NASA CR-145239

```
(NASA-CR-145239) DETERMINATION OF N78-15551
SCATTERING FUNCTICNS AND THEIR EFFECTS ON
REMOTE SENSING OF TURBIDITY IN NATURAL
WATERS (Mitre Corp.) 148 p HC A07/MF A01 Unclas
CSCL 08H G3/43 580.11
```


Determination of Scattering Functions and Their Effects on Remote Sensing of Turbidity in Natural Waters

by
Ali H. Ghovanlou Jai N. Gupta
Robert G. Henderson

July 1977

Prepared under Contract No F19628-77-C-0001
by

 for

N/S^

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665 AC 804 827-3966

Determination of Scattering Functions and Their Effects on Remote Sensing of Turbidity in Natural Waters

by
Ali H. Ghovanlou
Jai N. Gupta
Robert G. Henderson

July 1977

Contract Sponsor NASA/Langley Research Center
Contract Number F19628-77-C-0001
Project Number 819 S
Department W-52

by
The METREK Division of The MITRE Corporation McLean, Virginia

ABSIRACT

Development of quantitative analytical procedures for relating the water quality parameter to the characteristics of the backscattered signals, measured by a remote sensor, necessitates further physical insight in the area of radiative transfer processes in turbid media. The present report discusses the applications of a Monte Carlo simulation model for radıative transfer in turbid water. 'The model is designed to calculate the characteristics of the backscattered signal from an illuminated body of water as a function of the turbidity level, and the spectral properties of the suspended particulates. The optical properties of the environmental waters, necessary for model applications, have been derived from available experimental data and/or calculated from Mie formalısm. Results of applications of the model, which have been implemented in support of a laboratory program at NASA/Langley Research Center, are presented.

TABLE OF CONTENTS

Page
LIST OF ILIUSTRATIONS vii
LIST OF TABLES ix
1.0 INTRODUCTION 1
1.1 Optical Parameters of Turbid Water 5
1.2 Radiative Transfer Model 5
1.2.1 Monte Carlo Simulation for Narrow Beam Transmission 6
1.3 Conclusions and Organization of This Report 7
2.0 MEASURED SCATTERING FUNCIIONS 11
2.1 Variation of Scattering Function with Wavelength λ 14
2.2 Scatterıng Probabilıty Function $F(\theta)$ 16
3.0 CALCULATED SCATTERING FUNCTIONS 25
3.1 Mie Theory for Single Particle Scattering 26
3.2 Mine Theory for Scatternng from Polydispersions 28
3.3 Computational Methods 30
3.4 Properties of Clay Samples 32
3.4.1 Physical Characteristics of Clay Samples 32
3.4.2 Partıcle Size Distributıons 35
3.5 Results of Computations 45
3.5.1 Volume Scatterıng Functions 47
3.5.2 Volume Scattering Distribution Functions 54
4.0 DEPENDENCE OF UPWELLING RADIANCE ON SCATTERING FUNCTIONS 61
4.1 Results 63
APPENDIX A RADIATIVE TRANS FER COMPUTER PROGRAM 71
RADIATIVE TRANSFER COMPUTER PROGRAM - Code 1 73
RADIATIVE TRANSFER COMPUTER PROGRAM - Code 2 89
APPENDIX B MEASUREMENT OF SCATTERING FUNCTIONS 1.03
B. 1 Scattering Functions 103
B. 2 Determination of Volume Scattering Function 103
B. 3 Scatterance Meters 104
B.3.1 General Angle Scattering Meter 105
B.3.2 Small Angle Scatterıng Meter 106
Page
APPENDIX C LISTINGS FOR POLYMIE AND DBMIE ROUTINES USED TO CALCULATE THE VOLUME SCATTERING FUNCTIONS 109
APPENDIX D PROGRAM LISTING FOR CURFIT ROUTINE USED TO FIT THE THEORETICAL SIZE DISTRIBUTIONS TO THE EMPERICAL DATA 123
APPENDIX E RELATIONSHIP BETWEEN EXTINCTION, SCATTERING, AND ABSORPTION COEFFICIENTS AND THE MIE PARAMETERS 137
REFERENCES 141
DISTRIBUTION LIST 143
Figure Number Page
1-1 Schematic Diagram of LaRC's Experimental Set-Up 3
2-1 Scattering Functions Observed In-Situ 122-2 Scattering Functions Observed in DeepClear Oceanic Water and Very TurbidHarbor Water13
2-3 Scatterıng Functions Observed In-Vitro 15
2-4 Scattering Functions at Different Wavelengths 172-5 Scattering Probability Functions Obtainedin Deep Clear Oceanic Water and VeryTurbid Harbor Waters18
2-6 The Effect of Scattering and Absorbing Materıals in Fresh Water on Scatterıng Probability Function 192-72-83-13-23-33-43-53-6
3-73-8
Scattermg Probability Function Measured in Sargasso Sea at 2 Wavelengths 21
Scattering Probabilıty Functions ForNatural Ocean Waters and for FreshWater that has Been Filtered andArtificially Modified22
Cumulative Size Distribution of Feldspar Sample 36
Cumulative Size Distribution of Calvert Sample 37
Cumulative Size Distribution of Ball Sample 38
Cumulative Size Distribution of Jordan Sample 39
Particle Size Density Function for Feldspar (Modified Gamma Distribution) 41
Cumulative Size Distrıbution Fit of Feldspar Sample Using Modified Gamma Distrıbution 42
Particle Size Densıty Function for Ball Clay (Junges Distribution) 43
Cumulative Size Distribution Fit of Ball Clay Sample Using Junge Distribution 44
Volume Scattering Functions for Feldspar ($\lambda=500 \mathrm{NM}$) 48
Volume Scattering Functions for Ball Clay ($\lambda=500 \mathrm{NM}$) 49
Volume Scattering Functions for Feldspar ($10 \mu \mathrm{M}$ Cutoff $\lambda=500 \mathrm{NM}$) 50
Figure Number Page
3-12 Volume Scattering Functıons for Ball Clay ($10 \mu \mathrm{M}$ Cutoff $\lambda=500 \mathrm{NM}$) 51
3-13 Volume Scatterıng Functions for Feldspar ($10 \mu \mathrm{M}$ Cutoff $\lambda=600 \mathrm{NM}$) 52
3-14 Volume Scattering Functions for Ball Clay ($10 \mu \mathrm{M}$ Cutoff $\lambda=600 \mathrm{NM}$) 53
3-15 Volume Scattering Distrıbution Functions for Feldspar ($\lambda=500 \mathrm{NM}$) 55
3-16 Volume Scattering Distribution Functions for Ball Clay ($\lambda=500 \mathrm{NM}$) 56
3-17 Volume Scattering Distribution Functions for Feldspar ($10 \mu \mathrm{M}$ Cutoff $\lambda=500 \mathrm{NM}$) 57
3-18 Volume Scattering Distrıbution Functions for Ball Clay ($10 \mu \mathrm{M}$ Cutoff $\lambda=500 \mathrm{NM}$) 583-19 Wavelength Dependence of Volume ScatteringDistrıbution Functions for Feldspar($10 \mu \mathrm{M}$ Cutoff)59
3-20 Wavelength Dependence of Volume Scattering Functions for Ball Clay ($10 \mu \mathrm{M}$ Cutoff) 60
4-1 Backscattered Radiance vs. Upper Limit of the Exit Angle for $s=6$ Meter ${ }^{1}$ 66
4-2 Backscattered Radiance vs. Upper Limit of the Exit Angle for $s=12$ Meter ${ }^{-1}$ ~67
4-3 Ratio of the Backscattered Radiance for Upper and Lower Bounding Scatternng Functions 69

LIST OF TABLES

Table Number Page
3.I Chemical Composition and Index of Refraction of Clay Constituents 34
3.2 Settling Velocities of Sand and Silt in Still Water 46
4.I Optical Parameters Used in the BackscatteredRadiance Calculations64

1.0 INTRODUCTION AND CONCLUSIONS

The importance of continuous monitoring of environmental water qualıty has long been recognized. The recent emphases placed on such operations are due to newly gained insights (1) in the lımitatıons of the cleansing capability of the natural waters, (2) a better understanding of ecological consequences of water pollutants, and (3) avallability of better information for assessing economic ımpacts of varıous stresses imposed on the water systems. Considering the dynamic character of the environmental waters the monitoring procedures for measuring water quality parameters should be based on timely data collection systems, such as can be provided by applications of remote sensing technology.

Hypothetically, in a remote sensing experiment the optical sensor measures the radiance signal which contains information on spectral and spatial variation of the source of radiation and the intervening medıa. The recelved radiance is then "processed" according to an established scheme,'which is a quantitative analytical procedure, and the radiance characteristics are ultimately related to the desired parameters.

The data interpretation techniques for remote measurement of water quality parameters are presently in prelimınary stages. Although some attempts have been made to develop analytical procedures for data processing, a generally accepted processing scheme has not emerged.

Among the quantities that effect the radiance characteristics measured by a remote sensing instrument are:

- Atmospheric path radiances and signal transmission effects
- Spatial and spectral variability of atmospheric constituents such as particulates and molecular species
- Sun ang1e
- Characteristics of air-water interface
- Vertical non-homogenity of water bodies and bottom reflection properties

Considering these effects and the fact that aquatic environments change continuously with the complex interactions between wind, water and land masses; the development of data interpretation schemes, in support of remote sensing, necessitates field experiments and controlled laboratory experiments as well as radiative transfer modeling approaches. A variety of field experiments from low and high flying aircraft and from satellite platforms have been conducted, or planned for the 1 mmediate future.

A laboratory program is presently being pursued at the NASALangley Research Center (LaRC). The purpose of this program is to Investigate the remote sensing of water quality parameters under controlled conditions. During the first phase of this program, remote sensing applications of suspended particulates (varıous types of clays) have been investigated. A schematic diagram of LaRC's experimental set-up is shown in Figure l-1. In this experiment, the beam of a solar simulator is deflected to illuminate a large water

FIGURE 1-1
tank filled with turbid water; the water turbidity in the tank is caused by the stepwise introduction of specific amounts of particulates. An overhead detector system including a spectrometer, electronics, and a camera, measures the strengths and the characteristics of the upwelling radiance signal.

In order to analyze the experimental results and to optimize the experimental conditions a radiative transfer model has been developed for the LaRC's experimental arrangement at The METREK Division of The MITRE Corporation. The description of the modeling approach and the results of a sensitivity study concerning the optimized spot size to be illuminated by the solar simulator have been reported in two earlier documents. $(1,2)$

The present report deals with variations in the characteristics of the backscattered radiance as a result of changes in the scattering function, for various waters. The scattering function represents one of the important optical parameters of the turbid water and various scattering functions may represent various types of turbid waters. In Section 1.3 specific goals of the present report are described in more detail. Before this is done however, it is necessary to summarize some background material on (1) optical parameters of turbid waters, and (2) on our radiative transfer modeling procedure. These background materials are treated in Sections 1.1 , and 1.2 respectively.

1.1 Optical Parameters of Turbid Water

In the absence of polarization the following parameters are necessary for optical characterization of turbid water medium:

- total absorption coefficient, a.
- total scattering coefficient, s.

These coefficients have the dimension of meter ${ }^{-1}$. The attenuation coefficient, α, is the sum of absorption and scattering coefficients. The last parameter of interest is the scattering function, $\sigma(\theta)$. This function specifies the angular pattern of the scattering of a collimated beam from an infinitesimal volume of turbid water. The scattering probability function for polar angle, $F(\theta)$, may be defined In terms of the scattering function by the ratio:

$$
\begin{equation*}
F(\theta)=\int_{0}^{\theta} \sigma(\theta) \sin \theta d \theta / \int_{0}^{\pi} \sigma(\theta) \sin \theta d \theta \tag{1-1}
\end{equation*}
$$

More information on these parameters may be found in Appendix A of Reference 1.

1.2 Radiative Transfer Model

The development of METREK's radiative transfer model is based on a two step process which is described in this section. The adopted modeling procedure is geared toward handing turbid type waters, and toward saving the computer time necessary for model execution. The model development includes the following steps:

Step 1. The outgoing radiance distribution just above the air-water interface, due to a narrow beam transmission in the turbid water media is calculated using Monte Carlo simulation techniques.

Step 2. The outgoing radiance emerging from the area within the detector's field-of-view, and traveling in a direction coincident with the range of the detector's acceptance angle is calculated using the interface radiance distribution (Step 1) and integrating over the incident beam area.

The advantage of this approach as compared to conventional Monte Carlo simulation approaches is that the narrow beam consideration allows the production of a better set of statistics within reasonable computer resources.

1.2.1 Monte Carlo Simulation for Narrow Beam Transmission

The advances in laser technology in the last decade have led to a varlety of theoretical considerations of the narrow beam transmission 1 n the water media. In general, the theoretical approaches may be sub-divided in two categorles, '(1) analytical solution of the equátion of radıative transfer and (2) Monte 'Carlo simulation methods.

The Monte 'Carlo simulation methods avoid many of the mathematical complexities involved in the analytical solution approach, and for this reason are more appropriate for calculating the narrow beam transmission. This is even more true in calculations simulating laboratory experiments where the experimental conditions, such as the tank igeometry, significantly complicate the boundary conditions for the solution of the radiative transfer equation. Thus, the Monte Carlo simulation method has been used in the development of
the analytical model for LaRC's experiment. A description of the Monte Carlo simulation approach, which is geared toward decreasing computer tıme and handling turbid rather than oceanic type waters is glven in References 1 and 2. The procedure leading to the calculation of radiance is based on making use of the distribution of the emerging photons generated by the Monte Carlo program, and the geometry of LaRC's experimental arrangement. (1,2)

The listing of the complete computer program, description of the input data, output data, and instructions for analysis of the output data to arrive at the upwelling radiance, are given in Appendix A.

1. 3 Concluslons and Organlzation of This Report

In our previous reports, $(1,2)$ we have documented the results of our modeling effort concerning the relationshıp between the spot size of the incident beam and the upwelling radiance, in the LaRC's laboratory experiment. These results, however, were based on the usage of only Morrison's scattering probability function. (3) In the present work we report on the effects of varıous inputs of both measured and calculated scattering probability functions.

In Sections 2 and 3 we have (1) summarızed the available information on the measurements of the scattering function, and (2) have utilızed the Mie formalism to calculate the scattering function for polydispersed suspensions on the basıs of size distribution measurements provided through the LaRC laboratory program, and
reasonable inputs for the 1 ndex of refraction including its imaginary part. The compiled measured scattering probability functions for natural water, cover a wide range of turbid waters and show considerable variations. The upper and lower bounding measured for the scattering probability functions correspond to San Diego Harbor, and sea water filtered thoroughly. (4-10) The scatterıng probability function measured by Morrison ${ }^{(3)}$, used in Reference (1,2) 1ies between these limits, closer to the upper bound. Due to the lack of sufficient observations no conclusions could be drawn regarding the changes of the measured scattering functions with wavelength.

The calculated results of the scattering probability functions have been obtalned for the following cases and their combinatuons:

- Size distributions including large particle sizes ($\sim 100 \mu$)
- Size distributions including a cutoff at 10μ
- Zero or 0.004 for the imaginary part of the index of refraction
- Two wavelengths values at 500 and 600 nm

The conclusions derived from these results are:

1) Size distrıbutions including large particles sizes ($\sim 100 \mu$) lead to an extremely large forward scattering peak, which shows up as a fast rise in the scattering probability function. The scattering probability function calculated for this situation is higher than the upper bound of the measured functions as may be seen by comparing Figures $3-15$ and $2-8$.
2) Size distributions including a cutoff at 10μ results in the scattering probability functions which lie between the upper and lower bounding of the measured probability functions shown in Figure 2-8.
3) The effect of non-zero imagnary part for the index of refraction is to decrease the fast rise of the scattering probability function at small angles, and to put these functions whthin the bounds of the measured data.
4) The functions calculated for wavelengths of 500 nm and 600 nm do not show significant differences.

Based on the results and the conclusion described above three functions were selected for the investigation of the dependence of the upwelling radiance on the scattering function. These functions, which have been used in the Monte Carlo simulations radiative transfer code of Appendlx A are:

- The lower bound of the measured scattering probabilıty function
- The upper bound of the measured scattering probability function, and
- The upper bound of the calculated scattering probability functions. This function has been calculated for Feldspar soil, a zero value for the maginary part of the index of ($\sim 100 \mu$). This function is higher than the upper bound of the measured scattering functions.

The turbidity levels treated in section 4.0 correspond to scattering coefficients $s=6.0$ and $s=12$ meter $^{-1}$; the wavelength of interest is 500 nm . The maximum number of incident photons traced in most computer runs is 10,000 . The values calculated with the input of calculated upper bound scattering function is in good agreement with the measured upper bound scattering function for larger range of exit angle. However, for small range of exit angle ($\leq 25^{\circ}$ degrees for $s=6.0$ meter $^{-1}$ and $\leq 35^{\circ}$ for $s=12$ meter $^{-1}$) no statistically significant result could be drived for this function,
from the ensemble of backscattered events for 10,000 incident photons. For this reason only the results derived from the use of measured upper and lower scattering functions were processed further, and form the basis of our conclusions.

The results generated for $s=6.0$ and $s=12.0$ meter $^{-1}$ are in very good agreement as shown in Figure 4-3 (the figure-of-merit), where the ratio of the backscattered radiances (radiance due to the lower limit measured scattering probability functıon, divided by the radiance due to the upper limit measured scattering probability function) have been displayed as a function of the upper limit of the exit angle. As can be seen from Figure 4-3, the influence of the scatterıng probabilıty function is quite significant, but decreases wath decreasıng exit angle. We expect that this trend will continue to be true for smaller angular ranges (such as 0 to 0.5° which represent the acceptance angle of the LaRC's overhead detector) and, therefore, conclude that the effect of various scattering probability functions is not significant in the LaRC's experimental set-up.

The reason the smaller angular ranges were not examined specifically in this report has been due to the constraint on computer resources. It is recommended, therefore, that the computer program developed in this report be executed for a larger number of photons (larger than 10,000 photons considered in this study) to strengthen our conclusions.

2.0 MEASURED SCATTERING FUNCTIONS

In order to measure the complete scattering function, the scatterance must be observed at a number of angles between 0° and 180°. Two types of scattering meters have been used in the past for the measurements of the scattering functions. These are: (1) general angle scattering meters, and (2) low angle scattering meters. The mathematical definytion of scattering function and an overview of the scattering meters are given in Appendix B.

The instrumentation required for in-situ measurements of the scattering functions are very sophisticated, hence only a small number of such measurements have been performed.

Figures 2-1 and 2-2 show several in-situ measured scattering functions covering turbid to clear water conditions. Figure 2-1 represents the observations made in lake water, ${ }^{(4)}$ coastal waters, ${ }^{(5)}$ Atlantic surface water, ${ }^{(6)}$ Pacific near-coastal water, ${ }^{(7)}$ Mediterranean, (8) and Saragasso Sea water. ${ }^{(9)} \overline{\text { Most }}$ of these observations are taken between $\theta=10^{\circ}$ and $\theta=155^{\circ}$. Figure 2-2 illustrates the measurements taken by the Scripps Institution of Oceanography ${ }^{(10)}$ in deep clear oceanic water (tongue of the ocean), near shore ocean water (off shore of Southern Californla), and very turbid harbor water (San Diego Harbor). The measurements shown in Figure 2-2 are al faried;outyoner the entire range $0^{\circ} \leq \theta \leq 180^{\circ}$. The scattering

ORIGITAL PAGE IS OF POORR QUALITITI

FIGURE 2-1
SCATTERING FUNCTIONS OBSERVED IN-SITU

functions shown in both these figures are similar in general form. The differences between the scattering functions are most pronounced in the backward region above 90°, and in the forward region below 100. Although the differences do reflect real variations in the scattering functions for various areas, they may reflect the inherent experimental difficulties as well.

The experimental dufficulties become more striking when the scattering functions are measured in-vitro. The observations taken in-vitro by Petzold ${ }^{(10)}$ are probably the most reliable ones. The measurements were taken to determine the effect of adding scattering and absorbing materials in the water. For this, scattering materials (compounds of aluminum hydroxide and magnesium hydroxide), and absorbing materials (black dye nigrosin), were introduced into fresh water pumped through a filter containing diatomaceous earth. The resultant change in scattering functions as observed with the scattering meters are presented in Figure 2-3. It is clear from Figure 2-3 that the scattering functions are insensitive to the absorption properties of the water.

2.1 Variation of Scattering Function with Wavelength λ

Not many of the experiments either in-situ or in-vitro so far have been performed for different wavelengths. Most of the observations are in $460 \leqslant \lambda \leqslant 655 \mathrm{~nm}$ wavelength region. The scattering functions presented in Figures 2-2 and 2-3 were measured at $\lambda_{12}=530 \mathrm{~nm}$. Due to a lack of observations at other wavelength for

FIGURE 2-3
SCATTERING FUNCTIONS OBSERVED IN-VITRO
the same meters and under similar conditions (Figures $2-2$ and $2-3$), it is difficult to draw any conclusions regarding the changes in scattering functions with wavelength. However, Kullenberg has measured $\sigma(\theta)$ at 655 nm and 460 nm in the Sargasso Sea. (11) These measurements are shown in Figure 2-4. The scattering function is evidently the same at both these wavelengths, in the forward scattering region of $0 \leqslant \theta \leqslant 35^{\circ}$.

2.2 Scattering Probability Function F(θ)

The scattering probability function, $F(\theta)$, has been defined by equation (1-1). $\bar{F}(\theta)$ is the ratio of power scattered into angles less than θ relative to the total power scattered in all directions. $F(\theta)$ is an important parameter and is a measure of forward as well as backward scattering in natural environment waters. $F(\theta)$ is the function used in the Monte Carlo simulation model, as mentioned in the introduction.

Figure 2-5 shows the scattering probability function obtained by integrating the function represented in Figure 2-2, while Figure 2-6 illustrates $F(\theta)$ obtained from Figure $2-3$. The probabilıty scattering functions presented in Figure 2-6 show the effect of adding scattering and absorbing materials in the waters. Clearly, the addition of scattering material increases the backscattering whereas addition of absorbing material contributes insignificant changes to the scattering probability function.

FIGURE 2-4
SCATTERING FUNCTIONS AT DIFFERENT WAVELENGTHS

FIGURE 2-5
SCATTERING PROBABILITY FUNCTIONS OBTAINED IN DEEP CLEAR-OCEANIC WATER AND VERY TURBID HARBOR WATERS

FIGURE 2-6
THE EFFECT OF SCATTERING AND ABSORBING MATERIALS IN FRESH WATER ON SCATTERING PROBABILITY FUNCTION

To illustrate the effect of varying wavelength on the scattering probability function, the functions presented in Figure $2-4$ were filled in the angular range larger than 1° degree, were extrapolated into the angular range smaller than 1° degree, and were integrated to obtain $F(\theta)$ at 655 nm and 540 nm , as shown in Figure 2-7.

Since one of the objectives of this paper is to record experimentally determined upper and lower bounding scattering probability functions, the information from Figures $2-5,2-6$, and $2-7$ are shown collectively in Figure 2-8. The lowest bound on the scattering probabılıty function is given by the pure water, where particulate scattering is insignificant. Natural environmental waters are not usually free of particulates and, therefore, experiments have been performed to define their characteristics. An experiment conducted at Scripps Institution of Oceanography ${ }^{(10)}$ examined sea water pumped into the laboratory and measured scattering probability functions for the water as delivered, and after several steps of filtration. After 18 hours of filtering, low-angle foward scattering signals have been found too low to be measurable. The results obtanned from this experiment, in addition to the scattering probability functions obtained by Morrison at Long Island Sound stations, ${ }^{(3)}$ are included in Figure 2-8.

The work presented in this section indicates that the San Diego Harbor water, the most turbid water, gives the upper bound to the experimentally determined scattering probability functions. The

FIGURE 2-7
SCATTERING PROBABILITY FUNCTION MEASURED IN SARGASSO SEA AT 2 WAVELENGTHS

lower bound is given by the sea water thoroughly filtered. The scatterance characteristics of various waters considered are quite different. Very turbid waters show very high forward scatterance. At 1° scattering angle, the forward scatterıng measured in San Diego Harbor water is almost 15 times of that measured in filtered water. This ratio reduces to three at 10° scattering angle.

The implications of these results on remote detection of water turbidity will be discussed in Section 4.0 .

3.0 CALCULATED SCATTERING FUNCTIONS

This section is devoted to the theoretical treatment of scattering and absorption from suspended particulates. The Mie theory of light scattering from a single particule is treated in Sub-section 3.1. The extension of Mie theory to the case of polydispersed suspensions is then discussed along with the computational methods used to calculate the scattering function, in Subsections 3.2 and 3.3 (Appendix E discusses the relationships between the Mie parameters and the extiction, scattering and absorption coefficients), Sub-section 3.4 includes a discussion of the size distributions and optical properties of the clay sediments considered in the calculations. Finally, in Section 3.5 the results of the calculation of the scattering function are presented along with a discussion of their implications for the NASA/Langley tank experiment.

The following discussion of the Mie theory of scattering and the computational methods is a brief summary. For more detailed discussions of Mie theory for single scattering, the reader is referred to References 13,14 , and 15 . Reference 16 contains a good discussion of Mie scattering from polydispersions and reference 17 contains the details of the computational procedures and requirements.

3.1 Mie Theory for Single Particle Scattering

When light is incident on a particle, it undergoes both scatternng and absorption (we will ignore inelastic scattering processes which result in a change in frequency). The characteristics of the scattered radiation depend on the wavelength, λ, of the incident light, the generally complex index of refraction, m, of the particle, and the size, r, and shape of the particle. In this report we will restrict the discussion to spherical particles; for the treatment of inorganic sediments in water this is probably not a serious restriction.

If a monochromatic beam of light of intensity I_{o} is incident on a spherical particle at an angle $\theta=0$, then the scattered intensity Is given by

$$
\begin{equation*}
I(x, m, \theta)=\frac{\lambda^{2}}{4 \pi^{2}} \sigma(x, m, \theta) I_{0} \tag{3-1}
\end{equation*}
$$

Where $\sigma_{1}(x, m, \theta)$ is the single particle scattering function, σ (x, m, θ) depends in general, on the size parameter,

$$
\begin{equation*}
x=\frac{2 \pi r}{\lambda} \tag{3-2}
\end{equation*}
$$

and the complex index of refraction, m. The calculation of $\sigma(x, m, \theta)$ requires the solution of Maxwell's equation in spherical coordinates with a discontinuous change in the index of refraction across the
spherical surface. This solution was originally derived by G. Mie (18) and independently by P. Debye ${ }^{(19)}$.

The scattering function can be written as:

$$
\begin{equation*}
\sigma(x, m, \theta)=\left[\frac{\sigma_{1}(x, m, \theta)+\sigma_{2}(x, m, \theta)}{2}\right] \tag{3-3}
\end{equation*}
$$

and the Mie solution is

$$
\begin{align*}
& \sigma_{1}(x, m, \theta)=S_{1}(x, m, \theta) S_{1}^{*}(x, m, \theta) \tag{3-4}\\
& \sigma_{2}(x, m, \theta)=S_{2}(x, m, \theta) S_{2}^{*}(x, m, \theta)
\end{align*}
$$

Where $S_{1}(x, m, \theta)$ and $S_{2}(x, m, \theta)$ are the complex amplitudes for the scattered radıation,

$$
\begin{align*}
& S_{1}(x, m, \theta)=\sum_{n=1}^{\infty} \frac{(2 n+1)}{n(n+1)}\left\{a_{n}(x, m) \pi_{n}(\mu)+b_{n}(x, m) \tau_{n}(\mu)\right\} \tag{3-5}\\
& S_{2}(x, m, \theta)=\sum_{n=1}^{\infty} \frac{(2 n+1)}{n(n+1)}\left\{b_{n}(x, m) \pi_{n}(\mu)+a_{n}(x, m) \tau_{n}(\mu)\right\}
\end{align*}
$$

In these expressions $\pi_{n}(\mu)$ and $\tau_{n}(\mu)$ are derivatives of the Legendre polynomials:

$$
\begin{align*}
& \pi_{n}(\mu)=\frac{d P_{n}(\mu)}{d \mu} \\
& \tau_{n}(\mu)=\mu \pi_{n}(\mu)-\left(1-\mu^{2}\right) \frac{d \pi_{n}(\mu)}{d \mu} \tag{3-6}
\end{align*}
$$

(where $\mu=\cos \theta$). Also

$$
\begin{align*}
& a_{n}(x, m)=\frac{\psi_{n}^{\prime}(m x) \psi_{n}(x)-m \psi_{n}(m x) \psi_{n}^{\prime}(x)}{\psi_{n}^{\prime}(m x) \xi_{n}(x)-m \psi_{n}(m x) \xi_{n}^{\prime}(x)} \tag{3-7}\\
& b_{n}(x, m)=\frac{m \psi_{n}^{\prime}(m x) \psi_{n}(x)-\psi_{n}(m x) \psi_{n}^{\prime}(x)}{m \psi_{n}^{\prime}(m x) \xi_{n}(x)-\psi_{n}(m x) \xi_{n}^{\prime}(x)}
\end{align*}
$$

and the ψ^{\prime} s and ξ^{\prime} s are related to the spherical Bessel functions of the first and second kinds (j_{n} and y_{n} respectively):

$$
\begin{align*}
& \psi_{n}(z)=z_{j_{n}}(z) \\
& \xi_{n}(x)=x j_{n}(x)-i y_{n}(x) \tag{3-8}\\
& \psi_{n}^{\prime}(z)=z_{J_{n-1}}(z)-n j_{n}(z) \\
& \xi_{n}^{\prime}(x)=x j_{n-1}(x)-i y_{n-1}(x)-n j_{n}(x)-i y_{n}(x)
\end{align*}
$$

3.2 Mie Theory for Scattering from Polydispersions

A polydispersion is a suspension of scatterıng particles of uniform physical characteristics but of varying number concentration depending on particle size. Because of the existence of different particle sizes it makes little sense to talk of scattering from a single particle. Instead, it is useful to consider the scattering properties of \bar{a} small volume element containing a number of particles. The size of this volume element is of some, at least theoretical, importance. Clearly, if it is to be used to represent the scattering
properties of all similar volume elements then it must contain a representative set of particle sazes - this requires that the volume element not be too small. On the other hand, since we are considering only single scattering from the volume element, it must not be too large. An additional condition that must be imposed is that the inter-particle separation be large compared to the wavelength. The reason for thys is that the interaction of light with a particle will be assumed independent of the interactions with all other particles. This condition requires that the particle density in the volume element not be too large. For our purposes, it will be assumed that all of the above conditions are satisfied.

The polydispersion can be completely specified, for our purposes, by an index of refraction m and a probability density function $\mathfrak{n}(r)$. The density function gives the relative concentration of each size contained in a volume element.

The characteristics of the scattered radiation due to the volume element can then be represented by a volume scattering function $\sigma(m, \theta)$ in a manner analogous to Equation (3-1):

$$
\begin{equation*}
I(m, \theta)=\frac{\lambda^{2}}{4 \pi^{2}} \sigma(m, \theta) I_{0} \tag{3-9}
\end{equation*}
$$

The scattering function can be calculated from the set of partıcle scattering functions:

$$
\begin{equation*}
\sigma(m, \theta)=\int_{0}^{\infty} \sigma(x, m, \theta) n(r) d r \tag{3-10}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{0}^{\infty} n(r) d r=N \tag{3-11}
\end{equation*}
$$

and N is the total number of particles per unit volume. In what follows, N will be assumed to be unity since $\sigma(m, \theta)$ scales wath N. The abillty to represent $\sigma(m, \theta)$ as a linear superposition of the $\sigma(s, m, \theta) s$ is a direct consequence of our assumption that the interparticle separation is much greater than λ.

The calculation of $\sigma(m, \theta)$ thus reduces to calculations of the individual $\sigma(s, m, \theta)$ and then integration over all sizes with the proper weighting given by $n(r)$.

3.3 Computational Methods

The calculation of the scattering functions and the averaging over size distributıons was carried out on an IBM 370/148. The progràm listings are reproduced in Appendix C.

In computing the sums in Equation (3-5), the major difficulty arises in the evaluation of the $a_{n}(x, m)$ and $b_{n}(x, m)$. Using the definitions of $\psi_{n}, \psi_{n}^{\prime}, \xi_{n}$, and ξ_{n}^{\prime}, and the standard recurrence relations for the Bessel functions, Equation (3-7) can be rewritten:

$$
\begin{align*}
& a_{m}(x, m)=\frac{\left\{\frac{A_{n}(m x)}{m}+n / x\right\} \operatorname{Re}\left[\xi_{n}(x)\right]-\operatorname{Re}\left[\xi_{n-1}(x)\right]}{\left\{\frac{A_{n}(m x)}{m}+n / x\right\} \operatorname{\xi n}(x)-\xi_{n-1}(x)} \\
& b_{n}(x, m)=\frac{\left\{m A_{n}(m x)+n / x\right\} \quad \operatorname{Re}\left[\xi_{n}(x)\right]-\operatorname{Re}\left[\xi_{n-1}(x)\right]}{\left\{m A_{n}(m x)+n / x\right\} \xi_{n}(x)-\xi_{n-1}(x)} \tag{3-12}
\end{align*}
$$

Where

$$
\begin{equation*}
A_{n}(m x)=\frac{\psi_{n}^{-}(m x)}{\psi_{n}(m x)} \tag{3-13}
\end{equation*}
$$

the logarithmic derivative of $\psi_{n}(\mathrm{mx})$, and $R e$ denotes the real part. The natural approach to the evaluation of Equation (3-12) is to employ a standard upward recurrence procedure. Unfortunately, if the imaginary part of $m, \operatorname{Im}(m)$, is not zero and n is larger then the upward recurrence procedure results in larger instabilities in the calculation of $A_{n}(m x)$. For this reason, the DBMIE subroutine employs a downward recurrence procedure to calculate the $A_{n}(m x) s$. These values are then stored for use in the evaluation of Equation (3-12). Because of the large storage requirements resulting from this procedure ($n \sim 7000$), and the fact that double precision is employed in all of the calculations, a virtual machine with 512 K bytes of storage is required for the implementation of the DBMIE and POLYMIE routines.

While the scattering functions are computed in the DBMIE subroutine, the average, Equation (3-10), is computed in the calling routine POLYMIE. While analytic functions have been used for the size distributions, $n(r)$, the integral has been approximated by a summation over a discrete set of radir. Tests to determine the effect of using a summing procedure have shown that this results in no loss of accuracy. In addition, test runs were made to compare the results when $\Delta r=0.1 \mu(0.1$ micron) and $\Delta r=1 \mu$ were used in the
summing procedure. The use of $\Delta r=1 \mu$ resulted in no significant change in the results from those obtained using $\Delta r=0.1 \mu$ over the range $0<\cdot r<100 \mu$. Calculations were made using $r_{\max }=100 \mu$ $(\Delta \underline{r} \equiv I \mu)$ and $r_{\text {max }}=10 \mu(\Delta r \equiv 0.1 \mu)$. A discussion of the proper upper limıt for r ıs given in Section 3.4.

The amownt of virtual CPU time required for these calculations is significant and has been a major factor in determining $r_{\max }$ and Δr. As an example, the calculation of the volume scatterang function for a polydispersion with $m=1.144-0.0 i, \lambda=0.5 \mu, r_{\max }=100 \mu$ and $\Delta r=1 \mu$ requires approximately 26 mınutes of virtual CPU tıme.

3.4 Properties of Clay Samples

Data on four different clay samples were provided by NASA/LaRC. Thıs data consisted of empirical size distribution curves as well as brief descriptions of chemical composition. The physical characteristics of the clay are discussed in Section 3.4 .1 while the size distributions are presented in Section 3.4.2.

3.4.1 Physical Characteristics of Clay Samples

Four types of clay were selected by NASA/LaRC. These were: Feldspar, Galvert, Ball and Jordan. According to the analysis of these clays performed by NASA/LaRC ${ }^{(20)}$ the compositions are:

- Feldspar - Feldspar and Quartz minerals
- Calvert and Jordan - Kaolinite and Illite
- Ball - Montmorılloite, Kaolinite and Illite

The real refractive index and chemical components of these minerals is shown in Table 3.1.(21) For reasons which will be discussed in Section 3.4.2, Feldspar and Ball clay were chosen to be included in this study.

To estimate the index of refraction of the clay samples, we take a simple average of the indices of refraction of the components. Thus, for both Feldspar and Ball clay, the real part of the index of refraction is estimated as

$$
\operatorname{RE}\left(\mathrm{m}_{\mathrm{Air}}\right)=1.53
$$

This, of course, is the index of refraction with respect to air and we require the index of refraction with respect to water which can be obtained by dividing $\operatorname{Re}\left(\mathrm{m}_{\mathrm{Air}}\right)$ by the index of refraction of water 1.337 (for wavelengths of approximately 500 nm).

Thus

$$
\operatorname{Re}\left(m_{\text {water }}\right)=1.144
$$

Estimating the imaginary part of the index of refraction is not so straightforward, since direct measurements of $\operatorname{Im}(\mathbb{m})$ have not been made. Since these minerals have very low conductivity, it is expected that the imaginary part of m will be quite small. The imaginary part of m has been measured for soil aerosols and has been found to be about . 005 (with respect to air). (22) For-this study two values for Im(m) wall be used:

$$
11 \text { be used: } \quad \operatorname{Im}\left(\mathrm{m}_{\text {Water }}\right)=\left\{\begin{array}{cl}
0 & \text {, Non-absorbing } \\
\frac{0.005}{1.337}=0.004, \text { Weakly-absorbing }
\end{array}\right.
$$

TABLE 3.1

CHEMICAL COMPOSITION AND INDEX OF REFRACTION OF CLAY CONSTITUENTS

NAME	CHEMICAL COMPOSITITON	INDEX OF REFRACTION
Kaolinite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.56
Illite	$\mathrm{K}_{1-1.5} \mathrm{Al}_{4} \mathrm{Si}_{7-6.5} \mathrm{Al}_{1-1.5} \mathrm{O}_{2}{ }^{(0 \mathrm{H})}{ }_{4}$	1.54
Montmorilloite	$(.5 \mathrm{Ca}, \mathrm{Na})_{.7}{\mathrm{SAl}, \mathrm{Mn}, \mathrm{Fe})_{4}(\mathrm{si}, \mathrm{Al})_{8}}$	(HO) $\mathrm{nH}_{2} \mathrm{O} 1.48$
Feldspars:		
Microcline	$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$	1.52
Andesine	$\left(\mathrm{CaO}_{1} \mathrm{Na}_{2} \mathrm{O}\right) \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2}$	1.55
Anthoclase	$(\mathrm{Na}, \mathrm{K})_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$	1.53

3.4.2 Particle Size Distributions

Emperical cumulative size distributions for the four samples were provided by NASA/LaRC and are shown in Figures 3-1, 3-2, 3-3 and 3-4. It is apparent from these figures that the size distributions for Ball, Jordan, and Calvert differ signıficantly from the size distribution for Feldspar. Since $1 t$ was planned that two distributions would be employed, Feldspar and Ball clay were chosen. This choice allows the investigation of the effect of radically different size distributıons.

To utilize the size distribution information, it is necessary to determane size distribution density functions, $n(r)$, which specify the relative number of particles with radius r per unit volume. If we denote the cumulative size distribution as provided by NASA/LaRC as $N\left(r_{0}\right)$ then the relationship between $N\left(r_{0}\right)$ and $n(r)$ is given by:

$$
\begin{equation*}
N\left(r_{0}\right)=1-\int_{0}^{r_{o}} n(r) d r \tag{3-14}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.n(r)=\frac{d N}{d r_{0}}\left(r_{0}\right) \right\rvert\, r_{0}=r \tag{3-15}
\end{equation*}
$$

A general curve fitting routine (See Appendix D) was used to determine the best distribution for both the Ball clay and Feldspar.

For the Feldspar sample, it was found that the data was well represented by a modified Gamma distribution:

$$
\begin{equation*}
n(r)=a_{1} r^{a_{2}} \exp \left(-a_{3} r^{a_{4}}\right) \tag{3-16}
\end{equation*}
$$

FIGURE 3-1
CUMULATIVE SIZE DISTRIBUTION OF FELDSPAR SAMPLE

FIGURE 3-2
CUMULATIVE SIZE DISTRIBUTION OF CALVERT SAMPLE

FIGURE $3-3$
CUMULATIVE SIZE DISTRIBUTION OF BALL SAMPLE

FIGURE 3-4
CUMULATIVE SIZE DISTRIBUTION OF JORDAN SAMPLE

The parameters were determined, using a minnmum mean square error criterion, to be

$$
\begin{aligned}
& a_{1}=2.05089 \\
& a_{2}=0.671066 \\
& a_{3}=3.58393 \\
& a_{4}=0.218499
\end{aligned}
$$

A plot of this size distrıbution densıty function is shown in Figure 3-5, while a plot of the corresponding cumulative size distrubution function (as obtalned from Equation 3-16) is shown in Figure 3-6. As can be seen in Figure 3-6, the modified Gamma distribution gives a good fit to the data points obtalned in the NASA/LaRC analysis.

To fit the slze distrabution of the Ball clay sample, Junge's distrıbution model was chosen:

$$
\begin{equation*}
n(r)=a_{1} r^{-a} 2 \tag{3-17}
\end{equation*}
$$

wath the parameters,

$$
\begin{aligned}
& a_{1}=.2006 \\
& a_{2}=1.624746
\end{aligned}
$$

determined using the same curve fitting routine employed for Feldspar. The size distribution densaty functıon and the cumulative size distribution function for Ball clay using Junge's distribution are shown In Figures 3-7 and 3-8. It is apparent from Figure 3-7 that Junge's distribution function is not, strictly speaking, a probabilıty distribution since the integral (Equation 3-11),

$$
\int_{0}^{\infty} n(r) d r=N
$$

FIGURE 3-5
PARTICLE SIZE DENSITY FUNCTION FOR FELDSPAR (MODIFIED GAMMA DISTRIBUTION)

FIGURE 3-6

FIGURE $3-7$
PARTICLE SIZE DENSITY FUNCTION FOR BALL CLAY (JUNGES DISTRIBUTION)

FIGURE 3-8
CUMULATIVE SIZE DISTRIBUTION FIT OF BALL CLAY SAMPLE USING JUNGE DISTRIBUTION
can not be normalized, i.e., N is infinite. However, Junge's distribution has been found to accurately represent particle sizes of ocean sediments. (23) In addition, the lower and upper limits of integration In Equations (3-11) and (3-10) are not set equal to zero and infinity, In practice, allowing Equation (3-11) to be normalized.

The question of the proper upper limit for Equation (3-10) and Equation (3-11) is of more than theoretical interest. From the empırical size distributions provided by NASA/LaRC, it appears that an upper limit in Equation (3-10) should be chosen as 100 microns ($\mu \mathrm{m}$) . However, as can be seen in Table $3.2^{(24)}$ the settling rate for $100 \mu \mathrm{~m}$ particles is on the order of forty seconds. Thus, the history of the particulates in the body of water is important. If the particulates have been allowed to settle, then the size distributions determined before the particles are \ln ntoduced into the water are inappropriate. In the NASA/LaRC water tank experiment the water is continuously mixed, thus forcing the large particles to remain in suspension. In order to investigate the effect of settling, two upper limits, $100 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$, were chosen for the integrals of Equations (3-10) and (3-11). Equation (3-11) was used to properly normalize Equation (3-10) with respect to the choice of upper limit.
3.5 Results of Computations

Thé résuitts of : fro: s.r. :
functions (3.5.1) and the volume scattering distribution functions (3.5.2), using the size distributions of Section 3.4, are presented

TABLE 3.2

SETTLING VELOCITIES OF SAND AND SILT IN STILL WATER
(Source- Amer Water Works Assoc.)
[Temperature $50^{\circ} \mathrm{F}$, all particles assumed to have a specific gravity of 2 65]

Diameter of particle	Order of Size	Setting Velocity	Tame Required to Settle 1 Foot
mm .		$\mathrm{mm} / \mathrm{sec}$	
100	Graval	1,000	03 seconds
1.0		100	30 seconds
08		83	
06		63	
05	Coarse Sand	53	
04	Coarse Sand	42	
03		32	
02		21	
0.15		15	
010		8	380 seconds
008		6	
006		38	
005		29	
004	Fine Sand	21	
003		13	
002		062	
0015		035	
0010		0154	330 minutes
0008		0098	
0006		0065	
0005	Silt	00385	
0004	Silt	00247	
0003		00138	
0002		00062	
00015		00035	
0001	Bacteria	000154	550 hours
00001	Clay Particles	00000154	$2300 \text { days }$
000001	Collordal Particies	0000000154	630 years

ORIGINAL PAGE IS
OF POOR QUALITY
in this section. In addition to examining the effect of settling on the calculations, the wavelength dependence of the scattering functions are also investigated.

3.5.1 Volume Scattering Functions

The computed volume scattering functions are shown in Figures 3.9 through 3.14 .

Figures 3.9 and 3.14 display the extremely large forward scatterıng peak which is primarily the result of including the large ($\sim 100 \mu \mathrm{~m}$) particulates in the size distributions. Both the Feldspar and Ball clay phase functions show considerable difference between the non-absorbing and absorbing cases at large angle. While it is not evident in the figures, the forward scattering peak is larger for the absorbing case at small but non-zero angles ($\theta \sim 0.5^{\circ}$).

Figures 3-11 and 3-12 demonstrate the effect of cutting the size distributions off at $10 \mu \mathrm{~m}$ instead of $100 \mu \mathrm{~m}$. The relative size of the forward peak is reduced and the difference between the absorbing and non-absorbing cases at large angles is reduced. It is interesting to note that, although the shape of the Feldspar and Ball clay size distrabutions are very different, the upper limit on the size appears to be much more important in terms of the difference in phase functions.

Figures 3-13 and 3-14 show the scattering functions computed for $\lambda=600 \mathrm{~nm}$ (with a $10 \mu \mathrm{~m}$ cutoff) instead of $\lambda=500 \mathrm{~nm}$ as in Figures 3-11 and 3-12. It can be seen that the phase functions are not heavily

FIGURE 3-11
VOLUME SCATTERING FUNCTIONS FOR FELDSPAR ($10 \mu \mathrm{M}$ CUTOFF $\lambda=500 \mathrm{NM}$)

FIGURE 3-12
VOLUME SCATTERING FUNCTIONS FOR BALL CLAY ($10 \mu \mathrm{M}$ CUTOFF $\lambda=500 \mathrm{NM}$)

FIGURE 3-13
VOLUME SCATTERING FUNCTIONS FOR FELDSPAR ($10 \mu \mathrm{M}$ CUTOFF $\lambda=600 \mathrm{NM}$)

ORIGINAL PAGE IS
OF POOR QUALITHI
FIGURE 3-14
VOLUME SCATTERING FUNCTIONS FOR BALL CLAY ($10 \mu \mathrm{M}$ CUTOFF $\lambda=600 \mathrm{NM}$)
wavelength dependent. In fact, it can be shown that for a uniform size distribution and upper and lower limits of zero and infinity in Equation (3-10), the volume scattering function will be strictly independent of wavelength.

3.5.2 Volume Scattering Distribution Functions

Whale the volume scattering function describes the angular dependence of scattered radiation, a more important function for use with the Monte Carlo simulation is the volume scattering distribution function, $F(\theta)$, defined by equation (1-1). The distribution function gives the normalized probabillty that a photon is scattered in the range 0 to θ degrees. The volume scattering distribution functions for the cases considered in Section 3.5 are shown in Figures 3-15 through 3-20.

It is again apparent in Figures $3-15$ and $3-16$ that there is a considerable difference between the absorbing and non-absorbing case. The difference due to the Feldspar and Ball clay size distributions is small.

As with the scattering functions, the use of a 10 m cutoff decreases the difference between the absorbing and non-absorbing cases. In addrtion, the volume scattering distribution functions are changed consdierably when the $10 \mu \mathrm{~m}$ cutoff is imposed.

Figures 3-19 and 3-20 demonstrate the small change in the volume scattering distribution functions when the wavelength is changed.

FIGURE 3-15
VOLUME SCATTERING DISTRIBUTION FUNCTIONS FOR FELDSPAR $(\lambda=500 \mathrm{NM})$

FIGURE 3-16
VOLUME SCATTERING DISTRIBUTION FUNCTIONS FOR BALL CLAY $(\lambda=500 \mathrm{NM})$

FIGURE 3-18
VOLUME SCATTERING DISTRIBUTION FUNCTIONS FOR BALL CLAY ($10 \mu \mathrm{M}$ CUTOFF $\lambda=500 \mathrm{NM}$)

FIGURE 3-19
WAVELENGTH DEPENDENCE OF VOLUME SCATTERING DISTRIBUTION FUNCTIONS FOR FELDSPAR ($10 \mu \mathrm{M}$ CUTOFF)

FIGURE 3-20
WAVELENGTH DEPENDENCE OF VOLUME SCATTERING FUNCTIONS FOR BALL CLAY ($10 \mu \mathrm{M}$ CUTOFF)

4.0 DEPENDENCE OF UPWELLING RADIANCE ON SCATTERING FUNCTION

In this section we describe our results on the dependence of the upwelling radiance as it relates to the variations of the scattering function, or equivalently to its integrated form the scattering probabılity function. Before this is done, however, we will summarize the information on the scattering probability functions derived earlier.

In the previous two sections, we have (1) summarized the available information on the measurements of the scattering function, and (2) have utilized the Mie formalism to calculate the scattering function for polydispersed suspensions on the basis of size distribution measurements provided through the LaRC laboratory program. The complled measured scattering probability functions for natural water, Figure 2-8, cover a wide range of turbid waters and show considerable variations. The upper and lower bounding measured for the scattering probability functions correspond to San Diego Harbor, sea water filtered thoroughly. The scattering probability function measured by Morrison ${ }^{(3)}$, used in Reference (1,2) lies between these limits, closer to the upper bound. Due to the lack of sufficient observations no conclusions could be drawn regarding the changes of the measured scattering functions with wavelenth. The calculated results of the scatterıng probabilıty functions have been obtained for the following cases and their combinations:

- Size distributions including large particle sizes ($\sim 100 \mu \mathrm{~m}$)
- Size distributions including a cutoff at $10 \mu \mathrm{~m}$
- Zero or 0.004 for the imaginary part of the index of refraction
- Two wavelengths values at 500 and 600 nm

The conclusions which may be derived from these results are:

1) Size distributions incIuding large particles sizes ($\sim 100 \mu$) lead to an extremely large forward scattering peak, which shows up as a fast rise in the scattering probabilıty function. The scattering probability function calculated for this situation is higher than the upper bound of the measured functions as may be seen by comparing Figures $3-15$ and 2-8.
2) Size distributions including a cutoff at 10μ results in the scattering probability functions which lie between the upper and lower bounding of the measured probability functions shown in Figure 2-8.
3) The effect of non-zero imaginary part for the index of refraction is to decrease the fast rise of the scattering probability function at small angles, and to put these functions within the bounds of the measured data.
4) The functions calculated for wavelengths of 500 nm and 600 nm do not show significant differences.

Based on the results and the conclusion described above three functions were selected for the anvestagation of the dependence of the upwelling radiance on the scattering function. These functions, which were input to the Monte Carlo simulations radiative transfer code of Appendıx A, have been designated by SCATR 1, SCATR 2, and SCATR 3. SCATR 2 is the lower bound of the measured scattering probability function shown in Figure 2-8. SCATR 1 is the upper bound of the measured scattering probability function shown in Figure 2-8. SCATR 3 is the upper bound of the calculated scatternng probability functions, and is shown in Figure 3-15. This function has been calculated for Felspar soil, a zero value for the imaginary part of

```
\because % *
```



```
    ,
```

Index of refraction, a size distribution including large particles ($\sim 100 \mu$) at 500 nm wavelength.

4.1 Results

Besides the parameters characterızing the cross sectional radius (1.2 meters) and the height (2.6 meters) of the LaRC cylindrical water tank, and the reflectivity of the tank walls (3.0 percent) the following input parameters are required for the model:
(1) Total scattering coefficient s,
(2) Total absorption coefficient a,
(3) Scattering probability function.

A fourth model input concerns the maximum number of photons to be traced in each computer run.

The results presented in the remalnder of this section refer to two turbidity levels which have been simulated in the model. These turbidity levels correspond to $s=6$ meter $^{-1}$, and $s=12$ meter $^{-1}$ respectively. The wavelength considered $1 s 500 \mathrm{~nm}$. From the functional relationship between a / s ratio and the wavelength, reported In Reference 1, the value of a / s for particles at 500 nm is 0.27 . Based on this value, absorption coeffycients of 1.6 and 3.2 meter $^{-1}$ have been calculated for $s=6$ and $s=12$ meter $^{-1}$ respectively, and are shown in Table 4.1.

On making use of the computer code documented in Appendix A the radiances emerging from the area within the field of view of the over-

TABLE $4 . I$
OPTICAL PARAMETERS USED IN THE BACKSCATTERED RADIANCE CALCULATIONS

WAVELENGTH (nm)	TOTAL SCATTERING COEFFICIENT (meter-1) s	TOTAL ABSORPTION COEFFICIENT (meter-1) a	TOTAL ATTENUATION COEFFICIENT (meter-1)
500	60	1.6	α

head detector in the LaRC's experimental arrangement,* and into the exit angles in the range $0-10$ degrees, $0-20$ degrees, $0-30$ degrees, have been calculated. The results of these calculations in terms of the backscattered radiance vs, the upper limit of the exit angle is shown in Figures $4-1$ and $4-2$ for $s=6.0$ and $s=12.0$ meter $^{-1}$. Three scatterıng probability functions, namely the measured upper and lower bounding functions have been used. The model has been executed for 10,000 photons in each case. The values calculated with the input of calculated upper bounding scattering function is in good agreement (the shape of the respective curves) with the measured upper bounding scattering function for the large range of the exit angles. For the small range of the exit angles, $\left(\leq 25^{\circ}\right.$ degrees for $s=6$ meter $^{-1}$ and $\leq 35^{\circ}$ for $s=12$ meter $^{-1}$) no statistically significant result could be derived from the ensemble of backscattered photons for 10,000 incident photons. For this reason the reminder of this report will discuss the results concerning the upper two curves in Figure 4-1 and 4-2.

The presented results indicate that the upwelling radiance has a strong dependence on the scattering function used. This dependence seems to get less important with decreasing range of the exit angle. If the same trend continues to be true for smaller than 10° angles

[^0]

FIGURE 4-1
BACKSCATTERED RADIANCE VS. UPPER LIMIT OF
THE EXIT ANGLE FOR $s=6 \mathrm{METER}^{\dagger}$

FIGURE 4-2
BACKSCATTERED RADIANCE VS. UPPER LIMIT OF
THE EXIT ANGLE FOR $s=12$ METER $^{-1}$
than 10° angles (for which no significant statistic could be derived for 10,000 photons)* then, at 0.5° angle which is the actual acceptance angle of the LaRC's detector, the effect of various scattering functions will not be significant. This is displayed graphically by the results presented in Figure 4-3, where the ratio of the backscattered radiances for the upper and lower bounding of the scattering function is shown as a function of the upper limit of the exit angle. These results will be discussed in more detail in section 1.4.

[^1]

FIGURE 4-3
RATIO OF THE BACKSCATTERED RADIANCE FOR UPPER AND LOWER BOUNDING SCATTERING FUNCTIONS

APPENDIX A

RADIATIVE TRANSFER COMPUTER PROGRAM

In this appendix we have included two versions of our radiative transfer code. These programs are appropriately modıfied versions of the program listed in Reference 2 . The modifled computer codes make it easier to incorporate any desired scattering probability function in the model. The functions included in Code 1 of this appendix are, the upper and the lower bounding, measured scattering probability functions shown in Figure 2-8. These functions are represented in the code by SCATER I, and SCATER 2 respectively. Code 2 of this appendux is designed to handle the calculated scattering functions, specifically, the code includes the upper bound of the calculated functions shown in Figure 3-15. SCATER 3 represents this function. The out-puts of both codes are (1) the probability weights of each emerging photon, and (2) the angles of emergence. The sum of the probability weights for each angular range, normalized to the number of Incident photons represents the upwelling radiances shown in Figures 4-1 and 4-2.

PRECEDING PAGE BLANK NOT FITMED

RADIATIVE TRANSFER COMPUTER PROGRAM

Code 1

PRECEDING PAGE BLANK NOT FIIMEB


```
C
C MONTECARLO PROGRAM WITH EOCUMENTATION.
        TANK BOUNDARIFS AND TOTAL DEFLECTION ARE INCLUOED.
        COMMON/BLOCK1/XMAX, YMAX,ZMAX,X,Y,Z,T,GAMA,TETA,FI,PI,DTRC,S,IS.ZD
C
C
    25 FORMAT(3(2X.I12))
        READ(5,30)TETAI,FII
    30 FORMAT(2(5X,F8.3))
        READ (5,35) XMAX, YMAX, ZMAX
    35 FORMAT(3(5X,F8.3))
        READ(5,37)S
    37 FORMAT(F8.3)
        READ (5,24)A400, A500,A600
    24 FORMAT(3) 5X,F8.3))
        WRITE(t,26)MAXNPH
    26 FORMAT('N','MAXINUM NC. CF FHOTONS TC BE TFACED= ',I9)
        WRITE(6,27) NMAX
    27 FORM\triangleT('O','MAXIMUM NG. CF EVENTS FOR EACH PHOTON= ',I12)
        WRITE(6,29)IS
    29 FORMAT('C','INITIAL SEEC FOR RANDCM NO. GENERATOR= ',I12)
        WRITE(6,3I)TETAI,FII
    31 EORMAT('0','INITIAL TETA IN CEGREES= ',F8.3,' INITIAL FI IN DEGR
        lEES= 1,F8.3)
        WRITE(6,36) XNAX, YMAX, ZMAX
    36 EORMAT('0','TANK DIMENSIONS IN METERS:',' XMAX=',F8.3,
        1' YMAX=',F8.3,' ZMAX=',F8.3)
        WRITE (6,38)S
    38 FORMAT('O','SCATTERING CCEFFICIENT IN INVERSED METERS= ',F8.3)
        WRITE (6,23)A4CO,A5OC,A62O
    23 FORMAT('0','ABSORPTION COEFFICIENTS AT 40C, 500, 600 NM IN INVERSE
        IMETERS:',' A400=',F8.3,' A500=',F8.3,' A600=',F8.3,//////)
        RNN=1.334
c
C RNW IS THE REFRACTION INDEX OF WATER.
C
    PI=3.141552654
    DTRC=PI/18C.
    XMAX=XMA X*S
    YMAX =YMAX>S
    ZMAX=ZMAX*S
    TETAI=TETAI* *RTRC
    FII=FII*DTRC
    NPH=1
10 IF(NPH .GT. MAXNFH)GS TS 2OCO
```



```
C NPH IS THE NO. OF PHOTONS AT A GIVEN TIME.
C RECORD NO. OF PHCTONS TRACED AND TEST FOR END OF COMPUTATIONS.
C INITIALIZE THE COORDINATES CF THE PHOTON ENTERING THE MEDIUM.
C
    TETA=TETAI
    FI=FII
    X=0.
    Y=0.
    Z=0.000001
C
C DECIDE HOW FAR PHCTCN TRAVELS BEFORE AN EVENT OCCURS.
C
    CALL RANDNO(IS,RHCD)
    T=-ALOG(RHOD )
    GAMA =T
C
C T IS THE DISTANCE IN SCATTERING LENGTH UNITS PHOTON TRAVELS TO THE
C EVENT PHOTON IS AT.
C
    X=X+T*SIN(TETA)*CES(FI)
    Y=Y+T#SIN(TETA)#SIN(FI)
    Z=Z+T文COS(TETA)
    GO TO 150
    100 NPH=NPH+1
C
C FORE,START A NEK PHCTCN.
    GO TO 10
    150 CONTINUS
    KMIN=2
        IF (Z) 400,500,500
400 XINT=X-Z×TAN(TETA)×COS(FI)
        YINT=Y-Z*TAN(TETA)*SIN(FI)
        DINT=SQRT(XINT**Z + Y INT*:<2)
        DDINT=DINT/S
        IF(DJINT .GT. 0.20)GO TO 100
        IF (RNW*SIN(TETA).GT. I.E) GO TO EG4
        TETAAR=ARSIN(RNW&SIN(TETA))
        IF(TETAAR .GT. 1.J)GC TO 100
        XINT=XINT/S
        YINT=YINT/S
        DINT= DOINT
        ACT=\triangleBS(COS(TETA))
        TCUT =(ABS(ZR)-ABS(Z))/AE'
        GAMA=GAMA +TCUT
        GAMA =GAMA /S
```

 WRITE (6,410) DINT,TETAAR
 410 FORMAT(///,2X,'DISTANCE FRON AXIS=,'F8.5,5X,'POLAR ANGLE= ',F8.5}
 WRITE (6,420) FI,XINT,YINT
 420 FORMAT (' ','AZIM ANGLE= ',F8.5,5X,'XINT= ',F8.5,5X,'YINT= ',F8.5)
 WRTTE(6,109) GAMA
 109 FORMAT('0','GLMA = ',E12.3)
 WRITC(%,888)J
 838 FORMAT(' ','NO OF EVENTS=',I8)
 WRITE(\epsilon,IOL)NPH
 EORMAT('O','NO. OF PHOTONS TRACED = ',T3)
 c
C cAlCULATE PHOTGAV PrJBASILITY NEIGHT.
C
CALL PHDW(PI,GAMA,DINT,A*00,A500,A500)
WRITF(\epsilon,5999)IS
5999 FORMAT(; RANDOM NUMBER USEN ',:12)
GO TO 100
604 KMIN=J+1
ACT=ABS(COS (TF+}\Delta)
TCUT=(LBS(ZR)-ABS(Z))/ACT
GAMA=GAMA +T CUT
TETA=PI-TETA
FI=FI+OI
IF(FI .GE. 2.*PI)FI=FI-2.*PI
X=XINT
Y=YINT
Z=0.000001
CALL RAVENO(IS,FHOD)
T=-ALOG(FHOG)
X=X+T*ST4(TETA)*COS(FI)
Y=Y+T*SIN(TETA) ヶSIN(FI)
Z=Z+T*COS(TETA)
500 CALL PSIH(KMIN,NMAX,J,IRTCOL)
IF(IRTCOS . SQ. I)GO TO 100
IC(IRTCON .EG. 2IGO TO 400
Gn TO 100
WRITE (6,5000) IS
FORM\triangleT (' ','LAS' RANDIJM NUMEER USED=',I12)
<TOP
END

```
```

 SUSROUTINE DSIW(KNIN,NMAX,J,IRTCOD)
 C SCATTERING HAS OCCUPFE.
C CALL ANGELS FIP,TETAP TO DISTINGUISH FROM FI,TETA
C CALL ANGELS FIP,TETAP TO DISTINGUISH FROM FI,TETA
C INCIDENT DIRECTICN.
C
CALL RANDNO(IS,RHCF)
FIP=2.*PI*RHOF
CALL RANDNO(IS,RHCT)
CALL SCATFI(RHOT,TETA)
TETA=TETA=DTRC
TETAP=TETA
C
C DETERNINE HOW FAR BEFCRE AN EVENT OCCURS,IN THE ROTATED SYSTEM.
C

```
```

C ROTATION MATRIX HAS BEEN GENERATED.

```
```

C ROTATION MATRIX HAS BEEN GENERATED.

```
```

 THIS SUBFOUTINE WILL EE CALLED GNLY WHEN PHOTON IS STILL IN WATER
 (WHEN Z>O).
 IT DETERMINES THE CGORDINATES CF THE END POINT IN THE NON-ROTATED
 SYSTEM BY =IRST ROTATING THE SYSTEM USING ANGLES TETA ANE FI.
 IT GENETATES THE ROTATION MATRIX,WITH THE CONSTRAINT THAT YSTAR-
 AXIS LIES IN A PLANE PARALLEL TO THE YZ-PLANE.
 THE TOTATION MATRIX IS LESIGNATED AS AIJ(I=1,3,J=1,3).
 COMMDN/ELDCKI/XMAX, YMAX, ZMAX,X,Y,Z,T,GAMA,TETA,FI,PI,DTRC,S,IS,ZR
 IRTCOD=0
 OO 1290 J=KMIN, NMAX
 CT=CDS(TFTA)
 C=COS(FI)
 CT2=CT*CT
 CF2=CF*CF
 ST=SIN(TETA)
 SF=SIN(FI)
 S'2=ST*ST
 SF2=SF*SF
 SS1=CT2+SF2mST2
 SS=SQRT(SSI)
 SSD=1./SS
 All=SQRT(1.-CF2*ST2)
 \Delta12=-SFxCF*ST2*SSD
 A13=-CT*ST*CF*SSD
 A22=CT*SSN
 A23=-SF*ST:*SSD
 A31=C F* ST
 A33=CT
 432=SF*ST
    ```
```

 CALL RANENO(IS,RHOD)
 T=-ALOG(RHOD)
 C
C CALCULA*E COQRDINATES OF END PQINT IN THE ROTATED SYSTEM.
C
XSTAR=T*SIN(TETAF)*CCS(FIP)
YSTAR=T*SIN(TETAP)\approxSIN(FIP)
ZSTAR=T%COS(TETAP)
C
C APPLY ROTATION MATRIX TO DETERMINE THE COCRDINATEES DF THE ENS
C POINT IN A SYSTEM PARALLEL TG THE ORIGINAL ONE BUT DISPLACED.
C
XR=A11*XSTAR+A31*ZSTAR
YR=A12*XSTAR+A22*YSTAR+A32=ZSTAR
ZR=A13*XSTAR+A23*YSTAR+A 33*ZSTAR
C
C CALCULATE TETA,ANC FI IN THE PRESENT SYSTEM,WHICH IS PARALLEL TC
C THE ORIGINAL ONE.
C
FI=ATAN(ABS(YR)/ABS(XR))
IF (XR .LT. J.0)G0 TO 133
IE (YR) 333,333,633
333 FI=2.mPI-FI
GO TO 533
033 FI=FI
GOTO 533
133 IF (YR) 233,233,433
233 FI=FI+PI
GO TO 533
433 FI=PI-FI
5 3 3 ~ C O N T I N U E ~
XR2 = XRFXR
YR2=YR*YR
ZRZ=ZR*ZR
DT=XR 2+YR 2+ZR2
SQDT=SQRT (DT)
TETA=ARCCS(ZR/SQDT)
C CALCULATE X,Y,Z OF THE END PCINT OF THE PHOTON WITH RESPECT TO
C THE ORIGINAL AXIS.
C
$X=X+X R$
$Y=Y+Y R$
$\mathrm{X} 2=\mathrm{X} * \mathrm{X}$
$Y 2=Y \neq Y$
DIS $2=X 2+Y 2$
X MAX $2=X$ MAX $* X$ MAX
YMAX2 $=$ YMAX* Y MAX

```
```

 DIMAX2=XMAX2+YMAX2
 IF(DIS2 -GE. DIMAX2)GC TO 100
 Z=Z+ZR
 IF (Z) 400,400,700
 700 IF(ZMAX-Z)702,7C2,701
 702 X=X-(Z-ZMAX)*TAN(TETA)*COS(FI)
 Y=Y-(Z-ZMAX)*TAN(TETA)*SIN(FI)
 ACT=ABS(COS(TETA))
 TT=T-{Z-ZMAX)/ACT
 Z=ZMAX
 CALL RANENO(IS,RHOB)
 IF(RHOB-0.03)7C4,704,100
 C
C
704 CALL RANDNO(IS,RHCBT)
TETA=0.5*PI*RHOBT+0.5*PI
CALL RANDNO(IS,RHOBF)
FI=2.*PI*RHOBF
CALL RANDNO(IS,RHCD)
T=-ALOG(RHOD)
X=X+T\#SIN(TETA)*COS(EI)
Y=Y+T*SIN(TSTA)*SIN(FI)
Z=ZMAX+T*COS (TETA)
T=T+TT
701 GAMA=GAMA+T
1290 CONTINUE
100 IRTCOD=1
GO TO 500
IRTCOD=2
RETURN
END

```
```

 SUBROUTINE PHPW(PI,GAMA,DINT,A400,A500,A600)
 C THIS SUBROUTINE CALCULATES THE PHOTON PRGBABILITY WEIGHT FCR GIVFN
C WAVELENGTHS.
C
TIR=0.0254
TIR2=TIR*TIR
CK=PI*TIR2
R=0.15
WRITE(6,860)R
800 FORMAT (10','SEAM RADIUS IN METERS= ',F8.3)
R2=R*R
DINT 2=DINT *OINT
XINT=(R2-TIR2+DINT2)/(2.*DINT)
XINT2=XINT*XINT
YINT=SQRT(ABS(R2-XINT2))
GCI=ATAN(YINT/XINT)
GC2=ATAN(YINT/(DINT-XINT))
GC3=OI-ATAN(YINT/(ABS(XINT-CINT)))
AAA =GC1*R2+GC2*TIR2-DINT*YINT
BBB=GC1*R2+GC3*TIR2-OINT*YINT
BIR = R+T IR
CIR=R-TIP
IF(DINT .GE. 0.0 .AND. DINT .LT. CIR)AREA=CK
IF(DINT .GE. CIR .ANL. DINT .LT. R)AREA=BBB
IF(DINT .GE. R .AND. DINT •LT. BIR)AREA=AAA
IF(DINT .GE. BIR)AREA=0.
E500=EXD(-GAMA×A500)
C
C PHOTON DRORABELITY WEIGHTS EOR 500 NM.
C
PPW500=ARFA=E500

```

```

861 FORMAT('O','PHOTON PROB. WT. FOR 500 NM= ',F10.6)
RETURN
END

```

SUBROUTINE RANDNC(IX,RNUM)
\(\stackrel{c}{c}\)
C
\(C\)
C
C
            THIS SUBROUTINE GENERATES UNIFCRM RANDON NUMBERS BETWEEN \(G\) AND 1.
            \(I Y=I X \times 65539\)
            IF (IY) \(5, \epsilon, \epsilon\)
            \(5 \quad \mathrm{I} Y=\mathrm{I} Y+2147483647+1\)
                    6 RNUM=IY
                            RNUM \(=\) RNUM* \(\cdot 4\) © 56 E13E- 9
                            \(I X=I Y\)
                                    RETURN
END
```

 SUBROUTINE SCATRI(RHOT,TETA)
 C
C
C
c

```
```

 IF(RHOT .LE. .150)GO TO I
    ```
    IF(RHOT .LE. .150)GO TO I
    IF(RHOT .LE. .2O0)GO TO 2
    IF(RHOT .LE. .2O0)GO TO 2
    IF(RHOT .LE. .225)GO TO 3
    IF(RHOT .LE. .225)GO TO 3
    IF(RHCT .LE. .250)GO TO 4
    IF(RHCT .LE. .250)GO TO 4
    IF&RHOT .LF. .275IGO TO 5,
    IF&RHOT .LF. .275IGO TO 5,
    IF(RHOT .LE. .300JGO TO 6
    IF(RHOT .LE. .300JGO TO 6
    IF(RHOT .LE. .320)GO TO 7
    IF(RHOT .LE. .320)GO TO 7
    IF(RHOT .LE. .345)GC TO 8
    IF(RHOT .LE. .345)GC TO 8
    IF(RHGT .LE. .360)GC TO O
    IF(RHGT .LE. .360)GC TO O
    IF(RHOT .LE. .385)GO TO 10.
    IF(RHOT .LE. .385)GO TO 10.
    IF(RHOT .LE. .480)GO TO 11
    IF(RHOT .LE. .480)GO TO 11
    IF(RHGT .LE. .550)GO TO 12
    IF(RHGT .LE. .550)GO TO 12
    IF(RHOT .LE. .600)GO TO 13
    IF(RHOT .LE. .600)GO TO 13
    TF(RHOT .LE. .655)GO TO 14
    TF(RHOT .LE. .655)GO TO 14
    IF&RHOT .LE. .685\GO TO 15
    IF&RHOT .LE. .685\GO TO 15
    IF(RHCT .LE. .715)GO TO l6
    IF(RHCT .LE. .715)GO TO l6
    I-F(RHOT .LE . .730)GO TO 17
    I-F(RHOT .LE . .730)GO TO 17
    IF(RHCT .LE. .755)GO TO 18
    IF(RHCT .LE. .755)GO TO 18
    IF(RHOT .LE. .800)GO TO 19
    IF(RHOT .LE. .800)GO TO 19
    IF(RHCT .LE. .830)GC TO 20
    IF(RHCT .LE. .830)GC TO 20
    IF(RHOT .LE. .890)GO TO 21
    IF(RHOT .LE. .890)GO TO 21
    IFFRHCT .LE. .91EIGC TO 22
    IFFRHCT .LE. .91EIGC TO 22
    IF(RHOT .LE. .935)GO TO 23
    IF(RHOT .LE. .935)GO TO 23
    IF(RHOT .LE. .945)GO TO 24
    IF(RHOT .LE. .945)GO TO 24
    IF(RRHCT .LE. .O60)GO TO 25.
    IF(RRHCT .LE. .O60)GO TO 25.
    IF(RHOT .LE. . OG7)GC TO 26
    IF(RHOT .LE. . OG7)GC TO 26
    IF(RHOT .LE. .974)GO TO 27
    IF(RHOT .LE. .974)GO TO 27
    IF(RHOT .EF. .981)GC TO 28
    IF(RHOT .EF. .981)GC TO 28
    IF(RHOT .LE. .988)GO TO 29
    IF(RHOT .LE. .988)GO TO 29
    IF(RHCT .LE. .994)GO TO 30
    IF(RHCT .LE. .994)GO TO 30
    IE(RHOT .LE. 1.O0)GO TO 31
    IE(RHOT .LE. 1.O0)GO TO 31
1 TETA=C.1
1 TETA=C.1
    GO TO 50
```

 GO TO 50
    ```


```

 GG TT 50
    ```
    GG TT 50
3 TETA =.20+(RHOT-.20)*(.30-.20)/(..225-.20)
3 TETA =.20+(RHOT-.20)*(.30-.20)/(..225-.20)
    GO TO 50
    GO TO 50
4 TETA =.30+(RHOT-. 225)4(.40-. 30)/(.250-. 225)
4 TETA =.30+(RHOT-. 225)4(.40-. 30)/(.250-. 225)
    GO TO 50
    GO TO 50
5 TETA=.40+(RHCT-.250)*(.50-.40)/(. .275-. 250)
5 TETA=.40+(RHCT-.250)*(.50-.40)/(. .275-. 250)
GO TO 50
```

GO TO 50

```
```

 6 TETA=.50+(RHOT-. 275)*(.6C-. 50)/(.300-.275)
 GO TO 50
 7 TETA=.60+(RHOT-. 300)% (.7C-.60)/(.320-.300)
 GO TO 50
 8 TETA=.7C+(PHOT-. 320)*(.80-.70)/(.345-.320)
 GO TO 50
 9 TETA=.80+(RHOT-.345)*(.90-.80)/(.360-.345)
 GO TO E0
 10 TETA =.90+(RHOT-.360)*(1.0--.90)/(.385-.360)
GO TO 50
11 TETA=1.0+(RHOT-.385)*(2.-1.)/(.480-.385)
GO TO 50
12 TETA=2.0+(RHOT-.480)*(3.-2.)/(.550-.480)
GO TO 50
13 TETA=3.0+(RHOT-.550)>(4.-3.)/(.600-.550)
GO TO 50
14 TETA =4.0+(RHOT-.600)*(5..4.)/(.655-.600)
GO TO 50
15 TETA =5.0+(RHOT-.055)*(6.-5.)/(.685-.655)
GO TO 50
16 TETA=6.0+(QHOT-.635)}\div(7.-6.)/(. .715-. . 885)
GO TO 50
17 TETA=7.0+(RHOT-.715)=(8.-7.)/(.730-.715)
GO TO 50
18 TETA =8.0+(RHDT-.730)*(9.-8.)/(. .755-.730)
GO TO 50
19 TETA=9.0+(FHOT-.755)\#(10.-9.)/(.800-.755)
GO TO 50
20 TETA=10.0+(RHOT-.800)\& (15.-10.)/(.830-.800)
GO TO 50
21 TETA = 15.0+(RHDT-.830) \#(20.-15.)/(.890-.830)
GO TO 50
22 TETA=20.0+(RHOT-.890)\#(25.-20.)/(.918-.890)
GO TO 50
23 TETA=25.0+(RHDT-. S1 8)* (30.-25.)/(.935-.918)
GO TO 50
24 TETA=30.0+(RHOT-.935)*(35.-30.)/(.945-.935)
GO TO 50
TETA=35.0+(RHCT-.945)*(40.-35.)/(.96C-.945)
GO TO 50
26 TETA=40.0+(RHOT-.900)*(45.-40.)/(.967-.960)
GO TO 50
27 TETA=45.0+(RHOT-.967)*(50.-45.)/(.974-.967)
GO TO 50
28 TETA=50.0+(RHOT-.974)*(60.-50.)/(.931-.974)
GO TO 50
29 TETA=60.0+(RHOT-.981)*(70.-60.)/(.988-.981)
GO TO 50

```

30 TETA \(=70.0+(\) RHOT -.988\() *(80 .-70) /.(.994-.988)\) GO TO 50
\(31 \mathrm{TETA}=80.0+(\mathrm{RHOT}-.994) *(180 .-80.1 /(1.00-.994)\)
50 RETURN
END
```

 SUBROUTINE SCATR2(RHOT,TETA)
 C
C THIS SUBROUTINE CETFRMINES ANGLE 'THETA: FROM A GIVEN SCATTERING
C FUNCTION (LOWER BOUND).
C
IF(RHOT .LE. .OOO)GG TO 1
IF(RHOT .LE. .0l0)GO TO 2
IF(RHCT .LE. .O14)GO TO 3
IF(RHOT .LE. .018)GC TO 4
IF(RHOT .LE. .022IGO TO 5
IF(RHCT . LE. .026)GO TO 6
IF(RHOT .LE. .031)GO TO 7
IF(RHCT .LE. .034)GC TO 8
IF(RHOT .LE. .040)GO TO 9
IF(RHOT .LE. .060)GC TO 10
IF(RHOT .LE. .0¢O)GO TO 11
IF(RHOT .LE. .l20)GO TO 12
IF(RHOT .LE. .I5C)GO TO 13
IF(RHCT .LE. .175)GG TO 14
IF(RHOT . LE. . 200)GC TO 15
IF(RHOT .LE. .220)GO TO 16
IF(RHOT .LE. .250)GC TO 17
IF(RHOT .LE. .280)GO TO 18
IF(RHOT .LF. .380)GO TO 19
IF(RHOT .LE. .530)GO TO 20
IF(RHOT .LE . .580)GO TO 21
IF(RHOT .LE. .635)GO TO 22
IF(RHOT .LE. .665)GO TD 23
IF(RHOT .LE. .TCO)GD TS 24
IF(RHCT .LE. .740)GC TO 25
IF(RHOT .LE. .750)GO TO 26
IF(RHOT .LE. .770)GO TO 27
IF(RHOT .LE. .780)GO TO 28
IF(RHCT .LE. .800)GO TO 29
IF(RHOT .LE. .833)GO TO 30
IF(RHOT .LE. .860)GO TO 31
IF(RHOT .LE. .885)GO TO 32
IF(RHOT .LE. .950)GO TO 33
IF(RHOT .LE. . 970)GO TO 34
IF(RHOT .LE. .980)GO TO 35
IF(RHOT .LE. .990)GC TO 36
IF(RHOT .LE . 995)GO TO 37
IF(RHOT .LE. 1.000)GO TO 38
1 TETA=0.2
GO TO 50
2 TETA=.20+(RHCT-.000)*(.30-. 20)/(.010-.000)

```
```

 GO TO 50
 3 TETA=.30+(RHOT-.010)*(.40-.30)/(.014-.010)
 GO TO 50
 4 TETA=.40+(只HGT-.014)*(.50-.40)/(.018-.014)
 GO TO 50
 5 TETA =.50+(RHOT-.018)*(.60-.50)/(.022-.018)
GO TO 50
6 TETA=.60+(RHOT-.022)*(.7M-.60)/(.026-.022)
GO TO 50
7 TETA=.70+(RHOT-.026) =(.80-.70)/(.031-.026)
GO TO 50
8 TETA=.80+(RHOT-.031)*(.90-.80)/(.034-.031)
GO TO 50
9 TETA=.90+(RHOT-.034)*(1.0-.90)/(.040-.034)
GO TO 50
10 TETA=1.0+(RHOT-.040)/(.060-.040)
GO TO 50
11 TETA=2.0+(RHOT-.C60)/(.0SO-.060)
GO TO 50
12 TETA=3.0+(RHCT-.OSO)/(.120-.090)
GO TO 50
13 TETA=4.0+(RHCT-.120)/(.150-.120)
GO TO 50
14 TETA=5.0+(RHCT-.150)/(.175-.150)
GO TO 50
15 TETA=E.O+(RHCT-.175)/(.200-.175)
GO TO E0
16 TETA=7.0+(RHOT-.200)/(.220-.200)
GO TO 50
17 TETA=8.0+(RHOT-.220)/(.250-. 220)
GO TO 50
18 TETA=9.0+(RHOT-.250)/(.280-. 250)
GO TO 50
19 TETA=10.0+(睢OT-.280)*55./(.380-.280)
GO TO 50
20 TETA=15.0+(FHOT-.380)*5./(. . 30-.380)
GO TO 50
21 TETA=20.0+(RHOT -.530) 45./(.580-.530)
GOTO 50
22 TETA=25.0+(RHOT-.580)*5./(.635-.580)
GO TO 50
3 TETA= 30.0. (RHGT-.635)=5./(.605-.635)
GO TO 50
24TETA=35.0+(RHOT-.665) \&5./(.700-.665)
GO TO 50
25 TETA = 40.0+(RHOT-.700)=55./(.740-.700)
GO T0 50
26 TETA=45.r+(RHOT-.740)*E./(.750-.740)

```

GO TO 50
27 TETA \(=50.0+(\) RHOT -.750\() * 5 . /(.770-.750)\)
GO TO 50
28 TETA \(=55.0+(\) RHOT -. 770)*5./(.780-.770) GO TO 50
29 TETA \(=60.0+(\) RHOT -.780\() * 10.1(.800-.780)\) GO TO 50
30 TETA \(=70.0+(\) RHOT -.800\() * 10 . /(.833-.800)\) GO TO 50
31 TETA \(=80.0+(\) RHOT -.833\() * 10 . /(.860-.833)\) GO TO 50
32 TETA \(=90.0+(\) RHOT -.860\() * 10 . /(.885-.860)\) GO TO 50
33 TETA \(=100 .+(\) RHOT -.885\() * 10 . /(.950-.885)\) GO TO 50
34 TETA \(=110 .+(\) RHOT-.950)*10./(.970-.950) GOTO 50
35. TETA \(=120 .+(\) RHOT -.970\() * 10 . /(.980-.970)\) GO TO 50
36 TETA \(=130 .+(\) RHOT -.980\() * 20 . /(.990-.980)\) 60 TO 50
37 TETA \(=150 .+(\) RHOT -.990\() * 15 . /(.995-.990)\) GO TO 50
38 TETA \(=165 .+(\) RHOT -.995\() * 15 . /(1.00-.995)\)
50 RETURN END

\section*{RADIATIVE TRANSFER COMPUTER PROGRAM}

\section*{Code 2}

PRECEDING PAGE BLANK NOT FILED \(\because \quad\).

```

F

```


```

C

```

```

r
[4L-8 VALU
~h1mral/SEADAT/AMBL(50),VALU(50)
r
. 'rAL J'TA FH SLATT=RIHF FU|GTIUN.
\ddots
,1, }=1,3

```


```

 rsmTIMJr
 6

```

```

 trAv(b, 2)),MAX,NPh, जMAX,IS
 \) F)=1+T(s(2x,112))
 F「A゙心(こ,30)TETAI,F1I
 3) F.jrtmT(2(5X,58.3))
 \thereforeEAD(5,35)XM&X, YMAX, ZM,NX
 is =IR,AT(3(5X,FJ.3))
 =3,1(2,57)5
 s) F124+T(Fo.3)
    ```




```

 Nin ITE(%,) 7):1,1دy
    ```

```

 *ITミ(د,2)!ls
    ```

```

 nF,IT&(0,=1)TET:I,FIE
    ```

```

 1ErS= , re.E)
    ```



```

 *IT:(%,= =)
    ```




```

r
C FYAIS TAE LOFFACTION INDEX OF WATFF.

```
```

 TI=3.141592654
 TRC=PI/1%0.
 X:IAX=X:MAX S
 YilAX=YMAX-S
 <-A AX=2 1AX* 5
 TCTAI=TETAI•OT\tilde{C}
 FII=FII* UTFC
 PPH=l
 1) IF(NPH .GT. '12X'JPH)GU TG 2000
 C
` IPH IS THE A%. IF DHOTONS AT A GIVEN TIME.

```


```

 TLTん=TITTAI
 f = =:II
 X=0.
 Y=3.
 7=1).0.000)1
 i

```

```

 #ALL <avDN:'(IS,RHOD)
 T=-紩う(NHJO)
 6A1/i=T
 C

```

```

C
FVEMT P11JTU`IJ AT. X=X+T,SIM(TrTA) CJS(FI) Y=Y+T <SIV(TETA)/SIV(FI) Z=L+T`Cいj(TSTえ)
(1) TU 150
1J0 VIPH=\!PH+1
C

```

```

C FTfE,STABT A INEN PMUTIJN.
C
;) T!1J
150 S~NTINU
NHIN=2
IF (I) 4U0,5J0,50J
40C xI:NT=X-i T'A'v(TFTA) C.S(FI)
YINT=Y-Z+ TLN(T!TA)-5IN(FI)
PINT=SQ\&T(XINT - 2+YIST-،2)
00I:1T=0I \T/S
IF(USITT .GT. J.2J)Gu T. LJ)

```
```

 1F (K.VW:jIH(TETA) .GT. l.0) GU T0 t,G4
 TETAAR=AZSIN(hNU:SIV(TETA))
 IF(TFTAAK .GT. L.OIGU Tif) 100
 XINT=XINT/S
 YINT=YIVT/S
 OI NT=DDI IJT
 SCT=ABS(CजS(TᄃTA))
 TCUT = (ANS(LF)-ABS(Z))/ACT
    ```

```

 `AMA=GA`|A/コ
 RITE (っ,4lu) DIMT,TETAAN
    ```

```

 *ITE (S,+20) FI,XINT,YINT
    ```

```

 NITE(S,IUH) GAllA
    ```

```

 &!T.(ú,いつふ)J
    ```

```

 4FITE(o,lUl)\PH
    ```

```

~

```

```

C
EalL PitPW(PI, iA凶A,NINT,A+00, AつOV,NODO)
vkITF(0,5994) \& S

```

```

 S.1 「D 1)J
 8:)4 K`ll:I= J+1
 .CT=ASS(こCJ(TET-a))
 TCUT={AOS(ZK)-A3S(L))/ACT
 GAYD=GA 1A TTCIIT
 TETゥ=PI-TミT&
 FI=FI+PI
 IF(FI .ふえ. 2. PI)=I=FI-2.*PI
 X=XI |T
 Y=YI\cdotIT
 L=0.00)0.)I
 -ALL 2urdulvu(IS,KHuD)
 T=-ALu(riHuD)
 Y=X+T\cdotsSI-(TETA) COS(FI)
 Y=Y+T-SIN(TETA) SIN(FI)
 Z=Z+T*COS (TETA)
 S00 EALL PSIW(KIIIN,N:IAX,J,IRTCOD)
 IF(INTCUO) EEV. 1/GUS TO 1JJ
 IF(IRTC'JT) •EんN - 2IGO TO 400
 心u T! 1))
 2JUJ arITF (u,500J) IS
bJJ) FJJ'1AT (' ','LAST nANDUM NU'4BER USEU=',I12!

```
STOP

END
```

SucroutIive PSI f(K iIN,VMAX,J,IFTC(UD)

```


```

({HEN Z>)).

```
({HEN Z>)).
IT DETERMIALS THE COORDINATES OF THE END PGINT IN THE !.ay-autat:
IT DETERMIALS THE COORDINATES OF THE END PGINT IN THE !.ay-autat:
SYSTEM 3Y FINST &OTATING THE SYSTE:K USING ANGLES TETA A.G FI.
SYSTEM 3Y FINST &OTATING THE SYSTE:K USING ANGLES TETA A.G FI.
IT G*NETATES THE &OTATION MATRIX,WITH THE CONSTRAIAI TH&T YST,Aん-
IT G*NETATES THE &OTATION MATRIX,WITH THE CONSTRAIAI TH&T YST,Aん-
\thereforeXIS LIES IN \therefore PLANE PARALLEL TO THE YL-PLANE.
\thereforeXIS LIES IN \therefore PLANE PARALLEL TO THE YL-PLANE.
THE TOTATION: `ATRIX IS DESIGNATED AS AIJ(I=1,3,J=1,31.
THE TOTATION: `ATRIX IS DESIGNATED AS AIJ(I=1,3,J=1,31.
<EAL-B VALU
<EAL-B VALU
CgM4M(.N/S: A0AT/ANSL(5)),VAlU(5J)
```

CgM4M(.N/S: A0AT/ANSL(5)),VAlU(5J)

```


```

IPTC.こD=)

```
```

IPTC.こD=)

```


```

0T=し!?S(TETA)

```
0T=し!?S(TETA)
CF=COS(FI)
CF=COS(FI)
CT2=CT:CI
CT2=CT:CI
准2CF6F
准2CF6F
ST=SIV(TFTA)
ST=SIV(TFTA)
~F=SIm(FI)
~F=SIm(FI)
うT2#うTこうT
うT2#うTこうT
,F2FSF!SF
,F2FSF!SF
5S1=LT2+SF2.5T2
5S1=LT2+SF2.5T2
SS=3&RT(SS1)
SS=3&RT(SS1)
SSJ=1./5S
SSJ=1./5S
411=3ूरT(1.-CF2 ST2)
411=3ूरT(1.-CF2 ST2)
+12=-SF CF*ST2 SSS
+12=-SF CF*ST2 SSS
&13\equiv-CT.ST CF SSD
&13\equiv-CT.ST CF SSD
122=CT*SST
122=CT*SST
123=-S\tilde{F}}5T\cdot55:
123=-S\tilde{F}}5T\cdot55:
13I=C.F SI
13I=C.F SI
A3 3= ᄃT
A3 3= ᄃT
132=5F ST
132=5F ST
~UTATIN': FATKIX rIAS EEEN GEAERATED.
~UTATIN': FATKIX rIAS EEEN GEAERATED.
SCAT[EKING HAS DCOJDED.
SCAT[EKING HAS DCOJDED.
C4LL AMKELS FIP,TETAP TJ DISTINGUISA FPOR Fi,TETA
```

C4LL AMKELS FIP,TETAP TJ DISTINGUISA FPOR Fi,TETA

```


```

IHCIDENT DIFECTIG`.

```
IHCIDENT DIFECTIG`.
CALL FANDNO(IS,kitnF)
CALL FANDNO(IS,kitnF)
FIP=2.0PI: RHOF
FIP=2.0PI: RHOF
EALL RAVUNU(IS,RHJT)
EALL RAVUNU(IS,RHJT)
CALL SCATF3(QHOT,TETA)
CALL SCATF3(QHOT,TETA)
TFT:=TET, %%T&C
TFT:=TET, %%T&C
TCTAP=TETA
```

TCTAP=TETA

```

```

 XYAX2 = XI1AX* XinAX
 YMAX2= YMA X Y Y&AX
 O1:MAX2=X\1AX2+YMAX2
 IF(DIS2 .GE. DIMAX2IGO TO 100
 Z=Z+ZR
 IF (Z) 400,400,700
 700 [F(ZMAX-Z)702,702,701
 702 }X=X-(Z-2,AAX)=TAN(TETA)=CDS(FI
 Y=Y-(L-L,AAX) TAN(TETA)%SIN(FI,
 ACT=ABS(COS (TETA))
 TT=T-(Z-ZMAX)/ACT
 L=LVAX
 CALL RANUNO(IS,RHIJG)
 IF(%HC!-0.03)704;704,10J
 C
7)+ CALL RANDNU(IS,RHUBT)
TETA=0.5 PI*RHJBT+J.5*PI
CALL RANDNO(IS,RHOBF)
FI=2."PI*2HOBF
CALL RANLNO(IS,R40JO)
T=-ALJG(RHOD)
X=X+T SIM(TETA):COS(FI)
Y=Y+T<SIN(TETA)}\cdot\mp@code{SIN(FI)
Z=ZMAX+T Cこう(TET')
T=T+TT
7)1 SA,AA={,A,|A+T
1290 EONTINUE
1J) IFTC3リ=1
50 TJ 5uv
4)] IKTC'1D=2
500 RETUKNN
FND

```
```

 SUHRUUTINE SCATR3(RHOT,TETA)
 F
C. THIS SUIXROUTIINE DETFRMINES ANGLE 'THETA' FRUM A UIVEN {ALPE;i}
C CALCULATED FRDA MIE THEORY) SCATTERING FUNCTIEN.
C
C

```
```

 FEAL B VALU
    ```
        FEAL B VALU
        COMMCN/SCARAT/\NGL(50),VALJ(50)
        COMMCN/SCARAT/\NGL(50),VALJ(50)
        i):) 1J [=1,33
```

 i):) 1J [=1,33
    ```


```

1) COMTINUE
```
1) COMTINUE
20 TETA=A!'今L(I)+(ANGL(I+I)-ANGIC(I))\times(RHUT-VALU(I))/(VALJ(I+I)-
20 TETA=A!'今L(I)+(ANGL(I+I)-ANGIC(I))\times(RHUT-VALU(I))/(VALJ(I+I)-
1VALU(I))
1VALU(I))
    RETiJ\N
    RETiJ\N
    ENU
```

 ENU
    ```

SUĒスCUTINE PHPW（PI，GAMA，DINT；A400，A500，AGOUH
\(\stackrel{c}{c}\)
6 THIS SUEBROUTINE CALCULATES THE PHOTON PRORAGILITY WE IGHT FIL GIVL： c Waivel enutrs．
C
\(T: Q=0.9234\)
TIR2＝TIR－TIF
\(C K=P I<T I \backsim 2\)
\(2=0.15\)
ARITE（6，86）IR
350 FURMAT（10＇，＇8EAM RADIUS IN METERS \(=1, F 8.3)\)

DIST2＝DIVT＜DIVT
XINT \(=(\mathrm{R} 2-T \mathrm{IF} 2+\) DINT 2\() /(2\) ．＊inINT \()\)
XINT2 \(=\) XI：HT：XINT
YINT＝SQKT（ABS（R2－XINT2））
GL \(1=A T A \omega(Y I, 1 T / X I N T)\)
GC2＝ATAN（YIVT／（DINT－XINT））
GC 3＝PI－ATAN（YINT／（ABS（XINT－DIVT）））
AAA \(=\) GC1：： \(2+6,2\)＋TIR2－OINT＊YINT
REE＝GC1 R2＋ISC3：TIRZ－DINT＊YINT
BTR＝ん＋TIK
CIR＝た－TIL
IF（EINT GE．C．O ．AND．DINT ．LT．CIP）AREA＝CK
IF（DINT UE．EIR •AND．DINT LT．ひ）AREA＝ERB
IF（DINT ．GE R ．ANC．DINT ．LT．BIRIARFA＝ムAA
IF（DINT GE GIR）AFEA＝O．
\(=503)=E \times P(-G A V A-A>00)\)
E
C PHOTCN PくJEABILITY WEIGHTS FOR 500 NH．
C

NRITF（6，861）P CN N00

RETURIN
END

\section*{SUBRUUT IAE RANONIIIA, RNUII}
\(I Y=I \times 65539\)
IF (IY) 5,0,6
\(5 \quad 1 Y=1 Y+2147403647+1\)
- \(\mathrm{R} N \mathrm{~N}: \mathrm{K}=\mathrm{IY}\)

PHUN=KNUM".40500135-9
IX = I Y
iE TUFN
ミND


FILE 05 JAFOTON DATA A
\begin{tabular}{|c|c|c|}
\hline 12 & & 53479 \\
\hline 9.700 & 0. & \\
\hline 1.217 & 1.217 & 2.000 \\
\hline 12. 000 & & \\
\hline 4.300 & 3.200 & 2.400 \\
\hline
\end{tabular}

\section*{FILE: MFOTON EXEC A}

GL TXTLIB FORTMOD 1
FI 04 DISK SCATR 3 DATA Al
FI 35 DI SK MFOTON DATA Al
FI 06 PRINTER
LOAD MFOTON
START

\section*{APPENDIX B}

MEASUREMENT OF SCATTERING FUNCTIONS

\section*{B. 1 Scattering Functions}

Scattering is an inherent property of the water which is useful as an optical parameter. Detailed knowledge of the scattering functions, in fact, can yield nnformatıon about the particle size distribution and the composition.

The scattering function \(\sigma(\theta)\) is defined by the relation
\[
\begin{equation*}
\sigma(\theta)=\frac{\mathrm{dJ}(\theta)}{\mathrm{HdV}} \quad\left(\operatorname{meter}^{-1} \quad \operatorname{Str}^{-1}\right) \tag{1}
\end{equation*}
\]
where \(d J(\theta)\) is an element of radiant intensity scattered in the direction \(\theta\) from the incident beam by the volume element \(d V\). is is the irradiance received by the sample volume.

\section*{B. 2 Determination of Volume Scattering Function}

Both the sample volume and the small solid angle, within which the radiant intensity is measured, are determıned by the optical geometry of the instrument used. The instruments usually use a finite sample volume and collect the energy scattered at angle \(\theta\) over some solid angle. The equation (1) Is then written as
\[
\begin{aligned}
\sigma(\theta) & =\frac{J(\theta)}{H \cdot V} \\
& =\frac{J(\theta)}{H \cdot A \cdot \ell} \\
& =\frac{P(\theta)}{P(0) \cdot \Omega \cdot \ell}
\end{aligned}
\]
where
\(P(0)=\) the total light flux entering the sample volume
\(P(\theta)=\) the lıght flux entering a small solid angle \(\Omega\) about the angle \(\theta\) at which the measurement is made
\(\Omega \quad=\) the solid angle over which the measurement of \(\mathrm{P}(\theta)\) is made
\(\ell \quad=\) length of sample volume
\(A \quad=\) the projected area of the sample volume \(V\), as seen in the direction of \(\mathrm{P}(0)\)

It is necessary to know either \(P(\theta)\) or \(P(0)\) in absolute terms. The scattering instruments allow \(P(\theta) / P(0)\) to be computed. The length, \(\ell\), and the solid angle, \(\Omega\) are determined by the geometry of the instruments.

When a scattering measurement is made using a finite volume of water, an unavoidable error is caused by absorption in the sample volume. If the instrument used had a sample path length that is small relative to the attenuation length of the water, this error is small and is less than the instrument errors. If the measurement is made using a path length that is not small relative to the attenuation length, the results have to be corrected. One such correction applied can be referred in Reference 10.

\section*{B. 3 Scatterance Meters}

The scattering quantities have exact mathematical definitions which dictate the design of the meters to be used. In pranciple, :- ir i. t :measurements of scatterance involve irradiation of sample volume by
a beam of light and recording of the light scattered by the volume through various angles.

Several types of scatterance meters have been developed. Typical types are: Fixed angle, Free angle, and Integrating meters. One ground of subdivision is to distinguish in-vitro and in-situ meters.

It is not our intent to describe in detail various scattering meters used by researchers in this area, however, a brief discussion may be warranted regarding the differences between general type and small angle scattering meters. Typical scattering meters used by Scripps Institution of Oceanography \({ }^{(10)}\) are brıefed below.

\section*{B.3.1 General Angle Scattering Meter}

Its purpose is to determine volume scattering function between the limits of \(10^{\circ} \leq \theta \leq 170^{\circ}\). It has a projector which rotates about the sample volume from \(\theta=0^{\circ}\) through \(0=180^{\circ}\). The measurement at \(\theta=0^{\circ}\) indicates total power in the projected beam, while the measurement at \(180^{\circ}\) records the background ambient light level. The rest of the readings \(\left(10^{\circ} \leq \theta \leq 170^{\circ}\right)\) measure scattered light.

The output of this instrument contains analog voltage signals representing depth, scan angle position and the photometer signal. A continuous trace of photometer signal versus depth at any fixed angle between 10 and 170 degrees and a continuous trace of photometer signal versus scattering angle at a fixed depth are the two methods of data collection using general angle scattering meters.

\section*{B.3.2 Small Angle Scattering Meter}

Small angle scattering meter (with which the results used in Reference 1 were measured) is essentially that which was modified and used by Morrison. (3) Main problems in low angle scattering meters are; scattering within the instrument and limitations in defining the limits of solid angle of the measurements.

In the low angle scattering meters used in Reference 10, and attempt is made to reduce the instrument's over internal scattering, It is still significant relative to the small angle forward scattering of clear waters.

The instrument has a projector which having a small point source of light, produces a beam of highly collimated light. After traversing the sample path, the light enters a long focal length lens in the receiver and an image of the point source is formed at its focal length. The light which traverses the water and is neither absorbed nor scattered falls within this small image. Light which is scattered arrives at the \(1 m a g e\) plane displaced from the axis at a distance proportional to the angle through which it has been scattered and is the focal length of the receiver lens. The scattered light is allowed to pass through four field stops before reaching the detector. The first field stop is a small hole and the other three field stops are annulus. The inner and outer radii of the annulus determine the angular interval over which the scattered
light is accepted. The solid angle, \(\Omega\), in equation (2) is limited by the angles \(\theta_{1}, \theta_{2}\) imposed by the annulus field stops and is calculated, from \(\Omega=2 \pi\left(\theta_{2}^{2}-\theta_{1}^{2}\right)\), where \(\theta_{1}\), and \(\theta_{2}\) are in radians. The value computed for the volume scattering function \(\sigma(\theta)\) is an average value for \(\sigma(\theta)\) between the angular limits, \(\theta_{1}\), and \(\theta_{2}\), of the solid angle.

ORIGINAL PAGE IS OF POOR QUALJTY

\section*{APPENDIX C}

LISTINGS FOR POLYMIE AND DBMIE ROUTINES USED TO CALCULATE THE VOLIME SCATTERING FUNCTIONS

MAIN
```

 MAIN PRUG POLYMIE(VECTOR)
 THE FOLLOWING, DOUBLE PRECISION INPUTS ARE REQUIRED:
 RFK=REAL PART OF REFRACTIVE INDEX
 RFI = IMAGINARY PART OF REFRACTIVE INDEX
 RADU=UPPERBDUND ON RADIUS(MICRONS)
 wAV\overline{E}=WAVELENGTH IN MICRONS
 A(I)=PAKAMETERS FOR DISTRIBUTION ONE
 3(I)=PARAMETERS FUR DISTIBUTIUN TWO
 THFTO(J)=VECTOR OF ANGLES FROM 0-90 (COMPLIMENTS ARE ALSO CALC)
 OTHER INPUTS ARE:
 JX=NUMBER OF ANGLES FKDM 0-90
 NPAD=NUMBER OF RADII BETWEEN O-RADU
 INPARA=NUMBER UF PARAMETERS IN DISTRIBUTION ONE
 INPARA2=NUMBER OF PARAMETERS IN DISTRIBUTIUN TWO
 TWU=LOGICAL VARIABLE TO ENABLE THE USE OF TWO DISTRIBUTIONS
 TwU FUNCTIOH SUBPROGRAMS DIST(RAD,AI AND DIST2(RAD,B) ARE REQUIREU
 IN AUDITION TO PDBMIE SUBROUTINE
 TWO DATA SETS (6 AND 8) ARE USED FOR DUTPUT; NORMALLY 6=PRINTER
 AND 8=TAPE
 10 FURMAT(3015.5)
 11 FORMAT(2015.5)
 12 FORMAT(D15.5)
 13 FORMAT(015.5,I5)
 14 FORMAT (215)
 15 FORMAT(L5)
 16 FORMAT(I5)
 17 FORMAT(D15.5)
 20 FORMAT(1H1)
 25 FIIRMATI//T10,'ELEMENTS OF THE TRANSFORMATION MATRIX FOR A SPHERE
 1WITH SIZE PARAMETER = ',F15.51
 30 FORMATI//T10,'REFRACTIVE INDEX. REAL = ',D15.5,T60,'IMAGINARY',DI5
 1.5.//|
 35 FURMAT(T 3,'ANGLE',T17,'SIGMA1',T3I,'SIGMA2',T46,'SIGMA3',T61,'SIGM
 1A4',T76,'INTENSITY',T91,'POLARIZATION'//!
 40 FORMAT(F10.4,5E15.6,F15.4)
    ```

```

 50 FORMAT(/\TIO,: EFFICIENCY FACTOR FOR SCATTERING:,E15.6)
 55 FORMAT(//T1J,' EFFICIENCY FACTOR FOR ABSORPTION',E15.6)
 O0 FORMAT(//T10,' ASYMMETRY FACTOR',E15.6//1
 7J FORMATI//TIO,' TOTAL TIME FOR THIS CASE IN SECONOS= ',F15.3//1
    ```
```

 2 FORMAT(//T10,'PROBABILITY FOR THIS SIZE PARAMETER = ',D15.5,//1
 3 FORMAT(//TIJ,'NORMALIZATION FACTOR FOR THIS SET OF SIZE PARA=',
 1015.5,//1
 REAL`8 RFR,RFI,X,QEXT,QSCAT,QABS,THETD(100),PQEXT,PQSCAT,PQABS
 OU FURMAT(//TIO,'SCATTERING CROSS SECTION',E15.6)
REAL`8 ELTRIIX(4,1)J,2),ALAM,CUN,CTBRQS,AVCSTH,PELTMX(4,100,2)
REAL*8 PAVCTH,THE(100),PBSCAT
REALP4 AIN(1OU,2),POLR{100,2)
REAL*4 PAIN(100,2),PPOLR(100,2)
KEAL }4\mathrm{ PAI(100,2),PPOL (100,2)
REAL -8 PROB2, PNORM2
REAL 8 PQEX,PQSCA,PQAB,PBSCA,PAVCT,PELTM(4,100,2)
KEAL 8 RADU,ORAO,WAVE,GAMMA,A(20),PROB,B(20)
LOGICAL WRN\&TWO
WRN=.FALSE.
CON=3.1415926535897932D+0
INTEGER NPARA,NPARA2
90 READ (5,10) RFR,RFI,WAVE
READ (5,14) JX,NPARA
READ (5,12) (THETD(I),I=1,JX)
READ (5,13) RADU,NRAD
1 FORMAT (D15.5)
DU 5 I=1,NPARA
READ (5,1) A(I)
5 CONTINUE
FEAD(5,15) TWO
DO 95 I =1: JX
95 THE(I)=THETD(I)
IF (TWO) GU T0 6l
G0 TO 62
Ol READ(5,16) NPARA2
DO 62 I=1,NPARA2
READ(5,17) B(I)
6 2 CONTINUE
PQEXT=0.000
PQEX=0.000
PQSCA =0.000
PQAB=0.ODO
PBSCA=0.0DO
PAVCT=0.000
PQ SCAT=0.000
PQABS = 0.000
PB SCAT=0.0DO
PAVCTH=0.0DO
DKAU=RADU/NRAD
D) 1000 J=1,JX
DO 1000 K=1,2
D() 999 I = 1,4

```
```

 PELTMX(I,J,K)=0.0DO
 PELTM(I,J,K)=0.000
 9 9 9 ~ C O N T I N U E ~
 PAIN(J,K)=0.000
 PAI(J,K)=0.000
 pPOL (J,K)=0.000
 PPDLR(J,K)=0.000
 1000 CONTINUE
RAD=0.0
,PNORM2=0.ODO
IF (TWO) GO TO 9I
PNORM2=1.000
91 CONTINUE
PIMORM=0.JDJ
TI ME 1=0.0
DiJ 3)OJ L=1,NRAD
ZAD=RAD+DRAD
DO LJJ J=1,JX
lOU THETD(J)=THE(J)
X=2.JOJ CON-RAD/WAVE
PROB=DIST(RAD,A)
IF (TWO) GO TO }6
PROB 2 =0.0DO
GU TU 64
6 3 ~ P K C B 2 = D I S T 2 (R A D , B) ~
04 CALL SETCLK
CALL PDBBIIE (X,RFR,RFI,THETD,JX,QEXT,QSCAT,CTBRQS,ELTRMX,WRN)
CALL READCL(TIME)
If (WRN) GO TO 1001
PNURM=PNORM+PROB
PNORM2=PNORM2+PROB2
TIME1=TIMEI +TIME
WABS=QEXT-QSCAT
AVCSTH=CTBRQS/WSCAT
DO 150 K=1,2
00 15) J=1,JX
AIN(J,K)= ELTRMX(1,J,K)+ELTRMX(2,J,K)
* : POLR(J,K)= (ELTRMX(2,J,K)-ELTRMX(1,J,K))/AIN(J,K)
AIN(`J,K)= 5*AIN(J,K)
PAIN(J,K)=AIN(J,K):PROB+PAIN (J,K)
PAI (J,K)=AIN(J,K)~PROB2+PAI(J,K)
PPOL(J,K)=POLR(J,K)*PROB2+PPOL (J,K)
PPOLR(J,K)=PPOLR(J,K)+POLR(J,K)~PROB
150 CONTINUE
00 2000 I=1,4
D0 2000 J=1,JX
DO 2כJJ K=1,2
PELTMX(I,J,K)=PELTMX(I,J,K)+ELTRMX(I,J,K)~PROB

```
```

 PELTM(I,j,K)=PELTM(I,J,K)+ELTRMX(I,J,K)=PROB2
 2000 CONTINUE
WRITE(6,20)
WRITE (6,25) X
WRITE(6,30) RFR,RFI
WRITE (6,35)
NRITE(6,40) ((THETD(J),(ELTRMX(I,J,1),I=1,4),AIN(J,I),POLR(J,1)),
1 J=1, JX)
C WRITE(8,4J) ((THETO(J),(ELTRMX(I,J,1),I=1,4),AIN(J,1),POLR(J,I)),
C IJ=1,JX|
DO 2)J J=1,JX
THETD(J)=180.000-THETD(J)
2JJ CUNTINUE
JMX=JX-1
00 21J J=1, JMX
JJ=JX-J
WRITE(0,4J)(THETD(JJ),(ELTRMX(I,JJ,2),I=1,4), AIN(JJ,2),POLR(JJ,2))
C
WRITE(8,40)(THETD(JJ),(ELTRMX(I,JJ,2),I=1,4),AIN(JJ,2),POLR(JJ,2))
21) CONTINUE
WRITE(0,45) QFXT
WRITE(6,50) QSCAT
WRITE(6,55) QABS
WRITE(0,60) AVCSTH
WRITE(6,2) PROB
WRITE(6,2) PROB2
n'RITE(6,20)
wRITE(6,70) TIME
PQSCAT=PQSCAT+QSCAT*PROB
PQSCA=PQSCA+QSCAT+PROB2
PQEX=PQLX+QEXT"PROB2
PQAB=PQA O+QAES*PROB2
PBSCA=PBSCA+QSCAT'(RAD*:2)*PROB2
PAVCT=PAVCT+AVCSTH* PROB2
PQEXT=PQEXT+QEXT }~PRO
PQABS=PQABS+QABS*PROB
PBSCAT=PBSCAT+QSCAT*(RAD**2)mPROB
PAVCTH=PAVCTH+AVCSTH*PROB
1001 NRN=.FALSE.
300U CONTINUE
DO 4000 J=1, JX
DO 4000 K=1,2
00 4301 I=1,4
PELTMX(I,J,K)=PELTMX(I,J,K)/PNORM
PELTM(I,J,K)=PELTM(I,J,K)/PNORM2
4001 CONTINUE
PAIN(J,K)=PAIN(J,K)/PNORM
PAI(J,K)=PAI(J,K)/PNOKM2
PPOL (J,K)=PPOL (J,K)/PNORM2

```

ORIGINAL PAGE IS
```

 PPOLR(J,K)=PPOLR(J,K)/PNORM
 4)JJ CONTINUE
 C END FILE 8
PQSCAT=PQSCAT/PNORM
PQEXT=PQEXT/PNORM
PQABS=PQABS/PNORM
PBSCAT=PBSCAT:CON/PNORM
PAVCTH=PAVCTH/PNORM
PQSCA=PQSCA/PNORM2
PQEX=PQEX/PNORM2
PQAB= PGAB/PNORM2
PR SCA=PBSCA* CON/ PNORM2
PAVCT=PAVCT/PNORM2
DO 6000 J=1,JX
6000 THETD(J)=THE(J)
WRITE(6,20)
65 FORMATI//T1O,'ELEMENTS OF TRANFORMATION MATRIX FOR POLYDISPERSION'
1,//|
WRITE (6,65)
WRITE(6,30) RFR,RFI
WRITE(6,35)
WRITE(6,40) ((THETO(J),(PELTMX(I,J,1),I=1,4),PAIN(J;1),PPOLR(J,I)
1),j=1,j| |
C WRITE(8,40) ((THETO(J),(PELTMX(I,J,1),I=1,4),PAIN(J,1),PPPOLR(N,1)
C 1) , J=1,JX)
00 5000 J=1.JX
THETO(J)=18).303-THETO(J)
sOOO CONTINUE
JMX=JX-1
DD 5001 J=1,JMX
JJ=JX-J
WRITE(6,40) (THETD(JJ),(PELTMX(I,JJ,2),I=1,4),PAIN(JJ,2),PPOLR
1(0J,2))
C WRITE(8,40) (THETD(JJ),(PELTMX(I,JJ,2),I=1,4),PAIN(JJ,2),PPOLR
C 1(JJ,2))
5001 CONTINUE
C END FILE 8
WRITE(6,45) PQEXT
WRITE(6,50) PQSCAT
WRITE(6,55) PQABS
WRITE(6,80) PBSCAT
WRITE (6,60) PAVCTH
WRITE (6,3) PNORM
WRITE(6,70) TIMEI
WRITE(6,20)
D0 5010 J=1, JX
5010 THETD (J)=THE (J)
IF (TWO) GOTO 5)02

```

\section*{MAIN}
```

 GO T0 5003
 5002 WRITE(6,20)
WRITE(6,65)
WRITE(6,30) RFR,RFI
WRITE (6,35)
WRITE(6,40) ((THETD(J),(PELTM(I,J,1),I=1,4),PAI(J,1),PPPOL(J,1)
1),J=1;JX)
C WRITE(8,4J) ((THETD(J),(PELTM(I,J,1),I=1,4),PAI(J,1),PPOL(J,1)
C ll,J=1,jX)
00 buJ4 j=1,JX
THETD(J)=180.0D0-THETD(J)
5)34 CONTINUE
JMX=JX-1
DO 5JJ5 J=1,JHX
JJ=JX-J
WRITE(6,4J) (THETD(JJ),(PELTM(I,JJ,2),I=1,4),PAI(JJ,2),PPOL
1(JJ,2))
C WRITE(8,40) (THETO(JJ),(PELTM(I,JJ,2),I=1,4),PAI(JJ,2),PPOL
C l(JJ,2))
3vO5 CONTINUE
C END FILE 8
WRITE(6,45) PQEX
WRITE(6,53) PQSCA
WRITE(6,55) PQAB
WRITE(6,8J) PBSCA
WRITE(6,60) PAVCT
WRITE(6,3) PNORM2
WRITE(6,70) TIMEI
WRITE (6,2))
5003 STOP
INO

```

SUBRLUTINE PDBMIE (X,RFR,RFI,THETD,JX,QEXT,QSCAT, CTBRQS,ELTRMX, WRN 1)

KADIATIUN SCATTERED BY A SPHERE. THIS SUBROUTINE CARRIES OUT ALL subrout ine for computing the parameters of the electromagnetic CIMPUTATIONS IN SINGLE PRECISION ARITHMETIC.
THIS SUBROUTINE COMPUTES THE CAPITAL A FUNCTION BY MAKING USE OF DOWINWARO RECORRENCE RELATIONSHIP.
\(X J\) SIZE PARAMETER OF THE SPHERE, \((2 * P I * R A D I U S ~ O F ~ T H E ~ S P H E R E) / ~\) ッAVELENGTH OF THE INCIDENT RADIATION).
ffo REFRACTIVE INOEX OF THE MATERIAL OF THE SPHERE. COMPLEX QUANTITY..FORMO IRFR - I = RFI I THETD(J) \()\) ANGLE IN DEGREES BETWEEN THE DIRECTIONS OF THE INCIDENT ANO THE SCATTERED RADIATION. THETD(J) IS \(\rightarrow\) OR \(=90.0\). IF THETD (JJ SHOULD HAPPEN TO BE GREATER THAN 90.0, ENTER WITH دUPPLEMENTAKY VALUEO SEE COMMENTS BELOW ON ELTRMX.. JXO TUTAL NUMBER OF THETD FOR WHICH THE COMPUTATION AREREQUIRDE . JX SHOULD NOT EXCEEO 200 UNLESS THE DIMENSIONS STATEMENTS tRE APPRUPRIATELY MGDIFIED.
MAIN PKUGRAM SHOULD ALSO HAVE REAL THETD(200), ELTRMX (4,20, 2 , 1 . JEFINITIONS FOR THE FOLLOWING SYMBOLS CAN BE FOUND IN I LIGHT SCATTERIING BY SMALL PARTICLES, H. C. VAN DE HULST, JOHN WILEY + SONS, INC., NEW YORK, 1957 '.
UEXT82 LFFIECIENCY FACTIRR FOR EXTINCTION, VAN DE HULST, P. \(14+127\) USCAT82 FFFIECIENCY FACTOR FOR SCATTERING,VAN DE HULST,P. \(14+127\). ETBRQS) AVERAGE(COSINE THETA) * QSCAT, VAN DE HULST, P. 128. ELTKMX(I,J,K)O ELEMENTS OF THE TRANSFORMATION MATKIX F,VAN DE HUL \(3 T, P .34,45+125 . I=1 J\) ELEMENT M SUB 2..I \(=2 J E L E M E N T\) M SUB \(1 .\). \(1=30\) ELEMENT S SUB 21.. \(1=40\) ELEMENT D SUB \(21 \ldots\) ELTRMX(I,, 1\()\) REPRESENTS THE ITH ELEMENT OF THE MATRIX FUR The angle thetd (J).. ELTRMX(I,, 2 ) REPRESENTS THE ITH ELEMFNT IF THE MATKIX FGR THE ANGLE 180.0 - THETD(J) ..
fopmat (IJX: the value of the scattering angle is greater than gu. J \$ UEGREFS. IT IS ', E15.4)
FURMAT(//LJX' PLEASE READ THE COMMENTS://)
FIRMAT(//10X: THE VALUE OF THE ARGUMENT JX IS GREATER THE 100:) FORMAT (//1JX'THE UPPER LIMIT FOR ACAF IS NOT ENOUGH. SUGGEST GET IDETAILED OUTPUT AND MODIFY SUBROUTINEI//)
REAL• 8 X, RX,RFR,RFI, UEXT, QSCAT,T(5),TA(4),TB(2),TC(2),TD(2),TE(2),
2 CTBRUS, ELTRMX \(4,100,2), \operatorname{PI}(3,100), \operatorname{TAU}(3,100)\),
3 CSTHT (100),SI2THT (100), THETD(100)
CUMPLEX - 16 RF, RRF, RKFX,WM1,FNA,FNB,TC1, TC2, WFN(2), ACAP (8000),
2 FNAP, FNBP LOGICAL WRN
9 FURMAT(//TIO,'WARNING,ACCURACY NOT ACHIEVED•//)
TA(1)O NEAL PART OF WFN(1).. TA(2)0 IMAGINARY PART DF WFN(1)... TA (3) O REAL PART, OF. WFN(2).. TA(4)0 IMAGINARY PART OF WFN(2).. TB (110:kEAL PART 'UF'FNA...TB(2)J IMAGINARY PART OF FNA... TC (1)O REAL PART OF:FNB...TC(2)O IMAGINARY PART OF FNB...
```

 PDBMIE
 C TD(1)O REAL PART OF FNAP.. TD(2) IMAGINARY PART OF FNAP....
C TE(I)O REAL PART OF FNBP... TE(2)O IMAGINARY PART OF FNBP...
C FNAP + FNBP ARE THE PRECEDING VALUES OF FNA + FNB RESPECTIVELY.
EQUIVALENCE (WFN(1), TA(1)), (FNA, TB(1)), (FNB, TC(1))
EQUIVALENCE (FNAP, TD(1)), (FNBP, TE(1))
IF (JX . LT. 101, GO TO 20
IRITE (6,7)
ARITE(6,6)
STOP 1
20 RF=1)CMPLX(RFR,-RFI)
KNF = 1.JDJ/RF
RX = 1.000/X
RRFX = PNF . RX
T(1)=(X* 2) (RFRAN2+RFI**2)
T(1)=DSQRT(T(1))
NMX1=1.1000 % T(1)
IF (NMX1 .LT. 7999) GJ TO 21
wRITE(6, 8)
STOP 2
NMX2 = T(1)
IF (NMXI .GT. 150) GO TO 22
AMX1=150
VMX2 = 135
22 ACAP(NMX1 + 1) = (0.000, 0.0DO)
DO 23 N = 1, NMXI
NNV = NMX1 - iN + 1
ACAP(NN)={NN+1):RRFX - 1.0DO/((NN+1)*RRFX + ACAP(NN+1))
CONTINUE
@u 30 J = 1, JX
IF (THETD(J) .LT. J.ODJ) THETD(J) = DABS(THETD(J))
IF (THETD(J) .GT. O.ODO) GO TO 24
CSTHT(J) = 1.JDJ
SI2THT(J) = 0.000
Gu TC 3J
24 IF (THETD(J) .GE. 90.0DJ 1 GO TO 25
T(1) = (3.14159205358979320+) : THETD(J)//180.DO
CSTHT(J) = vCOS(T(1))
SI2THT(J) = 1.JDJ - CSTHT(J)**?
(0) TU 30
22 IF (THETD(J) .GT. 90.000) GU TO 28
CSTHT(J) = 0.000
SI2THT(J)=1.000
GO TO 30
WRITE (6, 5) THETD(J)
WRITE (6,6)
STOP 3
continue
00 35 J = 1, JX

```

\section*{PDBMIE}
```

 PI(1,J) = 0.000
 PI(2,J) = 1.0D0
 TAU(1,J) = 0.000
 300
 3) 6 0
65 T(1)=2 N - 1
T(2) =N - 1
T(3)=2 vN+1
0070J=1, JX
PI(3,J)=(T(1), PI(2,J) =CSTHT(J)-N:PI(1,J))/T(2)
TAU(3,J)=CSTHT(J):(PI(3,J)-PI(1,J))-T(1)*SI2THT(J)*P[(2,J)+TAU(1,J
4)

CONTINUE
NML = WFN(1)
wFN(1) = WFN(2)
WFN(2)=T(1) = RX . WFN(1) - WML
TCl = ACAP(N) \& RRF +N + RX
TC2 = ACAP(N)*RF + N, RX

```

PDBMIE
```

 F.VA = (TC1 -TA(3) - TA(1)) / (TC1 - WFN(2) - WFN(1))
 FNB = (TC2 = TA(3) - TA(1)) / (TC2 * WFN(2) - WFN(1))
 T(5)=N
 T(4)=T(1)/TT(5)&T(2))
 T(2) = (T(2)* (T(5) + 1.0D0))/T(5)
 CTORQS = CTBRQS + T(2) - ITD(1) TB(1) +TD(2) * TB(2) + TE(1) -
 \$TC(1) + TE(2) + TC(2)) + T(4) \# (TD(1) \& TE(1) + TD(2) TE(2))
NEXT = UEXT + T(3) % (TB(1) + TC(1))
T(4)=TB(1)* 2+TB(2)**2 +TC(1)*+2 +TC(2)**2
QSCAT = WSCAT + T(3) T T(4)
T(2)=N (N + N (N)
T(1)=T(3)/T(2)
K = (N / 2): 2
D! 8) J = L; JX
\#LTRMX(1, J,1)=ELTKMX(1,J,1)+T(1) +(TB(1)*P[(3,J)+TC(1) +TAU(3,J))
ELTRMX(2,J,1)=ELTRNX(2,J,1)+T(1)*{TB(2);PI(3,J)+TC(2)sTAU(3,J))
ELTRMX(3,J,1)=ELTRMX(3,J,1)+T(1)*(TC(1)*PI(3,j)+TB(1):TAU(3,J))
ELTRNXX(4,J,1)=ELTRMX(4,J,1)+T(1)-(TC (2)~PI(3,J)+TB(2)=TAU(3,J))
IF(K.EQ.N) GO TO 75
FLTRMX(1,J,2)=ELTRMX(1, J,2)+T(1) \& (TR(1), PI(3,J)-TC(1):TAU(3,J))
FLTR利(2,J,2)=ELTEMX(2,J,2)+T(1)ッ(TB(2):PI(3,J)-TC(2)+TAU(3,J))
ELTRMX(3,J,2)=ELTRMX(3,J,2)+T(1)*(TC(1)~PI(3,J)-TB(1) TAU(3, J))
ELTKMX(+,J,2)=ELTRMX(4,J,2)+T(1)"(TC(2)*PI(3,J)-TB(2) TAU(3,J))
G0T080
75 gLTRAX(1,J,2)=ELTRMX(1,J,2)+T(1):(-TB(1)*PI(3,J)+TC(1)*TAU(3,J))
ELTKMX(2,J,2)=ELTRMX(2,J,2)+T(1)*(-TB(2)*P1(3,j)+TC(2)'TAU(3,j))
ELTKMX(3,J,2)=ELTRMX(3,J,2)+T(1)~(-TC(1) =PI (3,J)+TB(1)`TAU(3,J))
ELTEMX(4,J,2)=ELTRMX(4,J,2)+T(1)*(-TC(2)=PI(3,J)+TB(2)*TAU(3,J))
CONTINUE
IF(T(4).LT. 1.JD-14) GO TO 1כ)
N=N+l
DJ 9) J = l, JX
PI(I, J) = PI (2,J)
PI(2,J) = PI (3, J)
TAU(1, J) = TAU(2, J)
TAU(2, J) = TaU(3, J)
90 CONTINUE
FNAP = FNA
FNBP = FNB
IF (N .LE. Ni4X2) GO TO 65
WRITE(6, 9)
WRN = .TRUE.
RETURN
100 DOH120J=1;JX
Col2 JK=1,2
DO115I=1,4
T(I)=ELTRMX(I,J,K)
115 CONTINUE

```
```

 POBMIE
 ELTRMX(2,J,K)=T(1)m=2 +T(2):N2
 ELTRMX(1,J,K)=T(3)**2 +T(4)**2
 ELTRMX(3,J,K)=T(1)*T(3) +T(2)*T(4)
 ELTRMX(4;J,K)=T(2)*T(3)-T(4)*T(1)
 120 CONTINUE
r(1) = 2.000 r RXr. 2
WEXT = WFXT * T(1)
WSCAT = QSCAT . T(1)
CTbRQS = 2.UDO : CTBRQS * T(1)
RETURN
END

```
```

FUNCTION DIST(RAC,A)
REAL*8 A(20),RAC
REAL*8 DIST,B,C
B=-A(3)
C=RAD**A(4)
C=B*C
OIST=A(1)*(RAD**A(2))*DEXP(C)
RETURA
END

```

\section*{DIST2}

FUNCTION DIST2(RAD,B)
REAL* 8 B(20),RAC
REAL* 8 DIST2,A
\(A=-(B(2)+1)\)
DIST2=B(1)*B(2) \(\ddagger\left(R A D^{*} \# A\right)\)
RETURA
END

\section*{APPENDIX D}

PROGRAM LISTING FOR CURFIT ROUTINE USED TO FIT THE THEORETICAL SIZE DISTRIBUTIONS TO THE EMPERICAL DATA

MAIN
```

C SUBROUTINE CURFIT
C
C MAKES A lEAST SQUARES FIT TO A NCN-LINEAR FUNCTION
C
C DESCRIPTICN OF PARAMETERS
X -ARRAY OF IND. VARIABLE DATA POINTS
C Y -ARRAY OF DEP. VARIABLE EATA POINTS
C SIGMAY - ARRAY OF STANDARD CEVIATIONS FOR Y DATA POINTS
C NPTS -NUMBER GF DATA PCINTS.
C NTERMS - NUMBER DF PARAMETERS
C MOLE -DETERMINES hEIGHTING FOR LEAST SQUARES FIT
+1(INSTRUMENTAL)h(I)=1./SIGMAY(I)\#\#2
O(NO WEIGHTING)h(I)=1.
-1(STATISTICAL) W(I)=1./Y(I)
A -ARRAY OF PARAMETERS
DELTAA -ARRAY OF INCREMENTS FOR PARAMETERS
FLAMDA - PROPGRTION CF GRADIENT SEARCH INCLUDED
YFIT -ARRAY OF CALCULATED VALUES OF Y
CHISQR -REDUCED CHI SQUARE FGR FIT
SUBFIUTINES AND FUNCTION SUBPROGRAMS REQUIRED
FUNCTN(X,I,A)
EVALUATES THE FITTINC FUNCTICN FCR THE ITH TER:A
SSP ROUTINE DSINV
INVERTS CURVATUPE MATRIX
cOMMENTS
DATA FORMAT
NPTS,NTERMS,MOCE(3I5)
X(I),Y(I),(SIGMAY(I)),(2(3)El2.\epsilon)
DIMENSION X(100),Y(100),SIGMAY(100),A(20),DELTAA(20),SIGMAA(20),
IYFIT(100),YFITI(IOO)
LOGICAL GRAD,CUR,GRID
21 FGRMAT(3L5)
READ(5,21) GRAD,CLR,GRID
READ(5,1) NPTS,NTERMS,MOCE
l FORMAT(3I5)
IF (NCDE) 2,2,4
2 READ(5,3) (X(I),Y(I),I=1,NPTS)
3 FORMAT(2E12.6)
GO TC 6
4 READ(5,5) (X(I),Y(I),SIGMAY(I),I=1,NPTS)
5 FORMAT(3E12.6)
6 READ(5,7) (A(J), CELTAA(J),J=1,NTERMS)
7 FORMAT(2E12.6)
I SUM=0
CHISQ1=1.0
14 FLAMDA =.001

```

MAIN
```

 IF(CUR) GC TO 22
 IF(GRID) GO TO 23
 CALL GRADLS(X,Y,SIGMAY,NPTS,NTERMS,MCDE,A,DELTAA,
 IYFIT,CHISQR)
 GO TO 24
 CALL CURFIT(X,Y,SIGNAY,NPTS,NTERMS,MODE,A,DELTAA,SIGMAA,FLAMDA,
 IYFIT,CHISQR)
 GO TO 24
 23 CALL GRIDLS(X,Y,SIGNAY,NFTS,NTERMS,MCDE,A,DELTAA,
 ISIGMAA, YFIT,CHISQR)
 GO TO 24
 24 PRINT 8, (A(J),J=1,NTERMS)
 8 FORMAT(: ',El2.6)
 PRINT 9,CHISGR
 9 FORMAT(' ','CHISQR=', lX,E12.t,/1
 IF (CHISQI-CHISQR) 12,13,12
 12 CHISGI=CHISQR
 ISUM=ISUM+1
 IF (ISUM-10) 14,13,13
 1300 11 I=1,NPTS
 11 YFITI(I)=1./YFIT(I)
 PRINT 10
 10 FORMAT!' ', 13X,'INO.VAR.',12X,'DEP.VAR.',IlX,'INV.DEP.VAR.',/)
 PRINT 15,(X(I),YFIT(I),YFITI(I),I=1,NPTS)
 15 FORMAT(' ', LOX,E12.6, &X,E12.6.8X,E12.6)
 STOP
 END
    ```

\section*{CURFIT}

SUBROUTINE CURFIT(X,Y,SIGNAY,NPTS,NTERMS, MODE,A 1, DELTAA,SIGMAA,FLAMCA,YFIT,CHISQR) DCUBLE PRECISION ARRAY DIMENSION \(X(100), Y(100), S I G M A Y(100), A(20)\), DELTAA (20), SIGMAA(20), 1YFIT (100), WEIGHT (100), ALPHA \((20,20)\), BETA 20\()\), DERIV(20), ARRAY(20, 120), 8(20)

11 NFREE=NPTS-NTERMS
IF (NFREE) \(13,13,20\)
\(13 \mathrm{CHISQR}=0\).
GO TC 110
C EVALUATE WEIGHTS
20 DO \(30 \mathrm{I}=1, \mathrm{NPTS}\)
21 IF (MCDE) 22,27,29
22 IF (Y(I)) \(25,27,23\)
23 WEIGHT(I)=1./Y(I)
GO TO 30
25 WEIGHT(I) \(=1 \cdot /(-Y(1))\)
GC TC 30
27 WEIGHT (I) =1.
GO TO 30
29 WEIGHT(I)=1*/SIGMAY(I)**2
30 CONTINUE
C EVALUATE AL.pha and eeta matrices
31 DO \(34 \mathrm{~J}=1\), NTERMS
\(\operatorname{BETA}(\mathrm{J})=0\).
DO \(34 \mathrm{~K}=\mathrm{I}, \mathrm{J}\)
34 ALPHA(J,K)=0.
41 DO \(50 \mathrm{I}=1\), NPTS
CALL FDERIV (X,I, A, DELTAA,NTERMS, DERIV)
DO \(46 \mathrm{~J}=\mathrm{I}\), NTERMS
BETA(J)=BETA(J)+hEIGHT(I)*(Y(I)-FUNCTN(X,I,A))*DERIV(J)
DO \(46 \mathrm{~K}=1\), J
\(46 \operatorname{ALPHA}(J, K)=A L P H A(J, K)+W E I G H T(I) \neq D E R I V(J) \neq D E R I V(K)\)
50 CONT INUE
51 DO \(53 \mathrm{~J}=1\),NTERMS
DO \(53 \mathrm{~K}=1, \mathrm{~J}\)
53 ALPHA(K, J) \(=A L P H A(J, K)\)
C EVALUATE CHISQR AT STARTING POIAT
61 DO \(62 \mathrm{I}=1\), NPTS
62 YFIT (I) \(=\) FUNCTN \((X, I, A)\)
63. CHI SQI=FCHI SQ(Y,SIGMAY,NPTS, NFREE,MODE,YFIT)

C INVFRJ \(X C U R V A T U R E\) MATRIX TO FIND NEW PARAMETERS
71 DO:74 \(\mathrm{J}=1\),NTERMS
72 DO \(73^{\prime} \mathrm{K}=\mathrm{F}, \mathrm{NT}\) ERMS
73 ARRAY \((J, K)=A L P H A(J, K) / S Q R T(A L P H A(J, J) \neq A L P H A(K, K))\)
74 ARRAY( \(\mathrm{L}, \mathrm{J})=1 \bullet+F L \operatorname{AMDA}\)
80 CALL MATINV (ARRAY,NTERMS,1)
81 DO \(84 \mathrm{~J}=1\), NTERMS

\section*{CURFIT}
```

 B(J)=A(J)
 DO 84 K=1,NTERMS
 84 B(J)=&(J)+BETA(K)*ARRAY(J,K)/SQRT(ALPHA(J,J)*ALPHA(K,K))
 C IF CHI SQUARE INCREASED,INCREASE FLAMDA
91 DO 92 I=1,NPTS
92 YFIT(I)=FUNCTN(X,I,B)
93 CHISQR=FCHI SQ(Y,SIGMAY,NPTS,NFREE,MODE,YFIT)
IF (CHISG1-CHISQR) 95,101,101
95 FLAMDA=10.*FLAMDA
GO TO 71
101 DO 103 J=1,NTERMS
103 A(J)=B(J)
FLAMDA=FLAMDA/10.
110 RETURN
END

```

\section*{FEERIV}

SUBROUTINE FDERIV(X,I,A,CELTAA, NTERMS,DERIV) DIMENSION \(X(100), A(20), D E L T A A(20), D E R I V(20)\)
11 DO \(18 \mathrm{~J}=1\), NTERMS
\(A J=A(J)\)
DELTA \(=0\) ELTAA (J)
\(A(J)=A J+D E L T A\)
\(Y F I T=F U N C T N(X, I, A)\)
\(A(J)=A J-D E L T A\)
\(\operatorname{DERIV}(J)=(Y F I T-F U N C T N(X, I ; A)) /(2 . \neq D E L T A)\)
\(18 \mathrm{~A}(\mathrm{~J})=\mathrm{A} J\)
RETURN
END

\section*{MATINV}
```

 SUBROUTINE MATINV (ARRAY,NTERMS,MCODE)
 DOUBLE PRECISICN ARRAY,B
 OIMENSICN ARRAY (20,20),B(210)
 DO 1 I= I,NTERMS
 DO 1 J=1,NTERMS
 CALL LCC(I,J,IJ,NTERMS,NTERMS,MCCDE)
 1 B(IJ)=ARRAY(I,J)
 EPS=1.OE-16
 CALL CSINV(B,NTERNS,EFS,IER)
 IF (IER) 2,4,3
 2 PRINT 10
 10 FORMAT(' ','NO RESULT',/)
GO TO 4
3 PRINT 11
11 FORMAT(' ','wARNING',/)
4 DO 5 I=1,NTERMS
DO 5 J=1,NTERMS
CALL LOC(I,J,IJ,NTERMS,NTERNS,MCCDE)
5 ARRAY(I,J)=B(IJ)
RETURN
END

```

\section*{FCHISQ}
```

 FUNCTICN FCHISQ(Y,SIGMAY,NPTS,NFREE,MODE,YFIT)
 DIMENSICN Y(100),SIGMAY(100),YFIT(100)
 SUM=0.
 DO 5 I=1,NPTS
 IF(MODE) 1,2,3
 1W=1./Y(I)
GO TO 4
2 W=1.
GO TO 4
3W=1./(SIGMAY(I)**2)
4 SUM=(Y(I)-YFIT(I))*(Y(I)-YFIT(I))*W
5 CONTINUE
FCHISQ=SUM/NFREE
RETURN
ENO

```

```

SUBROUTINE BSINV

```
PURPOSE
    Invert a given symmetric positive definite matrix
Us AGE
    CALL DSINV(A,N,EPS,IER)
    IESCRIPTIDN OF PARAMETERS
    A - DOUBLE PRECISIUN UPPER TRIAINGULAR PART OF GIVEN
                SYMMETRIC POSITIVE DEFINITE N BY N COEFFICIENT
                MATRIX.
                GN RETURN A CONTAINS THE RESULTANT UPPER
                TRIANGULAR MATRIX IH DUUBLE PRECISION.
    \(N\) - THF NUABER OF ROWS (COLUMNS) IN GIVEN MATRIX.
        EPS - SINGLE PRECISIUN INPUT CONSTANT WHICH IS USED
                as relative tolerance for test on loss of
                SIGINIFICANCE.
            IFR - RESULTING ERROR PARAMETER CUDED AS FULLOWS
                IER=3 - NO ERRJR
                \(I E R=-1\) - NO RESULT BECAUSE OF WRONG INPUT PARAME-
                                    TER N UR bECAUSE SOME RADICAND IS NON-
                                    POSITIVE (MATRIX A IS NOT POSITIVE
                                    DEFINITE, POSSIBLY DUE TU LOSS OF SIGNI-
                                    FICANCE)
            IER=K - WARNING WHICH INDICATES LOSS OF SIGNIFI-
                                    CANCE. THE RADICAND FORMED AT FACTORIZA-
                                    TION STEP K+l WAS STILL POSITIVE BUT NO
                                    LONGER GREATER THAN ABS(EPS"A(K+1,K+1)).
REMARKS
    THE UPPER TRIANGULAR PART QF GIVEN MATRIX IS ASSUMEO TO bE
    STORED CDLUMNWISE IN N* \(N+1\) )/2 SUCCESSIVE STORAGE LUCATIUNS.
    IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU-
    LAK MATRIX IS STORED COLUMNWISE TOO.
    THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN \(O\) AND ALL
    CALCULATED RADICANDS ARE POSITIVE.
SUBR'JUTINES AND FUNCTIUN SUBPRUGRAMS REUUIRED
    DIFSD
METHJD
    SOLUTIUN IS DONE USING FAGTORIZATION BY SUBRGUTINE OMFSD.
```

C
SUBRUUTINE DSINV(A,N,EPS,IER)
C
C
DIMENSION A(210)
DOUBLE PRECISION A,DIN,WORK
C FACTORIZE GIVEN MATRIX BY MEANS OF SUBRQUTINE DMFSD
A = TRANSPOSE(T)*T
こALL CMFSD(A,N,EPS,IER)
IF(IER) 9,1,1
C
C INVEKT UPPER TRIANGULAR MATRIX T
C PREPARE INVERSION-LOOP
1 IPIV=N=(N+1)/2
IND=IPIV
C
C
DO }6\textrm{I}=1,
DIN=1.DJ/A(IPIV)
A(IPIV)=DIN
MIN=N
KEND=I-1
LANF=N-KEND
IF(KEND) 5,5,2
2 J=IND
C
C INITIALIZE ROW-LOOP
DO 4K=1,KEND
WORK= J.DJ
MIN=MIN-1
LHGR=I'PIV
LVER=J
C
C
C
C
4J=J-MIN
END OF ROW-LOOP
C
5 IPIV=IPIV-MIN
6 IND=IND-1
END OF INVERSION-LOOP

```

\section*{DSINV}

C
C
C
C
DO \(8 \quad I=1, N\)
\(I P I V=I P I V+I\)
\(J=I P I V\)
C
C
INITIALIZE ROW-LOOP
DO \(8 \mathrm{~K}=\mathrm{I}, \mathrm{N}\)
WORK \(=0\). DO
LHOK = J
C
C START INNER LOOP
DO 7 L=K,N
LVER=LHOR \(+K-I\)
WORK = WORK + A (LHOR) +A (LVER)
7 LHOR=LHOR +L
END UF INNER LOOP
C
C
\(A(J)=W O R K\)
\(8 \mathrm{~J}=\mathrm{J}+\mathrm{K}\)
END OF ROW- AND MULTIPLICATION-LOOP
C
C
CALCULATE INVERSE(A) BY MEANS OF INVERSE(T)
\(\operatorname{INVERSE}(A)=\operatorname{INVERSE(T)} * T R A N S P O S E(I N V E R S E(T))\)
initialize multiplication-loop

9 RETURN END
```

c
C
C
C
C
C
C
C
'SUBR•U'TINES AND FUNCTION SUBPROGRAMS REQUIRED NUNE
METHOD
SULUTION IS DONE USING THE SQUARE-ROOT METHOD OF CHOLESKY.

```
```

C THE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TWO TRIANGULAR
C MATKICES, WHERE THE LEFT HAND FACTOR IS THE TRANSPUSE OF
C
c
SUBROUTINE DMFSD(A,N,EPS,IER)
C
C
DIMENSI UN A(210)
DUUGLE PRECISION DPIV,DSUM,A
C TEST JN WRUNG INPUT PARAMETER N
IF(N-1) 12,1,1
1 IER=0
i
IVITIALIZE DIAGONAL-LOOP
KPI V = 0
OD 11 K=1,N
KPIV=KPIV+K
IND=KPIV
LEND=K-1
C
C calculate tolerance
TOL=ABS(EPS SNGL(A(KPIV)))
\because \mp@code { C } START FACTOKIZATION-LOOP OVER K-TH ROW
DU 11 I=K,N
DSUM=0.DU
IF(LEND) 2,4,2
C
C START INNER LOUP
2 DO 3 L=1,LENO
LANF=KPIV-L
LIND=IND-L
3 LSUM=DSUM+A(LANF) PA(LIND)
END JF INNER LOUP
C
C
TRANSFORM ELEMENT A(IND)
4 DSUM=A(IND)-DSUM
IF(I-K) 10,5,10
TEST FOR vEGATIVE PIVUT ELEMENT AND FOR LOSS OF SIGNIFICANCE
5 IF(SNGL(DSUM)-TOL) 6,6,9
6 IF (OSUM) 12,12,7
7 IF(IER) 8,8,9
8 IER=K-1
C

```

\section*{DMFSD}
\begin{tabular}{|c|c|c|}
\hline C & 9 & \begin{tabular}{l}
COMPUTE PIVOT ELEMENT DPIV=DSQRT (DSUM) \\
\(A(K P I V)=D P I V\) \\
DPIV=1.DO/DPIV \\
GU TO 11
\end{tabular} \\
\hline \multicolumn{3}{|l|}{6} \\
\hline \(c\) & & Calculate terms in row \\
\hline & 10 &  \\
\hline & 11 & \(\mathrm{IND}=\mathrm{IND}+\mathrm{I}\) \\
\hline C & & END OF DIAGONAL-LOOP \\
\hline \multirow[t]{5}{*}{C} & & \\
\hline & & RETURN \\
\hline & 12 & \(1 E R=-1\) \\
\hline & & RETURN \\
\hline & & END \\
\hline
\end{tabular}

\section*{APPENDIX E}

RELATIONSHIP BETWEEN EXTINCTION, SCATTERING, AND ABSORPTION COEFFICIENTS AND THE MIE PARAMETERS

The extinction ( \(\alpha\) ), scattering (s), and absorption (a) coefficients for suspended particulates can be calculated using the Mife formalism. Using the Mie parameters, \(a_{n}(x, m)\) and \(b_{n}(x, m)\) of equations (3-7) the extinction coefficient is given by:
\[
\begin{equation*}
\alpha=\frac{\lambda^{2}}{2 \pi} \int \sum_{n=1}^{\infty}(2 n+1)\left\{\operatorname{Re}\left(a_{n}(x, m)\right)+\operatorname{Re}\left(b_{n}(x, m)\right)\right\} n(r) d r \tag{E-I}
\end{equation*}
\]
where \(n(r)\) is the particle slze distribution function and \(x=2 \pi r / \lambda\). The expression for the scattering coefficient is:
\[
s=\frac{\lambda^{2}}{2 \pi} \int \sum_{n=1}^{\infty}(2 n+1) \quad\left\{\left|a_{n}(x, m)\right|^{2}+\left|b_{n}(x, m)\right|^{2}\right\} n(r) d r \quad(E-2)
\]

The absorption coefficient is the difference between \(\alpha\) and \(s\), thus
\[
\begin{align*}
& a=\frac{\lambda^{2}}{2 \pi} \int \sum_{n=1}^{\infty}(2 n+1)\left\{\operatorname{Re}\left(a_{n}(x, m)\right)+\operatorname{Re}\left(b_{n}(x, m)\right)-\right. \\
& \left.\quad\left|a_{n}(x, m)\right|^{2}-\left|b_{n}(x, m)\right|^{2}\right\} n(r) d r . \tag{E-3}
\end{align*}
\]

The follues for \(\alpha, s\), and a used in the Monte Carlo routine were not ") , f, -isx. calculated'in, this way because the values explicitly depend on the concentration through \(n(r)\). Instead \(\alpha, s\), and a were chosen to correspond to physically observed values.

The absorption coefficient depends on the lmaginary part of the index of refraction, but in a non-trivial way. If \(\operatorname{Im}(m)=0\) then it can be shown (25) that
\[
\begin{align*}
& \left|a_{n}(x, m)-\frac{1}{2}\right|^{2}=\frac{1}{4}  \tag{E-4}\\
& \left|b_{n}(x, m)-\frac{1}{2}\right|^{2}=\frac{1}{4} .
\end{align*}
\]

Expanding equation ( \(\mathrm{E}-4\) ) leads to
\[
\left[\operatorname{Re}\left(a_{n}(x, m)\right)\right]^{2}-\operatorname{Re}\left(a_{n}(x, m)\right)+\left[\operatorname{Im}\left(a_{n}(x, m)\right)\right]^{2}+\frac{1}{4}=\frac{1}{4}
\]
or
\[
\begin{align*}
\operatorname{Re}\left(a_{n}(x, m)\right) & =\left[\operatorname{Re}\left(a_{n}(x, m)\right)\right]^{2}+\left[\operatorname{Im}\left(a_{n}(x, m)\right)\right]^{2} \\
& =\left|a_{n}(x, m)\right|^{2} \tag{E-5}
\end{align*}
\]
with a similar result holding for \(b_{n}(x, m)\). Using these results in equation ( \(\mathrm{E}-3\) ) leads to \(\mathrm{a}=\mathrm{o}\). Thus if the imaginary part of the Index of refraction is zero the absorption coefficient is also zero.
\[
\text { If } \operatorname{Im}(m) \neq 0 \text { then }^{(25)}
\]
\[
\begin{equation*}
\left|a_{n}(x, m)-\frac{1}{2}\right|^{2}<\frac{1}{4} \tag{E-6}
\end{equation*}
\]
\[
\left|b_{n}(x, m)-\frac{1}{2}\right|^{2}<\frac{1}{4}
\]

Which, after expansion, leads to
\[
\begin{align*}
& \operatorname{Re}\left(a_{n}(x, m)\right)>|a(x, m)|^{2}  \tag{E-7}\\
& \operatorname{Re}\left(b_{n}(x, m)\right)>|b(x, m)|^{2}
\end{align*}
\]
so that, by equation (E-3), a>o for a non-zero imaginary component in the index of refraction.

\section*{REFERENCES}
1. A.H. Ghovanlou, "Analytical Model for Remote Sensing of Water Turbidity, "The MITRE Corporation, MTR-7290, September, 1976.
2. A.H. Ghovanlou, "Radiative Transfer Model for Remote Sensing of Suspended Sediments in Water," The MITRE Corporation, MTR-7433, March, 1977.
3. R.E. Morrıson, "Studies of the Optical Properties of Seawater at Argus Island in the North Atlantic and in Long Island and Block Island Sounds," Ph.D. Thesis, New York University, 1967.
4. S.Q. Duntley, "Light in the Sea," J. Opt. Soc. America, Vol. 53, No. 2, February 1963.
5. G. Kullenberg, Rep Inst, Fys, Oceanog., 5, 16. Kobenhauns Universitet., 1969.
6. N.G. Jerlov, Medd. Oceanog. Inst. Goteborg, 30, 1961.
7. J.E. Tyler, L1mm. and Oceanog., 6, 1961.
8. G. Kullenberg and 0. Berg, Rep. Inst. Fys. Oceanog., 19, 40, Kobenhavns Universitet, 1972.
9. G. Kullenberg, Deep Sea Res., 15, 1968.
10. T.J. Petzold, "Volume Scattering Functions for Selected Ocean Waters," AD-753474, Scripps Institution of Oceanography, October 1972.
11. H.R. Gordon, O.B. Brown, and M.M. Jacobs, "Computed Relationship between the Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean," Applied Optics, Vol. 14, No. 2, February 1975.
12. Elgin A. Dunnington, "Blological Effects of Stress on Commercial Fisheries," In: Willıam T. Mason and Kevin C. Flynn (eds.), The Potomac Estuary Bilogical Resources: Trends and Options Interstate Commission on the Potomac River Basin, Bethesda, MD, April 1976, pp 110-112.
13. M. Born, E. Wolf, "Pranciples of Optics," Fifth edition, Pergamou Press, (1975), p. 633.
14. M. Kerker, "The Scattering of Light," Academic Press, (1969), Chapters 3 and 4.
15. J.A. Stratton, "Electromagnetic Theory," McGraw-Hill Book Co., Inc. (1941), p. 563.
16. D. Deirmendjian, "Electromagnetic Scattering on Spherical Polydispersions," American Elsevier Publishing Co., Inc., (1969).
17. J.V. Dave, "Subroutines for Computing the Parameters of the Electromagnetic Radiation Scattered by a Sphere, " IBM Report No. 320-3237, May 1968.
18. G. Mie, Annid, Physik (4), Vol. 25 (1908), p. 377.
19. P. Debye, Annid, Physik (4), Vo1. 30 (1909), p. 57.
20. R.S. Chapman, "Particle Size and X-Ray Analysis of Feldspar Calvert, Ball, and Jordon Soils," NASA TM X-73941, February 1977.
21. "Handbook of Chemistry and Physics," Chemical Rubber Publishing Co., (1960), p. 1510.
22. G.W. Grams, et.al., "Complex Index of Refraction of Airborne Sonl Particles," Journal of Applied Meteorology, Vol. 13, June 1974, p. 459.
23. N.G. Jerlov, E.S. Nielsen, eds., "Optical Aspects of Oceanography," Academic Press, (1974), p. 152.
24. D.K. Todd, "The Water Encyclopedia," Water Information Center, (1970), p. 86.
25. D. Deirmendjian, "Electromagnetic Scattering on Spherical Polydispersions," American Elsevier Publishing Co., Inc., (1969), p. 24.
\(\frac{\text { D-10 }}{\text { C.A. }}\) Zraket
D-12
H. Benington
C. Grandy
A. Tachmindji

D-40
S. Blum
W. Sievers

D -41
S. Lewis

W-50
R. Greeley
R. Ouellette

Westpark Storage*
W-51
L. Gsellman
R. Pikul
T. Wright

W-52
G. Bennington
D. Blake
E. Friedman
N. Gadsby
A. Ghovanlou
S. Goldstein
W. Jacobsen
A. Johnson
K. Rebibo
M. Scholl
E. Ward

W-54
G. Erskine
J. Golden
S. Lubore

W-55
A. Chaliis**
N. Coates
E. Sharp
J. Stone

W-56
M. Bracken
L. Thomas

W-50 Library
METREK Library
Technical Center

NASA/Langley
Research Center
(100)```


[^0]:    *An area 2.5 cm in radius in the middle of the incident spot which Is about 30 cm in diameter (see Figure $1-1$ for reference). The incident beam impinges upon the water surface at an angle of 13.5 degrees in the air ( 9.0 degrees in the water).

[^1]:    ${ }^{*} 20,000$ photons were traced to produce the results shown in the lower curve in Figure 4-2.

