAVMEL ENGTHS.

TI8=0,32%%
TIR2=TIR-TIR
CK=PInT 22
R=0,15
ARITE{6,B62IR

FORMAT{"01,18EAM RADIUS IN METERS= ',FB.3)

RZ=k" R

DINTZ2=DINT<DINT
RINT=({R2-TIFZ2+0INTZ2)/({2.=DINT}
XKINTZ=X1UTsXIAT
YINT=5QkT (aBS (R2-XINT2]))

WL L=ATAIYLLT/XINT)

GCZ2=ATANIYINT/{OINT—XINT)}
GL3=PI-TANYINTAABSIXINT=-DINT) })
AAA=GCLI #2402 "TIRZ—DINT¥YINT
REG=GCL R2+GE3:TIRZ2-DINTXYINT
RIR==+TIK
CIR=R-TIR
IF(GINT WGE.

IF{(DINT .GE.
IFLDINT 06&e BIRIAPEA=Q,
E50J=EXP{-GAMA- A2001}

Co0 JANDe DINT JLT. CIFIAREA=
[F{DINT .uEe IR JAND. DIMT LLT. 2)ARZA=ER
R +ANE. DINT LLT. BIRVARFA=LAA

PHOTGHN P<JCagILlITY WEIGHTS FOR 500 MNH,

PPWSUI=ATcA [5J0

SRITE(6,4611PPAS500
FORMAT{f 0!, 'PHJTON PRGS. WTs FIR 500
RETURN

RN
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AT RGN el

o

SUBRTUT ITHE RANBNAO(IL, RMUI Y

THIS SUBROUTINE GENEKATES UKNIFIRM RANDIM

1¥=1x'63539

IF(IY’ 57096
[Y=1Y+21474430647T¢1
RNUM=TY
PHUM=RNUM™ e 405001 35-9
IX=1Y

“ETURN

TND
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FILE
04:; SCATR3

253
0.2000
J.4Jd00
0.6000
0.3000
1.32232
1.2000
1.4309
1.632)
1.4390
2.0000
10.0009
13.3300
26423322
34.0J00
42.0000
5242309
58.0000
66.3300
74,0000
§2.0000
136.332)
114.,3%09
122.3300
133.332)
138,00040
l40,0300
154.2000
162.0000
17J3.320)
173,2000
178 .6J00
179.2322
130.0000

DATA A

J3.323232D0+22
0.253470D0+00
0.577508D+00
J.6 781570400
0.724562D+00
}.751686D+1)
J.7694290+00
J.7328220+00
J 7928120+
0.8005860+00
0.8068250+00
J.930136D+00
0.9493330+00
J.9632730+2)
J+9730730+00
0.9802060+00
Je9B5I04D+23
J.9884050+00
J.990774D+39
Je39251L00+00
0.9934834D+00
Je9966930+))
3.9973TTD+00
JeF973600+20
}e9I84540D+)
0.998398D+30
D.997265D+00
7.99955 30+ J0
09797300400
19999270+ 1)
0.9939970+00
0.9999980+00
1.9999930+))
J.100000D+01

100



FILE

O5MFOTGON DATA A
12 139
9,700 Q.
1.217 1.217
12, 000
4.800 3,200
aB 15
AL B2

101
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FILE: MFOTON EXEC A

GL TXTLIB FORTMOD1

FT1 04 OISK SCATR3 DATA Al
F1 35 DISK MFOTON DATA Al
FI 06 PRINTER

LOAD MFOTON

START

102



APPENDIX B

MEASUREMENT OF SCATTERING FUNCTIONS

B.1 Scattering Functions

Scattering is an inherent property of the water which is useful
as an optical parameter. Detailed knowledge of the scattering
functions, in fact, can yield information about the particle size
distribution and the composition.

The scattering function ¢(0) is defined by the relation

dJ(e)
HAV

(meter-l Strpl) (1)

g{f) =

where dJ(8) is an element of radiant intemnsity scattered in the
direction 8 from the incident beam by the volume element dV. H is
the irradiance received by the sample volume.

B.2 Determination of Volume Scattering Function

Both the sample volume and the small solid angle, within which
the radiant intensity is measured, are determined by the optical
geometry of the instrument used. The instruments usually use a
finite sample volume and collect the energy scattered at angle 6

over some solid angle. The equation (1) 1s then wraitten as

a(8) m
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where

P(0) = the total light flux entering the sample wvolume

P(8) = the light flux entering a small solid angle & about
the angle ® at which the measurement is made

Q = the solid angle over which the measurement of P(@)
is made

3 = length of sample volume

A = the projected area of the sample volume V, as seen in

the direction of P(0)
It is necessary to know either P(8) or P(0) in absolute terms.
The scattering instruments allow P(8)/P(0) to be computed. The
length, &, and the solid angle, Q are determined by the geometry of
the instruments.

When a scattering measurement is made using a finite volume of
water, an unavoidable error is caused by absorption in the sample
volume. If the instrument used had a sample path length that is
small relative to the attenuation length of the water, this error
is small and is less than the instrument errors. If the measurement
is made using a path length that is mot small relative to the
attenuation length, the results have to be corrected. One such
correction applied can be referred in Reference 10.

B.3 Scatterance Meters

The scattering quantities have exact mathematical definitions

which dictate the design of the meters to be used. In principle,
* !‘l)., i,

{ . measurements of scatterance involve irradiation of sample wvolume by

104



a beam of light and recording of the light scattered by the volume
through various angles.

Several types of scatterance meters have been developed.
Typical types are: Fixed angle, Free angle, and Integrating meters,
One ground of subdivision is to distinguish in~vitro and in-situ
meters.

It is not our intent to describe in detail various scattering
meters used by researchers in this area, however, a brief discussion
may be warranted regarding the differences between general type and
small angle scattering meters. Typical scattering meters used by

(10)

Scripps Institution of Oceanography are briefed below.

B.3.1 General Angle Scattering Meter

Its purpose is to determine volume scattering function between
the limits of 10°< 8 < 170°. It has a projector which rotates
about the sample volume from 6 = 0° through 0 = 180°. The measure-
ment at 6 = 0° indicates total power in the projected beam, while
the measurement at 180° records the background ambient light level.
The rest of the readings (100:5 8 = 1700) measure scattered light.

The output of this instrument contains analog voltage signals
representing depth, scan angle position and the photometer signal.
A continuous trace of photometer signal versus depth at amy fixed
angle between 10 and 170 degrees and a continuous trace of photometer
signal versus scattering angle at a fixed depth are the two methods

of data collection using general angle scattering meters.
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B.3.2 Small Angle Scattering Meter

Small angle scattering meter (with which the results used in
Reference 1 were measured) is essentially that which was modified

(3)

and used by Morrison. Main problems in low angle scattering
meters are; scattering within the instrument and limitations in
defining the limits of solid angle of the measurements.

In the low angle scattering meters used in Reference 10, and
attempt is made to reduce the instrument's over internal scattering,
1t is still significant relative to the small angle forward scat-
tering of clear waters.

The instrument has a projector which having a small point source
of light, produces a beam of highly collimated light. After tra-
versing the sample path, the light enters a long focal length lens
in the receiver and an image of the point source is formed at its
focal length. The light which traverses the water and is neither
absorbed nor scattered falls within this small image. Laght which
is scattered arrives at the image plane displaced from the axis at
a distance proportional to the angle through which it has been
scattered and is the focal length of the receiver lens. The scat-
tered light is allowed to pass through four field stops before
reaching the detector. The first field stop is a small hole and the
other three field stops are annulus. The inner and outer radii of

the annulus determine the angular interval over which the scattered
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light is accepted. The solid angle, @, in equation (2) s limited

by the angles 61, 62 imposed by the annulus field stops and is

calculated, from & = 21 (eg - ei), where el, and 62 are in radians.
The value computed for the volume scattering funection o(6) is

an average value for o{8) between the angular limits, 8., and &

1 2?

of the solid angle.
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APPENDIX C

LISTINGS FOR POLYMIE AND DEMIE ROUTINES USED TO
CALCULATE THE VOLUME SCATTERING FUNCTIONS

PRECEDING PAGE BLANK NOT PFILMED
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OGO OOD OGO OO0 C OO0 C G

R
1

10
1L
12
13
14
15
16
17
20
25

30

MAIN

MAIN PROG POLYMIE(VECTOR}

THE FOLLOWING, POUBLE PRECISION INPUTS ARE REQUIRED:

RFrR=REFAL PART OF REFRACTIVE INDEX

RFI=IMAGINARY PART OF REFRACTIVE INDEX

RADU=UPPERBOUND ON RADIUS (MICRONS)

wAVE=WAVELENGTH TN MICRONS

A{I}=PARAMETERS FOR DISTRIBUTION ONE

8(L)=PARAMETERS FOR DISTIBUTION TWO -
THFTO(JF=VECTOR OF ANGLES FROM 0-90 (COMPLIMENTS ARE ALS0 CALC)
OTHER INPUTS ARE:

JX=NUMBER OF ANGLES FROM 0Q-90

NFAD=NUMBER OF RADII BETWEEN O0-~RADU

NPARA=NUMBER UF PARAMETERS IN DISTRIBUTION ONE

NPARAZ=MUMBER OF PARAMETERS IN DISTRIBUTION THWHO

TWO=LOGICAL VARIABLE TO ENABLE THE USE OF TwO DISTRIBUTIONS

Twd FUNCTION SUBPROGRAMS BIST{RAD.A} AND DISTZ2{RAD,B} ARE REQUIRED
IN AODITION TGO POBMIE SUBROUTINE

TWO DATA SETS (6 AND 8) ARE USED fOR DUTPUT: NORMALLY 6=PRINTEZR
AND B=TAPE

FURMAT{3D15.5}

FORMAT(2D15.5)

FORMAT(D15.5)

FORMATIDL545, 151}

FORMAT{Z2IS5}

FORMAT(LS)

FORMAT(IS)

FORMAT{D15.5])

FORMAT (11}

FORMAT(//TL10, *ELEMENTS OF THE TRANSFORMATION MATRIX FOR A SPHEERE

IWwITH SIZE PARAMETER = *,F15.5)

FORMAT(//TLI0,'REFRACTIVE INDEX. REAL = ' ,D15.5,T60," IMAGINARY*,D15

Lu5e/7)

35 FORMAT(T3,'ANGLE' , T17+*SIGMALY yT31,7SIGMA2T ,T46+'SIGHMAZY ,THEL,*SIGM

44

50

55

60
73

LAG", 776, "INTENSITY ",y TOL,"POLARIZATION'//)

FORMAT{F1Q0s2s5EL15464F1lDu%1}

< 145 FORMATA/A/ 1.1, " JEFFICLENCY - FACTOR FOR EXTINCTION?4E15,6)

FUORMAT(//T10," EFFICIENCY FACTOR FOR SCATTERING' ,E15.6)
FORMAT(//T12,* EFFICIENCY FACTOR FOR ABSORPTION'+EL5.61
FORMAT{//T10,* ASYMMETRY FACTOR',EL15.6//}

FORMAT{//T10,' TOTAL TIME FOR THIS CASE IN SECONDS= ',Fl15.3//)
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2 FORMAT{//T10,"PROBABILITY FOR THIS SIZE PARAMETER

MAIN

*y015.5,/71)

3 FORMAT{//T1J),*NORMALIZATION FACTOR FOR THIS SET OF SIZE PARA="Y,

84

90

35

61

62

i015.5,/7/)

REAL- 8 RFRyRFI Xy QEXT WSCAT,QABS,THETD(109)+PQEXT,PRSCAT,PQABS

FORMAT(//T10,"SCATTERING CRUSS SECTIOUN',El5.6)

REAL"8 ELTRIIX{4,133+2)sALAM,CONy CTBRUS,AVCSTH,PELTMX{4,+100,2)

REAL 8 PAVCTH,THE(100),PBSCAT
REAL® 4 AIN(1D9,2#,POLR{100,2}

REAL~4 PAIN{100,2),PPOLR{200,2)

KEAL 4 PAI{100,2),PPOL{100,2)
REAL -8 PROBZ2yPNORMZ

REAL 8 PQEX,PQSCA,PQAB+PBSCA,PAVCT,PELTM{4,100,2)
KEAL 8 RADUyDRAD,WAVE ,GAMMA,A(20),PROB,8120)

LOGICAL WRN,THWO
WRN=L.FALSE.
CON=3.1415926535897932D+0
INTEGER NPARA,NPARA2
READ {5,10) RFR,RFI,WAVE
READ (5, 14) JXyNPARA
READ (5412) (THETDI(I) (I=1,4X)
READ {5,13) RAJUsNRAD
FORMAT (D15.5)

DJ 5 I=1,NPARA

READ {5,1) A{I}
CONT I NUE

READ({5,15}) TWY

DA 95 I=1,4X
THELT}=THETD(I)

IF (TWO) GO TO 61

GO TO &2

READ{5,16) NPARAZ

DO 62 I=1,NPARAZ
READ{(5,17F B(1)

CONT INUE

PUEXT=0,0D0
PQEX=0.0D0
PQSCA=0.0D0
PQAB=0.0D0
PBSCA=0.0D0
PAVCT=0,000
PQSCAT=0.000
PQABS=0,0D0

PB SCAT=0.0D0
PAVCTH=0.0D0
NRADSRADU/NRAD

0d 1000 J=1,JX

DO 1000 K=i,s2

0 999 I=l.4
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MAIN

PELTMX(I 9J+K)=0.0D0
pELTM{I’J'K}=OQODO
999 CONTINUE
PAIN{J+K)=0,0D0
PAT{J4KI=0.0D0
PPOL{J,KR)=0.000
PPOLRI{JyK)=0.0D0
1000 CONTINUE
RAD=0.0
PNORM2=0.0D0
IF (TWO) GO TO 91
PNORM2=1.000
91 CONTINUE
PNORM=343D)
TIME1=0s0
DiJ 31)) L=1,NRAD
AAD=RAD+DRAD
DG 1) J=L,JX
100 THETD(J)=THE(J)
X=2.3D) CON-RAD/WAVE
PROB=DIST(RAD,A}
IF {TW0) GG TO &3
PRUB2=0.0D0
GJ TU 64
63 PrOB2=DIST2(RAD,B)
64 CALL SETCLK
CALL PDBMIE { X RFR,RFI,THETD,JX;QEXT ) QSCAT CTBRUS+ELTRMX yWRN)
CALL READCLI(TIME)
IF (WRN] G0 TO 1001
PNUGRM=PNORM+ PROB
PNORMZ2=PNORMZ2+PROB2
TIMEL=TIMEL+TIME
JABS=QEXT-QSCAT
AVECSTH=CTARQS /WS CAT
DO 150 K=l,2
DO 15) J=1,JX
ATN{JsK)= ELTRMX{ Ly J s K)+ELTRMX{2,4d,K)
P POLR{JsK)= {ELTRMX(2 yJsKI—ELTRMX{1,JsK3I)/AINL{J,K)
AIN(UKI= L5%AIN(J,K)
PATN(J,KI=ZAIN{J,K) tPROB4+PAIN(J4K)
PAI(J,K)=AINIJ,KI~PROB2+PAI{J,K)
PPOL(JeK}=POLR{J,K)*~PROB2+PPOL(J,K]
PPOLR(JsK)=PPOLR{J,K)+POLR{J,K ) ~PROB
150 CONTINUE
00 2000 I=1,4
DO 2300 J=1ydX
DO 233D K=1,2
PELTMAL{T »J oK) =PELTMX (I 4 JyKI+ELTRMX {14 JoK)=<PROB
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GO

o

2009

23)

1001
3000

4001

MAIN

PELTM(LyJyKI=PELTM{I,J K)+ELTRMX{E,J+K)>PROB2
CONTINUE

WRITE{&,20)

WRITE(6,+25] X

wRITE{6s30) RFRHRFI

WRITE(H6,35)

ARETE(6+40) ((THETD(J )2 {ELTRMX(I5J51)21=1s4),AIN{J+1)4POLR{IL1) ),
1d=1,dX}

WRITE{8,431 ((THETO{J)» (ELTRMX{T+J,1),1=1,4),AIN{J+1),POLRIJ,1}1},
LJ=1,JX}

0O 23 J=1.4X

THETD(J)= 180.0D0~THETD(J]

CUNTINUE

JMX=dX-1

00 213 J=lsdMX

JJ=JX-J

WRITELO 14 (THETD{Jd ) [ELTRMX(I 4 JJ421, 121,40 AIN{JIy 21,POLR{II 2}
WRITE{B,40) (THETD{JJ} s (ELTRMX{I 3JJy2)3I=1y4) AIN{IS,2)4POLR(JIS2))
CONTINUE

WRITE{oq+145) QEXT

WRITE(6,50) QSCAT

WRITE{6+55) QABS

ARITE{0.60) AVCSTH

WRITE{6,2) PROB

wRITE{&+2) PROB2Z

WRITEL6,y 20}

wRITC{6,70) TIME

PQSCAT=PQSCAT +QSCAT~PRGB
PQSCA=PUSCA+JSCAT+PROB2Z

PQEX=PQEX+QEXT~PROB2Z

PQAB=PQAu+QAGS~ PROB2Z
PBSCA=PBSCA+QSCAT "{RAD* “2)PROB2
PAVCT=PAVCT+AVCSTH* PROB2
PUEXT=PQEXT+QEXT»PROB

PQABS=PUABS+QABS=PROB

PBSCAT=PBSCATH+ISCAT* (RAD+=2)=PROB
PAVCTH=PAVCTH+AVCSTH*PROB

WRN= +FALSE.

CONTINUE

N0 4000 Jd=1,JX

DO 4000 K=1.2

D0 4201 I=1,4

PELTMXII s J«K) =PELTHMX{14J4K}/PNORM
PELTM{I,d,K)=PELTM{I,J,K)/PNORM2

CONTINUE

PATM{JLKI=PATNIJ, K}/ PNORM
PAT{JsKI=PAI({J,K}/PNORMZ
PPOL(J,K}=PPOL{J,K)/PNORMZ
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MAIN

PPULR{J +K})=PPOLR{J,K]/PNORM
£33 CONTINUE
C END FILE 8
PYSCAT=PQSCAT/PNORM
PQEXT=PIEXT/PNORM
PRABS=PUYABS/PNORM
PESCAT=PBSCAT :CON/PNORM
PAVC TH=PAVCTH/PNORM
PQSCA=PQSCA/PNORMZ
PRQEX=PQEX/PNORM2Z
POAB=PJAB/PNORM2
PR SCA=PBSCA* CON/PNORM2
PAVCT=PAVCT/PNORMZ
DO 6000 Jd=1,JX
6000 THETO(JI=THE(J)
WRITE{&,201
65 FORMAT{//T10,1ELEMENTS OF TRANFORMATION MATRIX FOR POLYGISPERSION!
L./ /)
WRITE(6,65)
WRITE(6,30) RFR,RFI
WRITE{6y35)
WwRITE{(6,40) ({(THETD(J}y(PELTMX{Iyds1)eI=1+4),PAIN{J71},PPOLR(J, 1)
1},d=1,4X}
C WRITE{8940) ((THETD(JY o{PELTMX{IsJsl)+I=14&}PAIN(JsL1}yPPOLR(4,1)
C 1),J=1,JX)
DO 5000 J=1.JX
THETO{J)=183+JDX-THETD(J)
5000 CONTINUE
JMX=JX-1
DO 5001 J=1,JMX
JJ=JX-J
WRITE{6,40) (THETD{JSJ) +{PELTMX(14JJ+2)sI1=144},PAIN{JJ+2),+PPOLR
1{(JdJds2)1
C WRITE{B,40) (THETD(JJ) s {PELTMX(145J42)+1=144),PAIN{Jd,2),PPOLR
c 1(JJ,21)
5001 CONTINUE
C END FILE 8
ARITE(6545) PQEXT
WRITE(6,50) PUSCAT
WRITE(6455) PQABS
WRITE{6,80)} PBSCAT
WRITE(G,60) PAVCTH
WRITE{6,3) PNORM
WRITE{6,70) TIMEL
ARITE(6,20)
00 5010 J=1l,JX
5010 THETD{J)=THE{ J)
IF {TWO) GOTO 5392

r
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MAIN

GO TO 5003
5002 WRITE{6, 201
WRITE{G,65)
WRITE(6,30) RFRyRFI
WRITE{6,35])
ARITE(6,40] ((THETD{J} s (PELTMII+J41)91=144)PATI{J,1),PPOLLG,L)
1}ed=1,4JdX)
C WRITEL8443) {(THETD(J )y (PELTM{IyJ,s1),I=1,4),PAI[J,1),PPOLIJ+1]
C LlyJ=1yJX}
00 533 Jd=l,JdX
THETD{J} =180. 0DO-THETD{J)
5334 CONTINUE
JMX=gX-1
DO 5135 J=1,yJHX
Jd=JdX-4
WRITEL6,43}) (THETD(JJ) o (PELTM{IJJy2)s1=104),PAT{J s 2),PPOL
1(ddy213) )
C WRITE{B,40) (THETDIJJ) 4 {PELTM(L,JJs2}eI=1s4)PALI(JIs2)PPOL
< 1{Jds2 00
5J05 CONTINUE
C END FILE 8
ARITE(6,45) PJEX
WRITE(6,5)) PQSCA
WRITE{6,55) PGAB
ARITE(6,83) PBSCA
ARITE(6,60}) PAVCT
WRITE(6,3} PNORMZ
WRITE(6,70) YIMEL
WRITE(64+22)
5393 5TOP
LND
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LSOO OO0 OGO OO0 OO0z OO0 0O

&L - Q

[aNe Nl el

PDBMIE

SUBRCUTINE POBMIE (XsRFRyRFIyTHETDeJX)QEXT,QSCAT,LTBRAS, ELTRMX ) WRN
1)

JADIATICN SCATTERED BY A SPHERE. THIS SUBROUTINE CARRIES OUT ALL
SUBROUTINE FOR COMPUTING THE PARAMETERS OF THE ELECTROMAGNETIC
COMPUTATIONS IN SINGLE PRECISION ARITHMETIC.

THIS SUBROUTINE COMPUTES THE CAPITAL A FUNCTION BY MAKING USE OF
NOWNWARD RECORRENCE RELATIONSHIP.

X J STZE PARAMETER 0OF THE SPHERE,{ 2 ¥ PI -~ RADIUS OF THE SPHERE}/
SJAVELENGTH OF TdE INCIDENT RADIATIGNI).

AF) REFRACTIVE INDEX OF THE MATERIAL OF THE SPHERE. COMPLEX
JUANTITY. .FORMO {(RFR - I = RFI |

THETD(J} ) ANGLE IN DEGREES BETWEEN THE DIRECTIONS OF THE INCIDENT
ANG THE SCATTERED RADIATION. THETD(J) IS - OR = 90.0.

IF THETD(J) SHOULD HAPPEN TO BE GREATER THAN 90.0, ENTER WITH
SUPPLEMENTARY VALUEO SEE COMMENTS BELOW ON ELTRMX..

JXO TOTAL NUMBER DF FHETD FOR WHICH THE COMPUTATIGN AREREQUIRDE.
JX SHOULD NOT EXCEED 200 UMLESS THE DIMENSIONS STATEMENTS

ARE APPRUPRIATELY MGDIFIED.

MATN PRUGRAM SHOULD ALSO HAVE REAL THETD{200) ELTRMX{44+21242]).
JEFINITIONS FOR THE FOLLOWING SYMBOLS CAN BE FOUND IN * LIGHT
SCATTERING 8Y SMALL PARTICLES, H. C. VAN DE HULST, JOHN WILEY +
SONSy THNCes NEW YUORK, 1957 ',

WEXT82 cFFIECIENCY FACTNR FOR EXTINCTION, VAN DE HULST, P.l4 + 127
USCATB2 FFFIECIENCY FACTOR FOR SCATTERING,VAN DE HULST,P.14 + 127,
CTBRLSY AVERAGE{COSINE THETA} » JSCAT,VAN DE HULST, P. 128.
CLTRMX{I »J4K)} 0 ELEMENTS OF THE TRANSFORMATION MATRIX F,VAN DE HUL
3T9Pe34,45 + 125, 1 = 13 ELEMENT M SUB 2..1 = 2JELEMENT M SUB 1l..
[ = 30 ELEMENT S SUB 21.. I = 40 ELEMENT D SUB 2less

ELTRMX{I yds1) REPRESENTS THE ITH ELEMENT OF THE MATRIX FOR

THE ANGLE THETD{J}ea. ELTRMX(IsJs2} REPRESENTS THE ITH ELEMFNT

UCF THE MATRIX fOR THE ANGLE 180,00 ~ THETDI(J) ..

FOFAAT{1J3X* THE VALUE OF THE SCATTERING ANGLE IS GREATER THAN 90,2
$ OEGREES. IT IS ',EL5.4])

FORMAT{//1IX' PLEASE READ THE COMMENTSt//)

FORMAT(//10X* THE VALUE OF THE ARGUMENT JX 1S GREATER THE 100')
EORMAT(//1JX'THE UPPER LIMIT FOR ACAP IS NOT ENQUGH. SUGGEST GET
IDETATILED OUTPUT AND MODIFY SUBROUTINE'//)

REAL 8 XyRX,RFR,RFI WEXTQSCAT,T{S51¢TAL4},TB(21,TC(2)1,TD{2},TE(Z2},
2 CTBRUSFLTRMX{44100,+2)4PI(3,100),TAUL3,100]),
3 CSTHT{100),SI2THT{100), THETD(1900Q)

COMPLEX~ 16 RFJRRFEJRKFXy WMLy FNA,FNB,TC1,TC2, WEN{2),ACAP (5000},

2 FNAP,FNBP

LOGICAL WRN

FORMAT(//T10, "WARNING,ACCURACY NOT ACHIEVED'//)

TA(LJO REAL PART OF WFN(llaee TA(Z2)0 IMAGINARY PART OF WFN(1l)..
T4{310 REAL PART. OF. WEN{Z2}es TA(4)0 IHAGINARY PART OF WFN{2)a.

T {110 REAL PART UF FNA...TB{2)J IMAGINARY PART 0OF FNA...

TC{1)0 REAL PART OF {FNB.«oTC(2)0 IMAGINARY PART OF FNBses

116



TD(110 REAL
TE{1)0 REAL
FNAP + FNBP
tQUIVALENCE
EQUIVALeNCE

[akaky!

IF { JX .LYT.
dRITE {6y T}

WRITE(6y 6}
sTopP 1

PDBMIE

PART OF FNAP.. TD(2) IMAGINARY PART OF FNAP...
PART OF FNBPsass TE(2}0 IMAGINARY PART OF FNBPaes
ARE THE PRECEDING VALUES OF FNA + FNB RESPECTIVELY.
{WFN{Y)y TA(L))}y (FNA, TBL{1l}}s (FNBy TC(1)]

{FNAP, TD{1)}, (FNBP, TE{1l}}

101 ) 6O TO 20

20 RF=DLCMPLX(RFR,—RFI)
ARF = 1.3DJ)/RF

AX = L.oD0/X
RRFX = PAF -

T{l)=1X~ 2}

RX
(RFR~~2+RF = ¥2}

T{L)}=DSQRTI(T{L}}
NMXL1 = 1.1000 2 T(1)
IF (NMXL .LT. 7999} GO TO 21

WHRITE (6, B
STaP 2
21 NMX2 = T{1)

IF (NMX1L .GT. 150) GO 7O 22

NMX1 = 150
IMX2 = 135
22 ACAPINMX]L +

DO 23 N = 1,

1 3 ={( 0.000, 0.0D0 )}
NMX 1

N = NMX1 - N + 1
ACAP(NN} = (NNh+1) * RRFX — 1.0D0/ ((NN+L)}*RRFX + ACAPINN+L)}

23 CONTINUE

33 30 J = 1y

JX

IF ¢ THETD(J) .LT. 2.0D) ) THETD{J) = DABS(THETD{J4})
IF { THETD{J}! «GT. 0.0D0 ) GO TO 24

CSTHT(J) = 1.JDJ
SI2THT(J) = 0.0D2
GJ TC 33
24 IF [ THETD(J) .GE. 90.0D0 } GO TO 25
TIl) = { 3.,14159265358979320+) + THETD{J}}/180.00
CSTHT{J) = uCOS{T(1]))
SI2ZTHTAJ) = 1.3D0 - CSTHT(J)*2
el Ta 30
2> IF { THETD{J] «GT. 90G.00D0 1 GU TO 28
CSTHTEJ) = 0.0D0
SI2THT{J} = 1.000
GO 70 30

28 WRITE {&, 51 THETD[J)

WRITEL(6,6)
sToe 3
30 CONTINUE

DO 35 J = 1,
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http:THETD(J))/180.DO

390
35

60

05

70

PDBMIE

PI{1,4) = 0.000
PI(2,J}) = 1.0D0
TAU{l,J} = 0.000

TAd {2y J) = CSTHTUJ)
CuNTINUE

T(1) = DCOSI{X)

T(21 = DSIN(X)

wH1=DCMPLX(T{L1),-T{2})
wFN{LI=DCMPLX(T(2),T(1)}

WFN(2) = RX 7 WFN{l) - wMl

TC1 = ACAP{E} = RRF + RX

TC2 = ACAP{1) - RF + RX

FNA = [TCLl - TA(3) — TA(L)) / {TCL * wFN(2} - WEN{L))
FNB = (TC2 * TA{3}) — TA[1}) / {TC2 » WFN{2} — WFN(1})
FNAP = FNA

FN@P = FNB

T(1l = 1.5000

TB(l) = T{1j) = Ta(l}

T8(2) = T{l) TBi{2}

TC{L) = T{1)} - TC(l]}

TC({2) = T{l) - TC{2}

DJ 63 J =1.3X

ELTRMX(1sd,1) = TB{1) PI{2,Jd} + TC{1) * TAU(2,Jd)
FLTRMX(Z2,J,1) = TB{2]) PI(2,d) +TC(2) & TAU{Z+d)
ELTRIX(3+Jel) = TC{L) -PIAL2yJ} + TBIL) = TAULZ2+J)
CLTRMX(4&edel)} = TL(2) 2 PH2,d) + TBL2) « TAULZ4})
SLTRMX{1,ds2) = TBI1} ¢+ PI[2,J) — TCLl} * TAU{Z2,J)
ELTRIX{24J92) = TB(2) > PI{2,d) - TC(2) * TAU(2,d)
ELTRMX(3,d42) = TCULY « PI(2,J) —TB{1) = TAU(Z,J)
FLTRMX(43042) = TC{2} -~ PI{2,4) — TB{2) » TAU{(2.,d])
CONTINUE

NEXT = 2.000 * { TB(L} + TC(L))

ASCAT =({TB(1)~-2 # TR(2)**k2 + TC(1)+~2 + TC{2)%x-2)/J.75D3
CTBRQS = 0.0D0

N =2 .

T(1) = 2 »N—-1

Ti2) =N -1

T(3) =2 *N +1

n070J=1,JX
PI{3sdd=(T{L}-PI(2yJI-CSTHT({JI-N"PI(1l,d})/T(2}
TaU{3,J}=CSTHT(JI> (PI{34J)-PI(1,J}I-T{(LI*SI2THT{JI*PI{2+J)+TAU(L,J
1)

CONTINUE

AM1 = WFNI(1}

WEN{1) = WFN(2)

WFN{2) = T{L} # RX = WFN(l} - WML

TCI = ACAP(N) * RRF + N * RX

TC2 = ACAPIN) » RF + N + RX
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FauA = (TCL ~TAI{3) — TALL)) / ({TCl -~ WFNI2) — WFN[1))
FNB = {(TC2 = TA{3) — TA(L)) / (TC2 ¥ WFENIZ) — WFN(1l})
T(5) N

Tlal = TL1) /7 (T(5) & T(2))

TL2) = {T(2)-(T{5}) + 1.0D0}I/T{5)

CTORQS = CTBRQS + T(2) - {TD(1) » T¥B{L) + TO(2} = TB{2) + TE(l) -
$TCOLY & TE(2) ~ TC{2)) + Ti4) = {TD(1) = TE(1l) + TD(2) TE{21)

JEXT = QEXT + T{3) = (TB(1l)} + TC(1})

Ti{a) = TB{Llk¥ 2 + TR{Z2)¥*2 + TC(1l)¥e2 + TC(2)*+2
WSCAT = JSCAT + TH3) * T{4)

{21 = N « (N + 1)

T(1) = T{3) / T{2}

K= ({({N/ 2) ¢t 2
D BY 4 = 1y JX
ZETRMXL Ly a1y =ELTaMX{ Loy DI +THL)IA{TRIL)=PL{3,4J3+TC{L}+-TAU{3,.J))
FLTRMXIZ2 3oL ) =ELTRMX (24 Jy 11T {L)-{TB{23-PI{3,J)+TCL2) <TAUI3,4)])
ELTRMX(3 ¢ Jsl ) =ELTRMXIS,Jy LI+T{L)A(TCIL)PI(3,J3+TBLLYTAUL{3,d})
ELTRMX{ 4+ J gL} =ELTRMA{ 4 Js LI#TUL)-{TCU2)-PI{3,J}+TB(2)<TAUI3,J))
IF{K.EQ.N] GO TO 75
FLTRMX{LsJ+2)=ELTRMX{ Ly d2) #T(LF{TRIL) PI{3,J)-TCLL) TAU(3,4))
FLTRMX(Z s d 22 ) SELTAMK{Z ¢ 34204 T{LI (TB(2)PL{3,J)~TC(2)-TAUI3,J})
ELTRMX(3: 2 =ELTRMX{3,4,2)+T{1)7{TCL{L1)-PI{3,3)=-TB(L) TAUL3,J)}
FLTR™X{+9J2) =ELTRMX (4 20+ T{LI=(TC(2)*PI(3,41-TB(2) TAU(3,J))
GITG80

75 FLTRAX{LsJs2) =ELTRMX (L Je 2} +TL{L) 1 (=TBIL)+PI{3,J)4TC(L1}*TAU(3,4)])
ELTAMX(29d:2) 2ELTRMXL 25 d 210+ T{L I« (~TBI2)~PI{ 3,51+TC(2) "TAU(3,4))
ELTRMX{3yJs2) =ELTFRMX(3 4 Je2)+T{L}~{-TCLL)=PI(3,J)+TB(L)}TAU{3,d})
CLTRYX{4 3 S92 =ELTRMX {4 de 2)+T(1L) 2 (~TC{2)=PI{3,J)+TBI21"TAUI3 4 J))

32 CONTINYE

IFl T(4) «LT. l.JD-1% )} GO TO 12)

No= W+ ]

Dd 9) J = 1, JX

PI{1y J) = PI(2y Jd)

= p

PI(Z, J) 1(3, J)

TAU(1, d) = TAU{24 J)

TAU(2, J} = TAU(3, J)
90 CONT ENUE

FNAP = FNA

FNBP = FNB

IF (N +LE+ NMX2} GO TO 65
WRITc(6y 9]
whRN = .TRUE,

RETURN
100 DN120J=1,JX ORIGINAL PAGE IS
cotzcty2 OF POOR. QUALITY

T{IY=ELTRMX{I+JsK]
115 CONTINUE
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T(L)==2 + T{2)r&2
TL3)*72 + T(4&)we2
T{1livT{3) + T{2)=T(4)
TE2)2T{3) - T(4)=T(1)

ELTRMX{Z24J,4K)
ELTRMX{144,.K)
ELTRMX{(3,J,4K}
ELTRMX{444,K}
CONTINUE .
T(l) = 2.0D0 r RX*x~?2

QEAT = YEXT <« T{1)

SCAT = QSCAT -~ T{1}

CThRQS = 2.uD0 & CTBRQS * T(1)
RETURN

END

o it
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DIST

FUNCTICN DIST{RALC,A)

REAL#*8 A(20),RAC

REAL=®8 DIST4sB,.C

B=-=A{3)

C=RAD¥**A{4)

C=B%*C
DIST=A{1)%(RAD*:A{2))*DEXP{C)
RETURA

END

ORIGINAL PAGE IS 121
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DIST2

FUNCTION DIST2(RAD,B)
REAL*8 B(20}) ,RALC

REAL*8 DIST2,A
A=—{B{2)+1)
DIST2=B({11%B{2)%(RAD*%4A)
RETURN

END
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APPENDIX D

PROGRAM LISTING FCOR CURFIT ROUTINE USED TO FIT THE
THEORETTICAL SIZE DISTRIBUTIONS TO THE EMPERTICAL DATA
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MAIN

SUBROUTINE CURFIT

MAKES A LEAST SQUARES FIT TGO A ANCN-LINEAR FUNCTION

DESCRIPTICN OF PARAMETERS

X
Y
S1

~ARRAY OF IND. VARIABLE BATA POINTS
-ARRAY OF DEP. VARIABLE CATA POINTS
GMAY —-ARRAY OF STANDARD CEVIATIONS FOR Y DATA POINTS

NPTS ~NUMBER GF DATA PCINTS
NTERMS ~-NUMBER OF PARAMETERS

M2

A
DE

CE -DETERMINES WEIGHTING FOR LEAST SQUARES FIT
+1{ INSTRUMENTAL) w(I)=1./SIGMAY ([ )%%2
QING WEIGHTINGI!w{I1=1.
~L{STATISTICAL) wW(I)=l./Y{1)
—ARRAY OF PARAMETERS
LTAA -ARRAY OF INCREMENTS FOR PARAMETERS

FLAMDA -PROPCRTION CF GRADIENT SEARCH INCLUGED

YF

1T ~-ARRAY OF CALCULATED VALUES OF Y

CHISQR -REDUCED CHI SQUARE FCR FIT

SUBPMUTINES AND FUNCTION SUBPROGRAMS REQUIRED
FUNCTN{XsI4A)

EVALUATES THE FITTINC FUNCTICN FCR THE ITH TERM

S5P ROUTINE DSINV

INVERTS CURVATURE MATRIX

COMMENTS
DATA FORMAT

21

W

=l O\

14

NPTS NTERMS , MOCE(315)
XUT1,Y(I), (SIGMAY(T)),{2(3)EL2. €)

NDIMENSION X{100)sY{ 10C)ySIGMAY(100)4A{20),DELTAA(20),5IGMAA{20]),

LYFIT(100),YFITI{100)

LOGICAL GRAD,CUR,LGRID

FGRMAT(3LS)

READ(5,21) GRAD,CLR,GRID

READ{S5y1) NPTSy,NTERMS,MDEE

FORMAT{315)

IF (VEDE) 23244

READ(553) (X(I1,Y(1),1=1,NPTS)

FORMAT{2E12.€&}

GO TC 6

READ(5,5) (X(1),¥Y(I),SIGMAY{T),1=1,NPTS)

FORMAT(3EL12.£&)

READ(5,7) {A(J),CELTAAJY ,J=1,NTERNS ) ggIGINAL PAGE I8

FORMAT(2E1Z.6) POO

ISUM=0 R QUALITY

CHISRL=1.0

FLAMDA=.CO1
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MAIN

IF{CUR) GC TG 22
IF{GRID)} GO TO 23
CALL GRADLS(X+YSIGMAY I NPTS 4sANTERMS,MCDE, Ay DELTAA,
IYFIT,CHISQR)
GO TOQ 24
22 CALL CURFIT{X,Y SIGMAY,ANPTS,NTERMS,MODE,A,DELTAA+SIGMAA,FLAMDA,
LYFIT,CHISQR)
GO TO 24
23 CALL GRIDLS{X,Y ,SIGNAY NFTS,NTERMS,MCCE,A,CELTAA,
1SIGMAA, YFIT,CHISQR)
GO TC 24
24 PRINT 8y (A{J);J=14NTERMS)
8 FORMAT({* *,Fl12.¢1}
PRINT 9,;CHISCR
9 FORMAT(® 9, 'CHISGR=%, IX,E12.64/1}
IF (CHISQL-CHISQRY} 12,13,412
12 CHISE1=CHISQR
ISUM=ISUM+]
IF (ISUM-10) 14,13,13
13 00 11 I=14NPTS
1l YFITI(I}=1./YFIT{I)
PRINT 10
1O FORMAT( Y *, 13X, "INDeVAR Y 412X "DEPoVARY 411Xy '"INVDEPWNARWY 4/}
PRINT L1S5,{X{(I) YFIT(I ), YFITI(I) yI=1,NPTS}
15 FORMAT{ Y ', LOX+E12.64E8XyEL2:648%X4E12.6)
STQP
END

T

R
AU BAS
O RoR o
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CURFIT

SUBROUTINE CURFIT(X,Y,SIGNAYyNPTS,NTERMS ¢MODE,A
1,DELTAAySIGMAA, FLAMCA,YFITCHISQR)
DCUBLE PRECISION ARRAY
DIMENSION X(100),Y{100),SIGMAY{L00),A(20),DELTAA(20),5IGMAAL20},
1YFIT{100) JWEIGHT{100)ALPHAL20,20),BETA(20},DERIVIZ20)4ARRAY{20,
120},8{20)
11 NFREE=NPTS—-NTERMS
IF (NFREE} 13,1320
13 CHISQR=0.
GO TC 11¢
C EVALUATE WEIGHTS
20 DO 30 I=i,NPTS
21 IF (MCDE} 22,27,29
22 IF (Y{I}) 25,27,23
23 WEIGHT(I)=1./Y{1}

GO TO 30

25 WEIGHT(I)=1./{-Y{1)}
GC TC 30

27 WEIGHT{Il=1.
63 Td 30

29 WEIGHT{I)=1./SIGMAY[])*%2
30 CONTINUE
C EVALUATE ALPHA AND BETA MATRICES
31 DO 34 J=1,NTERMS
BETA(J)=0.
DR 34 K=1,J
34 ALPHA(J,K}=0.
41 DO 50 I=14NPTS
CALL FDERIVIX,:I ,A+CELTAA NTERMS,DERIV)
20 46 J=1,NTERMS
BETA(JY=BETA(JI+WEIGHT(I)*{(Y(I}-FUNCTNIX,I,A})}*DERIV(J]}
D8 46 K=1l,J
46 ALPHA({JKI=ALPH2{JyKI+WEIGHT( I} *DERIV{JI*DERIVIK)
50 CONTINUE
51 PO 53 J=1,NTERMS
B0 53 K=1,+4
53 ALPHA(KJ)=ALPHA{J,K)
C EVALUATE CHISQR AT STARTIMG POINT
61 DO 62 I=1:+NPTS
62 YFIT{I)=FUNCTN{Xs14A)
€3, FHISQI FCHISQ{Y SIGMAY,NPTS yNFREE+MODE,YFIT)
C INVFRT%CURVATURC MATRIX TO FIND NEW PARAMETERS
71 DGy T4 J lvNTERMS
72 D0 73 K=y NTERFS
73 ARRAY{J,K)=ALPHALJ,K}/SQRT{ALPHA{J4J) *ALPHA{K K ) }
T4 ARRAY{JsJ)=1.+FLAMDA
80 CALL MATINV(ARRAY,NTERMS,1)
81 00 84 J=14NTERMS
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CURFIT

B{JI=A(S)
DO 84 K=14NTERMS
84 BlJI=B{JI)+BETALKI®ARRAY{J,KV¥/SQRTU{ALPHA(J,,J)*ALPFA(K,K])])
C IF CHI SQUARE INCREASED,IMNCREASE FLAMDA
91 DO 92 I=1,NPTS
92 YFIT{I}=FUNCTN{XsI,4B)
93 CHISQR=FCHISQ(YSIGMAY,NPTS 4AFREE,MODE, YFIT)
IF {(CHISCL-CHISQR)} 85,101,101
95 FLAMDA=10.¥FLAMDA
GO TC 71
101 DO 103 J=1,NTERMS
1C3 A€JI=B{J}
FLAMDA=FLAMDA/10.
110 RETURN
END

ORIGINAL PAGE IS
OF POOR QUALITY
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18

FCERIV

SUBROUTINE FDERIVI(X,I4A;CELTAA,NTERMS,DERIV)
DIMENSION X{100),A{20),DELTAA(Z20),DERIV{2Q)
DO 18 J=14NTERMS

Ad=A{J)

DELTA=DELTAA(J)

A{J)I=AJ+DELTA

YFIT=FUNCTN({X,1I,4)

A(J)I=AJ-DELTA
DERIVIJ)I=(YFIT-FUNCTN(X,I;A}}/{2.*DELTA)

Al J)=AJ

RETURN

END

128



MATINV

SUBROUTINE MATINV{ARRAY ,NTERMS,MCODE)
LOUBLE PRECISICN ARRAY,B

DIMENSICN ARRAY {20,20}),B8{210)

DO 1 I=1,NTERMS

DO 1 J=1,NTERMS

CALL LCC(I,J,IJ,NTERMS,NTERNS,MCCDE)
BIIJY=ARRAY(I,J)

EPS=1.0E-16

CALL CSINV{B,NTERNMS,EPS, IER)

IF (IER) 24+4,3

PRINT 10

FCRMAT(* *, *NO RESULT?,/)

GO TQ 4

PRINT 11

FORMAT(® %, 'KARNING',/)

DO 5 I=14NTERMS

DO 5 J=14NTERMS

CALL LCC{IyJyIJNTERMS,NTER¥S,MCCDE)
ARRAY(I,J1=8B(1J)

RETURN

END

129

ORIGINAL PAGE B

OF POOR

QUALITY



FCHISQ

FUNCTICN FCHISQ(Y+SICVFAY,NPTSyNFREE,MODE,YFIT)
DIMENSICN Y{100),SIGMAY(L00),YFIT(100)
SUM=0.
DO 5 I=1,NPTS
IF(MODE)} 1,2,3
1 W=1l./Y{1)
GO TQ 4
2 W=l.
GO 7O 4
W=Le/ (SIGMAY(]) %*%2)
SUM=(Y(I)-YFIT(I)}R{Y{I)=-YFIT{ 1) }%W
CONTINUE
FCHISQ=SUM/NFREE
RETURN
END

v W
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SUBROUTINE OSINV

PURPOSE
INVERT A GIVEM SYMMETRIC POSITIVE DEFINITE MATRIX

USAGEL
CALL DSINV{A,N,EPS,IER}

DeSCRIPTION OF PARAMETERS

A - DOUBLE PRECISIOUN UPPER TRIANGULAR PARYT OF GIVEN
SYMMETRIC POSITIVE DEFINITE N BY N COEFFICIENT
MATRIX.

ON RETURN A CONTAINS THE RESULTANT UPPER
TRIANGULAR MATRIX 1) DOUBLE PRECISIOCN.
N — THF NUABER OF ROWS {(COLUMNS) IN GIVEM MATRIX.
EPS ~ SINGLE PRECISION IMPUT CONSTANT wHIGH IS USED
A5 RELATIVE TOLERANCE FOK TEST ON LOSS BF
SIGNIFICANCE.
IER ~ RESULTING ERROR PARAMETER CUDED AS FOLLOWS
IER=3 - NgJ ERRIR
IER==1 — NJ RESULT BECAUSE 0OF WRONG INPUT PARAME-
TER N JR BECAUSE SOME RADICANR IS NON-
POSITIVE (MATRIX A IS NOT POSITIVE
DEFINITE, POSSIBLY DUE TJ LOSS OF SIGNI-
FICANCE)
IER=K =~ WARNING WHICH INDICATES LOSS DF SIGNIFI-
CANCE. THE RAQICAND FORMED AT FACTORIZA-
TION STEP K+#1 WAS STILL POSITIVE BUT NO
LONGER GREATER THAN ABS({EPS"A{K+1,K+1}).

REMARKS
THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE
STORED COLUMNWISE IN N¥{nN+1)/2 SUCCESSIVE STORAGE LUCATIONS.
IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU-
LAR MATRIX IS STORED COLUMNWISE TOO,
THE PROCcDURe GIVES RESULTS IF N IS GREATER THAN 2 AND ALL
CALCULATED RADICANDS ARE POSITIVE.

SUBRIUTINES AND FUNCTIUON SUBPRUGRAMS REQUIRED
DAFSD

METHON
SSLUTION 1S DORE USING FACTORIZATION BY SUBRGUTINE OMFSD,

A EREEFEREEREENEEE RER NENNENNIERNIERNENENMNENNNENINENNENNENNNNEENNIENENENENNN]
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SUBRUUTINE DSINV{A¢NyEPS,1ER)

JIMENSION A{210)
DOUBLE PRECISION AsDINyWORK

FACTORIZE GIVEN MATRIX BY MEANS OF SUBROUTINE DMFSD
A = TRANSPOSE({T) % ¥

cALL CMFSD{A,N,EPS;1ER)

IF{IER) 941,1

INVERT UPPER TRIANGULAR MATRIX T
PREPARE INVERSION-LOOP
IPIV=N=-(N+1)/2
IND=IPIV

INITIALIZE INVERSION-LOOP
DO 6 I=14N
BIN=L.DI/A(IPLIV)
A{IPIVI=DIN
MIN=N
KEND=1-1
LANF=N-KEND
IF(KEND) 545,2
J=1IND

INITLALIZE ROW-LOOP
DO 4 K=1,KEND
WORK=3.D)
MIN=MIN-1
LHGR=TPIV
LVER=J

START INMER LOOP
00 3 L=LANF,MIN
LVER=LVER+1
LHNR=LHOR+L
WIRK=WORK+A(LVER)  A{LHOR)
END OF INNER LOQP

A(J}=—HWORK*DIN
J=J-—-MIN
tND OF ROW-LOOP

IPIV=1IPIV-MIN

IND=IND-1
END OF INVERSION~-LQOP
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DSINV

CALCULATE INVERSE(A) BY MEANS OF INVERSE(T)
INVERSE(A) = INVERSE(T) +» TRANSPOSE{INVERSE(T))
INITIALLIZE MULTIPLICAT ION-LOOP

DO 8 I=1,N

IPIV=IPIV+I]

J=IP1IV

INITIALIZE ROW-LOOP
DO 8 K=I,N
WORK=0.D0
LHORk=J

START INNER LOOP
DO 7 L=K4N
LVER=LHDR+K~-1
wORK=WORK+A{LHOR}+A(LVER}
LHOR=LHOR+L

END OF INNER LOOP

A(J )I=WORK
J=J+K
END OF ROW— AND MULTIPLICATION~LQQOP

RETURN
END

B
PAGE
GRiAl \
T zook &
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SUBROUTINE DMFSD

PURPOSE

FACTOR A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX

USAGE
CALL DMFSD{A:NJEPS,I1ER)

DESCRIPTION

REMARKS

>

A

DF PARAMETERS

DOUBLE PRECISION UPPER TRIANGULAR PART OF GIVEN

SYMMETRIC POSITIVE DEFINITE N BY N COEFFICIENT

MATRIX.

ON RETURN A CONTAINS THE RESULTANT UPPER

TRIANGULAR MATRIX IN DOUBLE PRECISION.

THE NUMBER OF ROWS {(COLUMNS} TN GIVEN MATRIX.

SINGLE PRECISION INPUT CONSTANT WHICH IS USED

AS RELATIVE TOLERANCE FOR TEST OW LOSS OF

SIGNIFICANCE.

RESULTING ERROR PARAMETER CODED AS FOLLOWS

IER=0 — NG ERROR .

IER=~1 ~ NO RESULT BECAUSE GF WRONG INPUT PARAME-
TER N OR BECAUSE SOME RADICAND IS NON-
POSITIVE (MATRIX A IS NUT POSITIVE
DEFINITE, PUSSIBLY DUE TO LOSS OF SIGNI-
FICANCE)

IER=K ~— WARNING WHICH INDICATES LOSS OF SIGNIFI-
CANCE. THE RADICAND FORMED AT FACTORIZA-
TION STEP K+1 WAS STILL POSITIVE BUT NJ
LONGER GREATER THAN ABS{EPSrA(K+1,K+11)).

THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE
STNORED COLUMNWISE IN N-{N+11/2 SUCCESSIVE STORAGE LOCATIONS.

In

THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU-

LAR MATRIX IS STORED COLUMNWISE TOO.

THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN G AND ALL
CALCULATED RADICANDS ARE POSITIVE.

THE PRUDUCT OF RETURNED DIAGONAL TERMS IS EQUAL TO THE
SWUARE-ROOT OF THE DETERMINANT OF THE GIVEN MATRIX.

METHUD

L ;i{
UBRJUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NUNE

SULUTION IS DONE USING THE SQUARE—ROOT METHOD OF CHOLESKY.
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THE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TW0 TRIANGULAR
MATRICESy WHERE THE LEFT HAND FACTOR 15 THE TRANSPOSF OF
THE RETURNED RIGHT HAND FACTOR.

YRR EEE R N RN R Y RN N ERE N NN B EENERLEREENEENREEEXEEENEEREJESENEELENELEESS

OO0

SUBROUT INE DMFSDIAsN,ECPS, IER) -

VO

DIMENSIJN A{210)
DUURLE PRECISION DPIV,DSUM,A

o

TEST JIN WRING INPUT PARAMETER N
IF{N-1) 12,141
1 IER=Q

[ L]

INITIALIZE DIAGINAL-LOOP
KPIV=0
JJ 11 K=lsN
KPIV=KPIV+K
IND=KPIV
LEND=K—-1

O

CALCULATE TOLERANCE
TOL=485 (EPS SNGL{A(KPIV)))

Y

START FACTORIZATION-LOOP OVER K~TH ROIMW
DO 11 TI=K,N
JSUM=0.900
IF(LEND) 2,4,2

C START INNER LOJP
2 DO 3 L=1,LEND
LANF=KPIV-L
LIND=IND-L
3 DSUM=DSUM+A{LANF} rA(L IND)
EWD JF INNER LOOP

InN 'R

TRANSFORM ELEMENT a{IND)
4 DSUM=A{IND)-D3SUM
IF(I-K) 1045410

c TEST FOR NEGATIVE PIVOT ELEMENT AND FOR LOSS OF SIGNIFICANCE
EFESNGL{DSUM)-TOL) 646,49

IFIDSUM) 12412,7

IFLTIER) 8+8,9

IER=K-1

o~ O

M
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aRe

10
1l

12

DMFSD

COMPUTE PIVOT ELEMENT
GPIV=DSQRT(DSUM)
A(KPIV)=DPIV
CPIV=1.D0/DPIV
Gd TO 11

CALCULATE TERMS IN ROW
A{IND}=DSUM¥DPIV
IND=IND+I

END OF OIAGONAL-LOOP

RETURN
IER=-1
RETURN
END
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APPENDIX E

RELATIONSHIP BETWEEN EXTINCTION, SCATTERING, AND
ABSORPTICON COEFFICIENTS AND THE MIE PARAMETERS
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The extinction (o), scattering (s), and absorption (a) coeffi-
cients for suspended particulates can be calculated using the Mie
formalism. Using the Mie parameters, a,(x,m) and bp(x,m) of

equations (3-7) the extinction coefficient is given by:

o =_ﬁ]z'°: (2041) {Re(an(x,m)) + Re(bn(x,m))} a(r)dr  (E-1)
27 ~

where n(r) is the particle size distribution function and x = 2wr/A.

The expression for the scattering coefficient is:
2 = 2 2
s = A :E: (2n+l) lan(x,m) + bn(x,m)| n{r)dr (E-2)
2% —
The absorption coefficient is the difference between o and s, thus

a = Aij( = (2n+1) -{Re(an(x,m)) + Re(bp(x,m)) -
n=

Ian(x,m)l2 - lbn(x,m) 2} n{r) dr. (E-3)

ThglGalqes for o, 53, and a used 1n the Monte Carloc routine were not
r!‘iif-f. 'igzv

calculatedﬂinithis way because the values explicitly depend on the
It ,

concentration through n(r). Instead ¢, s, and a were chosen to
correspond to physically observed values.

The absorption coefficient depends on the imaginary part of
the index of refraction, but in a non-trivial way. If Im(m) = 0

(25)

then it can be shown that
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lan(xsm - 12

(B-4)
[bnGe,m) - )% = 4
Expanding equation (E-4) leads to
[Re (ay (e, m))]? - Re(ap(e,m)) + [ImCanGe,m)]? + % = 4
ot
Re(ap(x,m)) = [RE(an(x,m))]2 + [Im(an(x,m))]2
= |antx,m)|? (E-5)

with a similar result holding for bp(x,m). Using these results in
equation (E~3) leads to a=o. Thus if the imaginary part of the
index of refraction is zero the absorption cecefficient is also zero.
If Im(m) # 0 then(25)

2
|an(x,m) - %' <k

' {E-6)
fonGe,m) - B° <%
Which, after expansion, leads to
2
Re(apg(x,m) > |a Gxym) -7

2
Re(bp(x,m) > |b Ge,m)|?,
so that, by equation (E-3), a>o for a non-zeroc imaginary component

in the index of refractiomn.
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