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ABSTRACT

This report documents a study which was carried out using a
Monte Carle Simulation method to determine the effect of scattering
from turbid water on the polarization of a backscattered beam of
laser light. The relationship between the polarization and the type
and amount of suspended particulates in the water was investigated,
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1.¢ INTRODUCTION

Excessive amounts of suspended particles in the environmental
waters lead to significant economical and ecological consequences.
Economic losses are mostly due to expenditures for dredging
operations and the reduction of the nation's reservoir capabilities.
Less tangible, but probably more important are the adverse
ecological effects. For example, organic debris amd residues
absorbed on the surface of particles increase biochemical oxygen
demand (BOD) and chemical oxygen demand (COD) which cause a concomitant
decrease in the concentrations of dissolved oxygen and the elimination
or reduction of sensitive organisms. The introduction of sediments
into an aquatic environment also may alter nutrient concentrations,
especially total organic carbon (TOC), nitrogen, and phosphorus.
Increases in nutrient loading may increase productivity in the

absence of inhibitory factors. Although high productivity can be

beneficial, 1t alsc may lead to serious eutrophication and nuisance
algae blooms. As long as the concentration of suspended sediments
remains high, primary productivity (photosynthesis) will be inhibited
or much reduced due to a reduction in the penetration of light in

the water column. Sediments also may transport toxic materials such
as pesticides and certain heavy metals which may adversely affect

the biota. In the light of the accumulated evidence, the know-

ledge of sediment concentration and composition seems of utmost



importance to the understanding of ecological processes in the
aquatic environment.

Considering the dynamic character of the environmental waters
monitoring procedures for measuring water quality parameters should
be based on a timely data collection system, such as can be provided
by applications of remote senzing technology. To develop appropriate
remote sensing tools a laboratory field program is presently
being pursued at the NASA/Langley Regearch Center (LaRC). The purpose
of this program is to investigate the remote sensing of water quality
parameters using information on the polarization properties of the
backscattered radiance when a polarized laser beam is directed at
turbid water. The present report describes a modeling effort which
deals with variations in the polarization characteristics of the
backscattered radiance as a function of water turbidity, suspended
particulate type, and detector spot size. This investigation employs
Monte Carlé simulation techniques to describe the radiative transfer
processes in the turbid medium, and to determine the backscattered
radiance. Specifically the polarization propérties of the back-
scattered beam 1s calculated based on the multiple scattering events
and the optical properties of the water medium.

The organization of the report is as follows: Section 2.0
presents a summary of the investigation and the major conclusions;

the details of the METREK Monte Carlo model are given in Section 3.0



while the details of the calculation of the scattering functions are
presented in Section 4.0; Section 5.0 discusses the effect of
scattering on polarization in an abstract, theoretical framework while
Section 6.0 discusses the effect of scattering based on the Monte

Carlo simulation and gives the results of the calculations,



2.0 SUMMARY AND CONCLUSIONS

This work has been done in support of an on-going laboratory and
field experiment at the NASA/Langley Research Center (LaRC). The
goal of this work is to investigate the effect of varying the
amount and type of suspended particulates in water on the polarization
of a backscattered beam of laser light. In addition, it is expected
that the results of the study will provide some guidance to the experi-
ment design.

The first step in performing this work is the calculation of
the optical properties, represented by the Mie matrix, of selected
soil types. Information concerning the size distributions of these
soils was obtained from a previous LaRC study (l). The calculated
quantities are the Mie matrix and the associated wvolume scattering
phase functions and volume scattering distribution functioms. It
is found in this portion of the study that the dominant source of
variation in the scattering functions is the maximum size of the
particles included in the size distribution. This has important
implications for attempts to compare the laboratory results (where
the water is constantly mixed) and the field test results (where
the larger particles may -have settled out).

A Monte Cario simulation is next run using one of the calculated
scattering functions. This simulation is done in such a way so as
to follow each scattering event of each photon which emerged from

the water. The results of the simulation are then analyzed using

5  PRECEDING PAGE BLANK NOT FiMED



a method which allows the calculation of the resultant intensity

and polarization of the backscattered beam for different detector
spot sizes (the size of the area on the surface of the water from
which photons emerging from the water will entex the detector),
different concentrations, and different optical properties {in terms
of the ratio of the amount of absorption to the amount of scattering
of the suspended sediments).

Based on the simulation study, the use of a polarization
measurement of a backscattered beam of laser light for the determina-
tion of the concentration of suspended particulates appears feasible.
The usefulness of the technique for discriminating between different
types of suspended particulates is less certain. In this study a
change in particulate type was represented by allowing the relative
amount of scattering and abscrption to vary over a limited range.

It is found that there is a small dependence of the polarization on
the relative amounts of absorption and scattering over the range of
interest. 1In fact a change in particulate type will result in not
only a change in the relative amounts of absorption and scattering
but also 1n a change in the volume scattering distribution function.
This effect has not been examined in this study. The results of

this study suggest that a trade off exists between the detector spot
size and signal-to-noise considerations. The ability to discriminate
between different particulate concentrations is improved if the

detector spot size is decreased. Thus the smallest detector spot

E



size commensurate with signal-to-noise requirements is indicated by
this study.

While only a limited number of concentrations, optical properties
and experiment configurations were considered in this study a simple
phenomenological theory has been developed which should allow an
extension of the results to other cases of interest. This theory
relates the polarization of the backscattered beam to the detector
spot size and the concentration of suspended particulates and gives
excellent qualitative agreement with the results of the simulatiom.

Comparison of the theoretical predictions with data obtained
from an experiment in the Chesapeake Bay area (see Figure 6-7) shows

very good agreement,



3.0 METREK'S MONTE CARLQO RADIATIVE TRANSFER MODEL

The important optical quantity which represents the scattering
properties of a medium is the Mie Scattering Matrix, %(m,@), which
determines the intensity and polarization of the radiation scattered
into an angle 6 from a volume element containing particles with an
index of refraction m {see Section 4.0 for a more thorough discussion
of the Mie Matrix). A number of optical parameters of interest can
be derived given knowledge of the Mie Matrax., These include the
absorption coefficient, a, the scattering coefficient, s, and the
total extinetion coefficient, o = a + 5. (For a discussion of the
relation between these parameters and the Mie Matrix see Appendix A).
The physical importance of these quantities can be seen from Beer's
law which states that, for a collimated beam of light passing through
the medium, the intensity decreases exponentially as a function of

distance traveled, r:

Ive = e e, (3-1)

That is, e ar measures the fraction of the beam intensity which is

lost due to absorption and e °F measures the fraction of the beam

intensity which is lost due to scattering out of the collimated beam.
Two other important optical parameters are the volume scattering

phase function ¢(8) and the scattering distribution function F(8).

9 PRECEDING PAGE BLANK NOT FILMED



The scattering phase function 0(6) is related to the Mie Matrix
through

o(B) = Sll(m,e) + Szz(m,e) (3-2)

and represents the total intensity scattered into an angle 6 from
a volume scattering element (properly normalized this is equivalent
to the probability of scattering into an angle 8). The

scattering distribution function is ‘the cumulative probability of

scattering between 0 and 6 degrees and is given by

6
Of o(6") 8in 8' de'

F(8) = — ~

J g(8') Sin o' de'

{3-3)

The role of each of these parameters in the Monte Carlo simulation
will be discussed in the next section.

3.1 Monte Carlo Simulation for Narrow Beam Transmission

The Monte Carle simulation technique is based on the use of a
random number generator to determine when each photon undergoes a
scattering event and into which set of angles {0,¢). For this study
the photons are assumed to strike the water surface at normal
incidence in a narrow beam. In addition it is assumed that each
photon i1s linearly polarized in the same sense and of the same
wavelength (A = 500 nm). Thus the simulation is that of a polarized
laser beam.

The photons that are incident on the water surface are

refracted at the air-water interface in accordance with Snelll's law

10



(see Figure 3-1). To decide how far the photon travels before a
scattering event occurs, a random number Ty is chosen in the uniform
interval (0,1) and the distance AR is set according to the formula

AB = - In(r (3-4)

1)

. s . . -1
AB is in units of scattering length, s ~.

At point B two new random numbers, ¥ T are chosen and used

2?3

to determine the scattering angles 62, and ¢2 (6, ¢ are measured 1in
a sperical coordinate system). The ¢~angle 15 chosen to be uniformly
distributed, i.e., ¢2 = 2ﬂr3. The selection of 82 is accomplished

from the relation r, = ¥(8), where F(8) is the scattering distribution
function for polar angle. This is equivalent to chosing 6 with a
probability distribution identical to that given by the volume
scattering phase function, o(8). After the selection of ¢2 and 82

a random number is chosen for computing the distance traveled, and

the process will continue until the photon emerges from the water.
Internal reflection from the water-air interface is also treated in
the model.,

At each step in the Monte Carlo process, the angles of scattering
are chosen with respect to the previous incident photon direction,
which is in general different from the direction of the original
z—axis, In order to keep track of the photons with respect to the
original coordinate system, (and be able to specify its coordinates

as it leaves the water) coordinate transformations are applied

after each scattering event. These transformation are: (1) a

11
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rotational transformation to set the instantaneous system of the
photon parallel to the original system, and (2) a translational
transformation that takes into account the displacement of the
instantanecus system with respect to the original system.

The procedure described so far takes into account only the
scattering processes. In orxder to take abscrption into account
the probability weight associated with each photon emerging from

. . . ~a
the air-water interface is reduced by a factor of e ¥

, where v is
the total path length traveled in the water by the photon, and a
is the absorption coefficient,

For each photon that emerges from the water surface at an angle
from the normal of less that 10° a record is kept of the 0 and 9
angles for each of the scattering events. Thus the statisties

generated are applicable to the case of having a near nadir looking

detector. In additiomn, the point of exit from the water is

measured from the entry point in units of s_l, the inverse scattering
coefficient. Thus any detector spot size can be accomcdated using
the same set of statistics - all photons whose exit point is less
than (s x detector's spot size) can be considered to have reached the
detector. Clearly this allows the statistics generated from any
simulation run to be used to analyze any combination of spot size

and s values. The only parameter which is fixed in the Monte Carlo
run is the scattering distribution function F(8). The values for

spot size, scatterimg coefficient and absorption coefficient, and

13



extifiction .coefficient, can all be varied after the initial
simulation. For this reason, values for s, a, and o are chosen

as adjustable parameters rather than being actually calculated from
the Mie scattering formalism. By allowing s (or o) to vary while
keeping the ratio a/s constant we can examine the effect of varying
the concentration of a particular sediment, By the same token,
holding s constant and varying the a/s ratio allows the investigation
of the effect of changing the optical characteristics of the sediments,
For each set of spot size, s value, and a/s value the photons which
reach the detector are selected from the statistics of the Monte
Carlo run and their Stokes vectors are computed using the set of
angles (0's and ¢'s) that each photon has been scattered, (For
detajls see section 5.0). The resulting set of individual photon
Stokes vectors are then averaged to yield a total Stokes vector for
the backséattered beam which is received by the detector. Given

this Stokes vector the total polarization and' the degree of linear

polarization can be calculated.

14



4.0 CALCULATION OF SCATTERING FUNCTIONS

This section is devoted to the theoretical treatment of
scattering and absorption from suspended particulates. The Mie
theory of light scattering from a single particle is treated in
Sub-section 4.1. The extension of Mie theory to the case of
polydisperse suspensions is then discussed along with the computa~
tional methods used to calculate the scattering function, in Sub-
sections 4.2 and 4.3 (Appendix A discusses the relationships between
the Mie parameters and the extinction, scattering and absorption
coefficients). Sub-section 4.4 includes a discussion of the size
distributions and optical properties of the clay sediments considered
in the calculations. Finally, :in Section 4.5 the results of the
calculation of the scattering functions are presented.

The following discussion of the Mie theory of scattering and
the computational methods is a brief summary. For more detailed
discussions of Mie theory for single scattering, the reader is
referred to References 2, 3, and 4. Reference 5 contains a
discussion of Mie scattering from polydispersions and Reference 6
contains the details of the computational prééedures and requirements.

4.1 Mie Theory for Single Particle Scattering

When 1light is incident on a particle, it undergoes both scattering
and absorption (the inelastic scattering processes which result in a

change in frequency are ignored in this study). The characteristics of the

15



scattered radiation depend on the wavelength, A, of the incident
1ight, the generally complex index of refraction, m, of the particle,
and the size, r, and shape of the particle. In this report we will
restrirct the discussion to spherical particles; for the treatment of
1norganic sediments in water this is probably not a serious

restriction,

If a monochromatic beam of light, represented by the Stokes
vector fo., is incident on a spherical particle at an angle 6 = 0,

then the ‘Stokes vector of the light scattered is given by

T(x,m,0) =~ S(,m,0) -fo , (4-1)
bw T

where {%‘(x,\m, 8) dis the single particle scattering matrix which depends

in general, on the size parameter

x = 2L (4-2)

and the complex index of refraction, m. The calculation of r%(x,m,e)
requires the solution of Maxwell's equation in spherical coordinates
with a discontanuous change in the index of refraction across the

(7)

spherical surface. This solution was originally derived by G. Mie

in 1908, and independently by P. Debye'®’ in 1909,

16



The scattering matrix can be written as:

M, (x,m,8) O 0 0

0 Mz(x,m,e) 0 0

§ (x,m,0) (4-3)

0 0 SZl(x,m,G) —DZl(x,m,B)

0 0 D21(x,m,6) SZl(x,m,B)
and the Mie solution is

Mi(x,m,e) = Sl(x,m,e) Sl*(x,m,e)

M, (x,m,0) = S (x,m,8) S,%(x,m,8)
2 2 2 (4-t)
SZl(x,m,e) = (8, (x,m, ) 5, %(x,m,8) + Sl(x,m,e) §,%(x,m,0))

DZl(x,m,B) 1/z(Sz(x,m,G) §;%(x,m,8) - 8,(x,m,0) Sz*(x,m,e))

Where Sl(x,m,e) and Sz(x,m,e) are the complex amplitudes for the

scattered radiation (and * designates the complex conjugate),

8, (x,m,0) = }; 1(1%213 {an(x,m)ﬂn(u) + bn(x,m)rn(u)}

(4~5)

(ntl)

S, (x,m, 8) = E PYCTER) {bn(x,m)ﬂn(u) + an(x,m)fn(u)} .

In these expressions ﬁn(u) and Tn(u) are derivatives of the Legendre

Polynomials:

dPn(u)
'ﬂ'n(ll) = —'“"—""du ) (4-6)
dw_(n)
T, (0 = ur (w) - (l—uz) "713——

17



(where g = cos 0). Also

Py G - m (mv] ()

S N Y BTN S T €
(4-7)

m () () b (P )

bam) = i, (0 - b, (W E )

and the ¢¥'s and £'s are related to the spherical Bessel functions of
the first and second kinds (jf1 and v, regspectively):

v (2) = zi (2

E(x) = =xj_(x)-iy_(x)

“ B i (4-8)
$-(z) = zj__,(2)-nj (2)

g = % -1 (x)-iy,_; (¥)nj (x)-iy ()

4.2 Mie Theory for Scattering from Polydispersions

A polydispersion is a suspension of scattering particles of
uniform physical characteristics but of varying number concentration
depending on particle size. Because of the existance of different
particle sizes it makes little sense to talk of scattering from a
single particle. Instead, it is useful to consider the scattering
properties of a small volume element containing a number of particles.
The size of this volume element is of some, at least theoretical,
importance. Glearly, if it is to be used to represent the scattering

properties of all similar volume elements then it must contain a

representative set of particle sizes - this requires that the volume

18



element not be too small. On the other hand, since we are consider-
ing only single scattering from the volume element, it must not be
too large. An add;tional condition that must be imposed is that the
interparticle separation be large compared to the wavelength. The
reagon for this is that the interaction of light with a particle
will be assumed independent of the interactions with all other
particles. This condition requires that the particle density in the
volume element not be too large. For our purposes, it will be assumed
that all of the above conditions are satisfied,

The polydispersion can be completely specified, for our purposes,
by an index of refraction m and a probability density function n(r).
The density function gives the relative concentration of each size
contained in a volume element,

The characteristics of the scattered radiation due to the volume
element can then be represented by a volume scattering matrix

%(m,e) in a manner analogous to Equation (2-1):

T(m,0) = A {%(m,@)fo (4-9)

This volume scattering matrix can be calculated from the set of

particle scattering matrices:

$m0 = [ 5Gx,m,0) n(r)dr (4-10)
0

19



where
_f n(r)dr = N (4-11)
o]

and N is the total number of particles per unit volume. In what
follows, N will be assumed to be unity since §(m,9) scales with N.
The abilaty to represent Q(m,e) as a linear superposition of the
individual scattering matrices is a direct consequence of our
assumption that the interparticle separation is much greater than Xi.

The calculation of %(m,e) thus reduces to calculation of the
individual é(x,m,e) and then integration over all sizes with the
proper weighting given by n(r).

4.3 Computational Methods

The calculation of the scattering phase functions and the
averaging over size distributions was carried out on an IBM 370/148.

The program listings are reproduced in Appendix D.

In computing the sums in Equation (4-5)}, the major difficulty
arises in the evaluation of the an(x,m) and bn(x,m). Using the
definitions of $n’ w;, En’ and 5;, and the standard recurrance

relations for the Bessel functions, Equation (4-7) can be rewritten:

{ﬁl}}(ﬂﬁi + n/x} Re [En(x)l -Re [En_l(x)]

an(x,m) =

An(mx)
{T”’X} S
(4-12)
. {}Ah(mx) + n/x} Re [En(xi] -Re [gn_l(x)]
byl = [Pt TS )

20



where
¥ (mx)

An(mx) 'ﬁ;fﬁ%i

(4-13)

the logarithmic derivative of wn(mx), and Re denotes the real part.
The natural approach to the evaluation of Equation (4-12) is to
employ a standard (upward) recurrance procedure. Unfortunately, if
the imaginary part of the index of refraction is not zero and n is
large then the upward recurrence procedure results in large instabil-
ities in the calculation of An(mx). For this reason, the DBMLE sub-
routine employs a downward recurrence procedure to calculate the
An(mx)s. These values are then stored for use in the evaluation of
Equation (4-12). Becuase of the large storage requirements resulting
from this proceudre (n n 7000), and the fact that double precision is
employed in all of the calculations, a virtual machine with 512 K
bytes of storage is required for the implementation of the DBMIE

and POLYMIE routines.

The scattering phase functions are computed in the DBMIE sub-
routine, and the average, Equation (4~10), is computed in the calling
routine POLYMIE. While analytic functions have been used for :the
size distributions, n(r), the integral has been approximated by a
summation over a discrete set of radii. Tests to determine the
effect of using a summing procedure have shown that this results in
no loss of accuracy. Im addition, test runs were made to compare
the results when Ar=0.lp and Ar = 1y were used in the summing pro-

cedure. The use of Ar = 1y resulted in no significant change in the

21



results from those obtained using Ar = .lp over the range 0 < r <
100u. CGalculations were made using rmax = 100p and rmax = 10u

(Ar =0.1u). A discussion of the proper upper limit for r 1s given
in Section 4.4.2.

The amount of virtual CPU time required for these calculations
is significant and has been a major factor in determining T oo and
Ar. As an example, the calculation of the volume scattering phase
funetion for a polydispersion with m = 1,144 - 0,0i, A =0.5u,

Toax - 100 and Ar = ly requires approximately 26 minutes of virtual

CPU time.

4.4 Properties of Clay Samples

Data on four different clay samples were provided by NASA/LaRC.
This data consisted of empirical size distribution curves as well as
brief descriptions of chemical composition. The physical character-
isties of the clay are discussed in Section 4.4.1 while the size dis-
tributions are presented in Section 4.4.2.

4.4,1 Physical Characteristics of Clay Samples

Four types of clay were selected by NASA/LaRC. These were:
Feldspar, Calvert, Ball and Jordan. According to the analysis of
these clays performed by NASA/LaRC(l) the compositions are:

e Feldspar - Feldspar and Quartz Minerals

s Calvert and Jordan - Kaolinite and Illite

¢ Pall - Montmorilloite, Kaolinite and Tllite

22



The real refractive index and chemical components of these

(9)

minerals is shown in Table 4.1, For reasons which will be dis-
cussed in Section 4.4,2, Feldspar and Ball Clay were chosen to be
included in this study.

To estimate the index of refraction of the clay samples, we
take a simple average of the indices of refraction of the components.
Thus, for both Feldspar and Ball Clay, the real part of the index of

refraction is estimated as

Re(mAir) = 1.53

This, of course, is the index of refraction with respect to air and
we require the index of refraction with respect to water which can
be obtained by dividing Re(mAir) by the index of refraction of water
1.337 (for wavelengths of approximately 500 nm).

Thus

Re(mWater

Y = 1.144 .

Estimating the imaginary part of the index of refractiom is not
so straightforward, since direct measurements of Im(m) have not been
made. Since these minerals have very low conductivity, it is expected
that the imaginary part of m will be quite small. The imaginary part
of m has been measured for soil aerosols and has been found to be
about .005 (with respect to air).(lo) For this study two values for
Im(m) will be used:

T =
o (mwater)

0 » Non-absorbing

0.005 0.004, Weakly-absorbing
1.337

il
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TABLE 4.1

CHEMICAL COMP@SITION AND INDEX OF REFRACTION
OF CLAY .CONSTITUENTS

NAME CHEMICAL COMPOSTTION INDEX OF REFRACTION
Kaolinite A1203m25i02.2H20 1.56
Tliite Ry 1. 5A1,557 ¢ 581y 50, (0B, 1.54

Montmorilloite (.5Ca,Nad 7(Al Mn Fe) {8i,Al) )20(H0)4nH 0 1.48

Feldspars:
Microcline KQO.A1203.65102 1.52
Andesine (CaOlNazO)Alzo3 48102 1.55
Anthoclase (Na,‘K)ZO.A1203.6SiO2 1.53
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4.4,2 Particle Size Distributions

Emperical cumulative size distributions for the four samples
were provided by NASA/LaRC and are shown in Figure 4-1, 4-2, 4-3
and 4-4. It is apparent from these figures that the size distributions
for Ball, Jordan, and Calvert differ significantly from the size
distribution for Feldspar. Since it was planned that two distri-
butions would be employed, Feldspar and Ball Clay were chosen.
This choice allows the investigation of the effect of radically
different size distributions.

To utilize the size distribution information, it is necessary to
determine the size distribution density function, n(r), which specifies
the relative number of particles with radius r per unit volume., If
we denote the cumulative size distribution as provided by NASA/LaRC

as N(ro) then the relationship between N(ro) and n(r) is given by:

r
N(r)) = 1- JO n(x) dr, (4-14)
oxr
- 4N(r ) - -
n(r) = dro o r, = T {4-15)

A general curve fitting routine {(See Appendix E) was used to deter-

mine the best distribution for both the Ball Clay and Feldspar.
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For the Feldspar sample it was found that the data was well
represented by a modified Gamma distribution:
) 2y
n(r) = a,r “exp (—a3r ) {(4~16)

The parameters were determined, using a2 minimum mean square erron

criterion, to be

a; = 2.05089
a, = 0.671066
ag = 3.58393
a, = 0.218499

A plot of this size distribution density function is shown in Figure
4-5, while a plot of the corresponding cumulative size distribution
function (as obtained from Equation 4-16) is shown in Figure 4-6.
As can be seen in Figure 4-6, the modified Gamma distribution giwves
a good fit to the data points obtained in the NASA/LaRC analysis.

To £it the size distribution of the Ball Clay sample, Junge's

distribution model was chosen:

-a, ‘
n{r) = a; r . (4-17)
with the parameters,
a; = 0.2006
a, = 1.624746

determined using the same curve fitting routiné employed for Feldspar.
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The size distribution density function and the cumulative size dis-
tribution function for Ball Clay using Junge's distribution are shown
i1n Figure 4-7 and 4-8. It i1s apparent from Figure 4-7 that Junge's
distribution function is not, strictly speaking, a probability dis-—

tribution since the integral (Equation 4-11),

o
‘[ n{r) dr = N
o]
can not be normalized, i.e., N is infinite. However, Junge's distri-
bution has been found to accurately repregent particle sizes of ccean

sediments.(ll)

In addition, the lower and upper limits of integration
in Equations (4~11) and (4-10) are not set equal to zero and infinity,
in practice, allowing Equation (4-11)} to be normalized.

The question of the proper upper limit for Equation (4-10) and
Equation (4-11) is of more than theoretical interest. From the
empirical size distributions provided by NASA/LaRC, it appears that

an upper limit in Equaticn (4-10) should be chosen as 100 microns

(um). However, as can be seen in Table 4.2(12)

the settling rate

for 100 um particles is on the order of thirty seconds. Thus, the
history of the particulates in the body -of water is important. If
the particulates have been allowed to settle, then the size distri-
butions determined before the particles are introduced into the water

are inappropriate. In order to investigate the effect of settling,

two upper limits, 100 pm and 10 um, were chosen for the integrals of
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TABLE &4-IT

SETTLING VELOCITIES OF SAND AND SILT IN STILL WATER

{Source* Amer. Water Warks Assac.)

[Temperature SAOF, ail particles assumed to have a specific gravity of 2.65]

Diameter of Sattling Time Required to

particle Qrder of Size Valogity Settle 1 Foot
mm. mm./sec,

100 Gravs! 1,000 0 3 seconds
10 100 3 0 seconds
o8 83
0s 83
g.i Coarse Sand ig
o3 32
02 21
0.18 15
0.10 B 38.0 econds
008 -]

008 38

ggi > Fine Sand s g?

Q.03 13

002 062

0015 < 035

Q010 0.154 33 O minutes
0008 0098

0 006 Q065

0 005 Sitt 00385

0004 > © 0247

0003 00138

0 002 0 0062

00015 J 0 0035

0 001 Bacteria 000154 55 0 hours
¢ 0001 Clay Particies 0 Q00on154 230 O days
0 00001 Coal'oidal Parzicies O 000000154 63 0 yeors
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Equations (4-10) and (4-11). Equation (4-11) was used to properly
normalize Equation (4-10) with respect to the choice of upper limit.

4.5 Results of Computations

The results of the computation of the volume scattering phase
functions (4.5.1) and the volume scattering distribution functions
(4.5.2), using the size distributions of Section 4.4, are presented
in this section. In addition to examining the effect of settling
on the calculations, the wavelength dependence of the scattering
functions are also investigated.

4,5.1 Volumé Scattering Phase Functions

The computed volume scattering phase functions are shown in
Figures 4.9 through 4.14.

Figures 4.9 and 4.14 display the extremely large forward scat-
tering peak which is primarily the result of including the large

(v100 ym)} particulates in the size distributions. Both the Feldspar

and Ball Clay phase functions show considerable difference between
the non—absorbing and absorbing cases at large angle. While it is
not evident in the figures, the forward scattering peak is larger
for the absorbing case at small but non-zero angles (6 ~ 0.50).
Figures 4-11 and 4-12 demonstrate the effect of cutting the size
digtributions off at 10 ym instead of 100 pm. The relative size of
the forward peak is reduced and the difference between the absorbing
and non-absorbing cases at large angles is reduced. It is inter-

esting to note that, although the shape or the Feldspar and Ball
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Clay size distributions are very different, the upper limit on the
size appears to be much more important in terms of the difference imn
phase functions.

Figure 4-13 and 4-14 show the scattering phase functions computed
for A = 600 nm (with a 10 um cutoff) instead of A = 500 nm as in
Figures 4-11 and 4-12, It can be seen that the phase functions are
not heavily wavelength dependent. In fact, it can be shown that for
a umiform size distribution and upper and lower limits of zero and
infinity in Equation (4-10), the volume scattering phase function will

be strictly independent of wavelength.

4,5.2. Volume Scattering Distribution Functioms

While the volume scattering phase function describes the angular
dependence of scattered radiation, a more important function for use
with the Monte Carlo simulation is the volume scattering distri-
bution function, ¥(8), defined by Equation (3-3), The distribution
function gives the normalized cumulative probability that a photon
is scattered in the range 0 to 0 degrees. The volume scattering
distribution functions for the cases considered in Section 4.5 are
shown in Figures ﬁwlS through 4-20.

Tt is again apparent in Figures 4-15 and 4-16 that there dis a
considerable difference between the absorbing and non-absorbing case.
The difference due to the Feldspar and Ball Clay size distributions

is small.
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As with the scattering phase functions, the use of a 10 um cut-
off decreaées the difference between the absorbing and non-absorbing
cases. In addition, the volume scattering distribution functions
are changed considerably when the 10 um cutoeff is imposed.

Figure 4-19 and 4-20 demonstrate the small change in the

volume scattering distribution functions when the wavelength is

changed.
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3.0 THE EFFECT OF SCATTERING ON POLARIZATION

The description of a light wave in terms of its polarization
properties requires the use of the Stokes formalism. TIn this
section the Stokes formalism is developed and the effects of
scattering on the polarization of a monocromatic light wave is
investigated. The reader is referred to Reference 13 for a complete
discussion of the Stokes formalism and polarization.

5.1 The Stokes Formalism

We consider a monochromatic, polarized electromagnetic wave
propagating in the z-—direction. The electric vector can then be

written as -

Ex = A1 Cos(wt)
Ey = A2 Cos (wtt8) (5-1)
E = 0

z

This wave can be represented using the Stokes formalism:

5

L,

a4
I

(5-2)
U

v

Where the Stoke parameters are given by

_ L2
L. = Al

[NCI V]
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U = 2A.A, Cosé
g 172 (5-3)

v o= 2A1A2 8ind
There are .a mumber polarization "types” possible for .a completely
polarized beam of light; some exampiles are glven in Table 5-I.

5,2 ‘The Effect :of §cattering 'on Polarization

If the dight beam is not completely polarized then it can be

broken into two components: a completely polarized component,

I , and an unpolarized, or natural component, In. In terms of the

Stokes vectors of a beam of light ‘these components are

1
(1,1, + 1/2((1*1-—12)2 + 7% + vVH?

. L
{ sr,o1) #ha1)? + 07+ 7O
I - 271 12 :
P
) U
(5-4)
. o N2 2 2.5
L I . , ¥
5/2(Il+12) + z((Il IZ) + U° + V) \
. 2 2 2.k
1 1L - : h
. (L L) + B((Ty~1,)" + U7 + V)
IN =;
. 0
0
Note “that if the beam is completely polarized then
2 4 v (5-5)

2 32
(I+1,)° = (1,-1))° + U

-

v ML o . [N VoLt q s JUN
' PRFL PR S U 54



14

TABLE 5.1

STOKES REPRESENTATION FOR SOME POLARIZATION TYPES

14

Type Il '.l'.2 U \Y § Description of Polarazation

1 1 0 0 0 0 Linear, Vertical

2) 0 1 0 0 0 Linear, Horizontal

3) 35 s 1 0 0 Linear, lst and 3rd Quadrants

4) Y 5 ~1 0 0 Linear, 2nd and 4th Quadrants

5) L s 0 1 "wf2 Circular, Right Handed

6) ) % i 0 -1 -/2 Circular, Left Handed

7 'J5/s 3/8 3/4 3/2 Sin"' 4/5  Elliptical, Right Handed, lst and 3rd
Quadrants

8) 3/8 5/8 - 3/4 - 3/2 ~8in - 4/5  Ellaptaical, Left Handed, 2nd and 4th

Quadrants



(as can be seen from Equation (5-3)) Equations (5-4) reduce to

I

I

=
]

(5-6)

Q

0

The degree of polarization, P, is defined as the ratio of the intensity
of the polarized component to the gsum of the intensities of the
polarized and unpolarized components,

I

P
L G-7)
IP + IN

which in terms of the Stokes parameters is

i5

[(11—12,)2 + 0%+ VR

P = ° —— - (5-8)
I, +1,

For completely polarized light P=1 while for a light beam which
containes a natural component P < 1.
Equation (5-8) can be inverted to give an alternate expression

for determining if a wave is fully or partially polarized:

411I2 :fuIly polarized
= T 1 (5-9)
g+ > partially polarized

i
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This expression will be useful when examining the effect of scattering
from a sphéfical particle, or a collection of spherical particles.

If an incident wave, represented by the Stokes vector

1
L
+
T = ,
1 U
v

is scattered by a spherical particle whose scattering matrix is

given by Equation (4-3) the scattered wave is given by (apart from

a constant)
Is,l Ml(x,m,e)I1 \
I (Xsms I
s _| =] - "2 2 (5-10)
s
US SZI(X’m’e)U - D21(x,m,6)V
Vs / \SZI(X’m’B)U + D21(x,m,6)v
Upon forming w, for the scattered wave and simplifying it is found
that
. 415,1 IS,Z _ Ml(x,m,e) Mé(x,m,e) 411I2
g = =
2 2 2 2 2,2
US + VS SZl(x,m,B) + D21(x,m,8) U +v
(5-11)

Ml(x,m,e) Mz(x,m,e)

2 2
821(x,m,0) + D21(x,m,6)
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If the wave incident on a spherical particle is completely polarized
then =1 and using the definitions of Equation (4-4) one finds

2 2
5, {x,m,8) S,(x,m 6)‘
. _ll | |2” - 1 (5-12)

- ) J 2 2
s Isl(x,m,ﬁ) I !Sz (x,m, 8) I

and the scattered wave is also completely polarized. This dees mnot
mean that the polarization type has mot been changed. It can be seen
from Fquation (5-10) that the parameters of the Stokes vector are
altered by the scattering matrix. For example, in general, linearly
polarized light will be scattered as elliptically polarized light.
If, instead of scattering from a single partiecle, the light
1s scattered off of a volume element containing a collection of
particles, then the parameters of the scattering matrix must be
replaced by their averages (denoted by <...>) over the volume
element. Thus the polarization condition (Equation 5-11) becomes

) (Ml(x,m,8)> <M2(x,m,6)> . (5-13)
s (521(2:,1r1,9))2 + (D21(x,m,9)> 2 |

Again assuming that the incoming wave is completely polarized (w=1)
and expanding the scattering parameters in terms of the scattering

amplitudes as was done for Equation (5-12) we find

_ (slcx,m,e))2 (Sz(x’m’e)>2 (5-14)
S <Sl*(x,m,6) S, (x,m0) X S (x,m,8) 82*(x,m,6)>

w
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and using the Cauchy-Schwarz inequality results in

(Sl(x,m,8)> 2 (Sz(x,m,0)> 2
s = (Sl(x,m,6)> 2 '<Sz(x,m,8)>' 2 '

or m, > 1. The equality holds if all of the particles in the

(5-15)

volume element are identical, TFor a polydispersion the scattered
light will be depolarized, that is the degree of polarization will

be reduced.

5.3 Results of Calculations of Polarization for Single Scattering

When computing the polarization of a beam of light which has
been scattered from a particle (or collection of particles) it is
necessary to first select a gpecific Stokes vector representation
of the incoming light. For any type of polarization (i.e., linear,
elliptical) there are an infinite number of Stokes vector represent-—
tations. The representation which is appropriate for a particular
scattering event depends on the plane of observation (P0) of that
event. The PO is defined by the direction of the incoming wave
and the direction of the observed scattered wave., The Stokes vector
of the incoming wave is written in the representation for which EX
lies in the PO and Ey is perpindicular to the PO. For the purposes
of caleulating the depolarizing effects of single scattering from

the clay sediments we will use an incoming wave represented by
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T = (5-1)

This is a linearly polarized wave written in a representation which
does not give a preference to the EX and EY components., In terms of
the PO this Stokes wvector represents a wave whose electric vector is
at a 45° angle to the x and y coordinates.

The resulting polarization from the scattering of the wave from
the Feldspar and Ball Clay polydispersions is shown in Figure 51 and
5-2. While the angular polarization properties of the two polydisper-—
sions differ there is a much more marked difference between the
polarizations for the non-absorbing and weakly absorbing cases.

When a 10 um cutoff is imposed on the size distributions
the differences in the polarization for the non-absorbing and weakly
absorbing cases are reduced (Figures 5-3 and 5-4). In addition the
differences between the polarization curves of the Feldspar and
Ball Clay samples are reduced.

A change in wavelength, from A=500 NM to A=600 NM, results in
only small changes in the polarization curves. (Compare Figures
5-3 and 5-5 and Figures 5-4 and 5-6).

5.4 Depolarization Due to Multiple Scattering

It is not possible to compute the depolarization due to multiple

scattering without actually performing a Monte Carlo simulatiom.
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POLARIZATION FOR FELDSPAR (10uM CUTOFF A = 500 NM)
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FIGURE 5-5
POLARIZATION FOR FELDSPAR (10uM CUTOFF A = 600 NM)
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One of the reasons for this is that the polarization of a wave
represented by a Stokes vector, depends on the plane of observation
(PO) which for multiple scattering is defined in terms of the incoming
direction and the direction to the next scattering particle (or

volume element). Thus, in general, for each scattering event the
Stokes vector will have to be rotated into the representation of

the new PO. For a clockwise rotation of the PO about the propogation
direction, through an angle ¢, the Stokes vector will have to be

rotated by operating on it with a rotation matrix R:

= poi (5-16)

Where

Cos?¢ Sin2¢ L8in2¢ O
Sin2¢ Cosz¢ -%8in2¢ O
R(¢) = (5-17)
-8in2¢ Sin2¢ Cos2¢ O
0 0 0 i
For the multiple scattering of a beam the product
b n ->
I, = 1§66 RpT, (5-18)
1=1
must be calculated, In Equation (5-18) fé is the final Stokes vector,
Tﬁ is the initial Stokes wvector, §(@i) is the Mie matrix for angle

@i and the product is over all scattering events, i=l, n, that results

in the beam being scattered into the detector.
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In the next section we examine the results of using Monte
Carlo simulation techniques to invesgtigate the polarization effeets

due to multiple scattering
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.6.0 RESULTS OF MONTE CARLO SIMULATION

The Monte Carle simulation was run for two cases, i.e,, for two
different volume scattering functions, F(8). The cases chosen were
for Ball Clay with a 10um cutoff at a wavelength of 500 nm and with
indices of refraction M = 1.144 - 0.0i and M = 1,144 - 0.00441.
For the former {(Im(m) = 0) the simulation was run in 104 photon
increments until, after 3 x 104 photons had been run, 355 photons
were found to have emerged from the water. When a small imaginary
component is added to the index of refraction the forward scattering
was increased and it was found that after 104 photons only 35 had
emerged from the water. It was decided that too large a sample of
photons would have to be run to obtain a significant number of photons
and only the M = 1,144 - 0.0i case was investigated in detail,

Before discussing the results of the simulation a phenomenclogical
theory is developed which is useful in interpreting the simulation
results.

6.1 Phenomenological Theory of Depolarization

As was discussed in Section 5, each scattering event from a
volume element of a polydispersion results, Iin general, in a decrease
in the degree of polarization. In addition, each scattering event
results in a change in the type of polarization. Thus the more times
a photon is scattered the more its degree of polarization is decreased.
By the same token, if a photon starts out with a 3Iinear polarizatiomn,

the more scattering events it umdergoes the more it "loses its
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memory" of its polarization state. Thus, after a large number of
scattering events, the degree of polarization should approach zero,
and the ratio of the y- component of the electric vector to the
x-component, R = Ey/Ez, should approach unity.

To develop an understanding of the relationship between
depolarization and the parameters - spot size, s, and a values - a
relationship between them and the average number of scattering events
must be investigated. Assuming, for the present, that a/s is constant
and that s 1s a variable parameter (i.e., the concentration of the
gsediments is variable) this relationship is shown in Figure 6-1.

In a) the case of high concentration (large s) and small spot size

is represented while b) illustrates the case for low concentration
(small s) and large spobt size. These two cases are equivalent
because they will have the same average number of scattering events.
In fact, the product (spot size x s) is directly correlated with the
average number of scattering events. Figure 6-2 shows the results

of the Monte Carloc simulations in terms of the average number of
scattering events vs. (spot size x scattering coefficient). (Note
that, for the M = 1.144 - 0.0i case, the points lie along a smooth
line and in addition the points are virtually identical for the lO4
photon and 3 x 104 photon runs). For the M = 1,144 ~ 0,004i case the
points show significant scatter (thus indicating the lack of
statistical significance for this run). Figure 6-1, ¢ indicates that

by decreasing the concentration (s value) while keeping the spot size
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FIGURE 6-2
MEAN NUMBER OF SCATTERING EVENTS FOR BACKSCATTERED
PHOTONS VS, SPOT SIZE x SCATTERING COEFFICIENT
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constant results in some of the photons which underge a large number
of scattering events being out of range of the detector when they
emerge from the water surface. By the same token increasing the
concentration (s value) while holding the spot size constant,
results in a photon which undergoes a larger number of scattering
events still being in the range of the detector when it emerges

from the water (Figure 6-1, d).

Based on our previous discussion of the effect of increased
scattering on depolarization we can now state the hypothesis:

As the s value {(concentration) is increased (for a

given spot size) the degree of polarization of the

backscattered beam will decrease (the R-factor will

approach unity); as the spot size is increased (for a

given s value) the degree of polarization will

decrease (the R-factor will increase towards unity).

If s is held constant and afs 1s allowed to vary then those
photons which travel a longer distance, and hence have been scattered
more, will be weighted less as a/s is increased. Thus one would
expect the degree of polarization would increase as the a/s ratio
increases.

A word of caution concerning the phenomenological theory of
this section is in order. An important factor has been ignored in
this development, viz., the wvariation of the depolarization, due to
single scattering, with the scattering angle. However, based on
the fact that most of the scattering is in the forward direction,

where ¢here is little difference in Figures 5-1 through 5-6 it may

be reasomnable to expect any differences at angles greater than
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40 degrees to have little impact. As will be seen in the next
section, the results of the depolarization calculations seem to f£it
the hypothesis concerning the relationship between depolarization,
spot size, s-value and a/s-ratio.

6.2 Depolarization Calculation From Monte Carlo Results

The results of the degree of polarization calculations for the
backscattered beam from the Ball Clay, M = 1.144 — 0.0i case are
shown in Figure 6-3. Tt is found that the degtree of polarization
does decrease assymptotically as the scattering coefficient is
increased. It 1s also found that the degree of polarization is
approximately the same for combinations of spot size and scattering
coefficient which yield the same product. Another result of the
simulation is that small spot size will provide better discrimination
at high levels of scattering coefficient, For discrimination between
different a/s ratios it is found that a large spot size 1s necessary.
From Figure 6~4 it can gg‘géen that there is wvirtually no dependence
of the degree of polarization on the a/s ratio for the 1 inch
radius spot size,

The results of the calculations of the B-factor are shown in
Figure 6-5. Here again it is found that the results agree With the
hypothesis of Section 6.1. That is, for all spot sizes the R-factor
increases for large s~values. In addition it is found that the
R-factor has approximately the same value for corresponding pairs

of spot size and s~value, As with the degree of polarization it is
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found that small spot size gives the best results for discrimination
at high values of s. The R-Factor is alge found to be relatively
insensitive to variations in the a/s ratio (from .1 to .2) for
constant s—value and small spot size (Figure 6-6).

Recently data on the depolarization of a backscattered beam
of laser light has been collected from a portion of the Chesapeake
Bay(ls). The results of that experiment, which used a 2.5 inch

radius spot size, 1s compared with the theoretiecal curves in

Figure 6-7. The agreement is obviously quite good.
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APPENDIX A

RELATIONSHIP BETWEEN EXTINCTION, SCATTERING, AND
ABSORPTION COEFFICIENTS AND THE MIE PARAMETERS
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The extinection (o), scattering (s), and absorption (a) coeffi-
cients for suspended particulates can be calculated using the Mie
formalism, Using the Mie parameters, an(x,m),and bn(x,no of

eguations (3-7) the extinction coefficient is given by:

2
o = 5 =1 (2n+1) {Re(an(x,m) +vRe(bn(x,m))}. n(r)dr

where n(r) is the particle size distribution function and x = 27r/A.

The expression for the scattering coefficient is:

s = Lz f i (2n+1) {Ian(x,m) | 2 + Ibn(x,m) |2} n{xr)dr

2T n=1

The absorption c¢oefficient is the difference between o and g, thus
D>
a =5 = (2n+1) -{Re(an(x,m)) + Re(bn(x,m)) -

2} n{r)dzr.

The values for o, s, and a used in the Monte Carlo routine were not

an(x,m) bn(xnm)

calculated in this way because the values explicitly depend on the
concentration through n(r). Instead ¢, s, and a were chosen to
correspond to physically observed values.

The absorpticn coefficient depends on the imaginary part of
the index of refraction, but in a non-trivial way. If Im(m) = O

(25)

then it can be shown that
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]
Ny

|an(x,m) -k ’2

b Gom) - % |2 =5

Expanding equation {A~-4) leads to

[Re(a (x,m) ] % - Re(a Goom)) + [ImCa_(x,m) ]° + % = %

or

Re(a Gx,m) = [Re(a Ge,m))] * + [Ima_(x,m) 17

It

2
a_(x,m) |
with a similar result holding for bn(x,uﬂ. Using these resulis in
equation (A-3) leads to a=o, Thus if the imaginary part of the

index of refraction is zero the absorption coefficient is also zero.

If Im(m) # O then (13)

2
]ancx,nﬂ -5 |"<n
Ib (z,m) - % 2-:1,5
n > 2

Which, after expansion, leads to

Re(an(x,m)) >la (x,m)l 2

2
>

Re(bn(x,m)) > lb {x,m)
so that, by equation (A-3), a>o for a non—-zerc imaginary component

in the index of refraction.
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APPENDIX B

1ISTINGS FOR MONTE! CARLO ROUTINE

PRECEDING PAGE BLANK NOT FikMEW
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1 Iv 61

RELEASE

aM&Mo

25
30
26
27
29

31

[a N o]

5004

[aReNal Na

—tph

2.0 MAIN DATE = T726% 13725751

MONTECARLO PROGRAM WITH DOCUMENTATION

DIMENSION FIS(L100)+TES{100}+VALU{50],ANGLI50)

READ £5+25) MAXNPH2NMAX,IS

FORMAT {312X518))

READ(5,30) TETAI.FI1

FORMAT{Z215X,F8.3))

WRITE {6526) MAXNPH

FCRMAT ('0°',"MAXINUM NO. OF PHOTONS TRACED=",18)

WRITE (6+27)INMAX -
FORMATY {07, 'MAXIMUM NO. OF EVENTS FOR EACH PHOTON=",I38)
WRITE (6+29) IS

FORMAT {(*0',YINITIAL SEED FOR RANDOM NO GENERATOR=',13}
HWRITE (6431) TETAIL,.FII

FORMAT[* 03 "INITIAL TETA IN D=9,FB8.3+"INITIAL FI1 IN DEG=1,

1F8.3) .

MAXNPH IS THE MAXIMUM NO OF PHOTONS TRACED )

NMAX IS5 THE MAXIMUM NO OF EVENTS FOR EACH PHOTON
PI=3.141592654%

RiH=1e334 -

RNW IS THE REFRACTION INDEX OF WATER

DTRC=P1/180.0 -

DTRC IS DEGREES TO RADIANS CUNVERSION.
TETAI=TETAI*DTRC

FII = FI1 #* DTRC

START THE CALCULATION

MPH IS DEFINED AS THE NO OF PHOTONS AT A GIVEN TIME
NPH=0

READ{9,5004) (ANGLII)},VALU{I}sI=1,41)
FORMAT{F1l0e44E15.6])

RECORDS NO OF PHOTONS TRACED

IF {NPH.EQ.MAXNPH }GC 70O 2000

TEST FOR END OF COMPUTATIONS

PHOTON ENFERS THE MEDIUM AT X=Y=Z=0 '
PHOTON ENTERS AT ANGLS TETAIL, FII

TETA=TETAI

FI=F1i

X=0,

Y=0.

£=0,000001

DECIDE HOW FAR PHOTON TRAVELS BEFORE AN EVENT OCCURS
RHOD=RANDNOLIS)
=—ALGG{RHOD)
GAMA=T

T IS THE DISTANCE IN 5 — 1 UNITS PHOTON TRAVELS TO THE EVENT
PHOTON IS AT

86 ORIGINAL PAGE I8
OF POOR QUALITY]


http:READ(5.30

ORIGINAL PAGE 1§
OF POOR QUALITY]

N I¥ Gl hKELEASE 2.0 MAIN DATE = 17264 13/25/51

X = X+T#SIN{TETA)*COSLEI)

Y = Y+THSIN{TETAI®SINIFI}
I = I+T&COS(TETA)
GG TG 150

1GO0 NPH=NPH+1

c ABSOKRPTION HAS OCCURED,0OR PHOTON FAS CCME QUT OF WATER

C START A NEW 'PHOTUN
60 TC 10

150 CUNTINUE
IF (2} 460,500,500

400 XINT=X—Z*TAN(TETAI*COS(FI)
YINT=Y=Z*TAN{TETA)*SIN(FI)
WRITE{&,108) J

108  FGRMAT{® #, %= v , 1I8)
DINT=SQRT{XINT=¥2+Y[hT%*%2)
IF {RNWESIN(TETA).GT.1.0) GO TO 100
TETAMR=ARSIN (RNW:SINITETA})
IF{TETAAR .GT. 0U.4)GC TO 100
WRITE {&6,410) DINT,TETAAR

410 FORMAT{® *, DISTANCE FROM AXIS=',F8.53;5X,"POLAR ANGLE=',FB.5)
WRITE [63420) FI+XINT.YINT

420  FORMAT (' %, 'AZIMUTH ANGLE=93F845,5Xy ' XINT=1,FB8.5:5Xs ' YINT=1,F8.5
CTA=COSITETA)
ACT=ABSICTA)
TCUT=(ABS{ZR}-ABS{Z}IZACT
GAMA=GAMA+TCUT
WRITE(6,109) GAMA
WRITE(4,6002) GAMA
WRITE(B,6002) GAMA
WRITE14,6002) DINT
WRITE(8,6002) DINT

6002 FORMAT{EL2.6}

109 FORMAT(10", "GAMA = *,F8.5)
WRITE(6,101} NPH

101 FORMAT{'0%,"ND. OF PHOTONS TRACED = *,18)
JJ=J-1
WRITE(4,6001) JJ
WRITE(8,6001) JJ

6001 FORMAT(IS) .
DG 5001 [1i=2,J
TES{I1I)=TESIII1}/DTRC
WRITE(4,5003) FIS{III),TES{III)
WRITE(8,53003) FIS(III),TESIIII)

5G03 FORMATI2Fl2.6)

5001 WRITE(6,5002)I11,FIS(IIL),TES(ILIIL)

5002 FORMAT{SXI3,5X e FI=4,FB8.3¢5X,"TETA=",F8.3)
GG TO 100

500 CUONTINUE

nomh
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http:FORMAT(E12.61

{

v

Gl

KCLEASE 2.0 MAIN CATE = T7264% 13725751
L I>0 TH1S MEANS PHOTON STILL IN WATER
DO 1290 J=2,NMAX
C WHAT AKE THE CGEXRDINATE OF THE EAD POINT IN THE NON~-ROTATED SYSTE
¢ FIRST STEP IS TG ROTAYE THE SYSTEM USING TETA AND FI
C ROTATIUN MATRIX IS AlJe FOR I=Jd=]1-3.
C GENEKATION OF THE RLTATION MATREXsWITH THE CONSTRAINT THAT Y—
C AXIS LIES IN A PLANE PARALLEL TG THE YZI-PLANE

aCcoon

c

1001

CT=CCS(TETA}
CF=CLSLFI)
CT2=CT%CT
LE2=LF*LF
ST=SIN{TETA)
SF=SINFI}
ST2=$T#ST
SF2=SF%SF
SS1=CT2+SF2+5T2
S5=SGRT(SS1)
SSD=14/55
ALl=SGRT(L.—CF2%5T2}
AL2=—SF#CF%*ST2%55D
Al3==CT%STHCEXSSD
A22=CT#S5D
A23=—SF%5T*SSD
A31=CF%ST
A33=CT
A32=5F¢5T
ROTATICN MATRIX HAS BEEM GENERATED
SCATTERING HAS OCCURED
CALL ANGELS FIP,TETAP TO DISTINGUISH FRGM FI,TETA
FIP, TFTAP ARE DETERMINEDG IN SYSTEM WITh Z—AXIS
PARALLEL TO THE INCIDENT DIRECTIGN
RHOF=RANDND(IS}
FIP=2.%Pl*RHOF
RHOT=RANDNO(1S)
PROBABILITY SCATTERING FUNNCTION FCR POLAR ANGELS FOLLOWS
DC 1001 I=1,41
1F (RFOT .GE. VALU(I) .AND. RHOT .LE. VALULS+1)) GOTO 1002
CONTINUE
60 TG 2000

1002 TETA=ANGLLI)}+({ANGL{ [+#1}—ANGLII})®(RHOT-VALUCI))/(VALU{I+L}-VALU{

1611

11))
CCNVERT TETA TO RADIANE
TETA=TETA*DTRC
TETAP=TETA
HOW FAR BEFORE AN EVENT OCCLRS, IN THE ROTATED SYSTEM
FIS{J)=F1P
TES(JI=TETAP
RHUD=RANDNO(IS)

88



N IV Gl

ORIGINAL PAGE IS
OF POOR QUALITY

KELEASE 2.0 MAIN . DATE = 77264 13/725/51

[alien I 2}

333

133
233

433
$33

7040
1290

20¢0
5000

T=-—ALUG{RFOD]

CALLULATE COORDINATE OF END POINTS IN RGTATED SYSTEM
XSTAR=T&SINITETAPY*CLSIFIP)
YSTAR=T#SIN{TETAPI*SINIFIP)

ZSTAR=T#CDS(TETAP)

APPLY ROTATION MATRIX TO DETERFINE THE CCORGINATE OF THE

END POEINT IN A SYSTEM PARALLEL TO THE ORIGINAL ONE BUT

BISPLACED
XR=ALI*XSTAR+A3LEISTAR
YR=A12¥XSTAR+A22*YSTAR+A32%I5TAR
IR=A13#XSTAR+AZ3FYSTAR+A33+7STAR

CALCULATE TETA,ANC £1 IN THE PRESENT SYSTEM, WHICH IS

PARALLEL TO THE ORICINAL ONE.
FI=ATAN{ABS[YRI/ABS{XR))

IF {(XReLT«0.0) GO TC 133
IF{YR) 333,333,633

FI=2.%P|-F1
GG TO 533

Fl=fI
GO TO 533

IF{YR) 233,233,433

FI=FI+pPI[

GC TC 533

FI=Pi~F1I

CONT INUE
XK2=XR¥XR
YR2=YREYR
IR2=ZIR*ZR
DT=XRZ+YRZ2+ZIR2
SQDT=SGRT{DT)

TETA=ARCOS{ZR/SGDT)

CALCULATE X+Y.Z OF THE END PGINT OF ThE PHOTON IN RESPECT TO THE

CRIGINAL AXES
X=X+XR
Y=Y+YR
I=Z+IR
[F [Z) 400+400,700

GAMA=GAMALT

CONT INUE
GC TG lo0o

WRITE {6.+5000) IS

FORMAT {' *,"LAST RANDNO USED=1,110)

CALL EXIT
END
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N IV GIL

RELEASE 2.0 MAIN DATE = 77264

C
c
FUNCTION RANDNCUIX)
[Y=IX*&5E539
IFUIY) 54646
5 IY=1Y+2147483647+1
6 RANDNG=1Y
RANDNC=RANDNO*,4656613E-9
IX=1Y
RETURN
END

90
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APPENDIX C

LISTINGS FOR STOKES ROUTINE USED TO
CALCULATE THE STOKES PARAMETERS OF THE
BACKSCATTERED RADIANCE
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N Iv Gl

RELEASE
1¢0

101

104

1i0

|

113

L14

S5

150

120
iz21

130

131

145

124

1a2

105

106

2.0 MAIN BATE = 7727¢ 13/59/45

FOGRMAT(I5)

FCRMAT{4F542)

FCRMAT{2Fl2.06}

FGRMAT(//TLO,"STGKES VECTOR FGR PHOTON NO.', 15}
FCRMAT(4EL2.6)

FCRMATI//T10,TFINAL STCKES VECTCR!')
FGRMATL4EL2.6)
FORMATL{ /710, "POLARIZATION = '+F7.41}
REAL*8 TFETA(4,4)sSFINT{500,4),FINT{4) ROT(494) yDINT(4) PHII50G)
LTETA{20) ,SMATI5046) ,STETA(42),SSFIN{4) SSSFI{4),CAMA,S(20),5RA{20)
1.RADIS00)

READL4,150) AS

READI[4,100) NS

READ (44 100) NRAD

READ{4, L9501 (S{I),I=1,4N5)

READ(4,150) (SRA(I},f=1,NRAD)
FGRMATID1Z.6}

DG 120 J=1.41

READ{85121) STETALJI2ISMATUJsK)+K=146])
CUNTINUE

FGRMAT(FL0.4,5012+6,F10.4)
READ(4410L) (DINT(I)sI=1+4%)
WRITEl6,130)

FCRMAT{//T10,*INITIAL STOKES VECTGR?)
WRITELG,101) (DINTII)sI=1,4)
WRITE{&4131) AS

FORMAT(//T10+'A/S VALUE ="4F6.3}

DG 124 [=1+4%

DC 125 J=lys4

THETA{1,J}=0.000

CONTINUE

FINT{I)=0.0D0

CGNT INUE

L=1

KEAD(5, 150, END=501) GANA

READ{54150) RADIL)

READ{5,100) NSC

READ(5,104) (PHI{J)TETA{J)3J=1+M5C)
DL 105 I=ls4

SFINTILs1}=DINT(I)

CGNTINUE

J=1

CONTINUE

ROTLLs1)={0CASIPHITI) ) J%x2
RCT{1+2)=(DSINIPHE[J)})} %22
RCT{1l+3)=.5%DSIN(2%PFILJ))
RCT(1,4}=0.0D0

ROT(2s1)=ROT(1,2}
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RELEASE

122

123 THETA(L,1)= SMATI{KsLlY+(SHAT(K+L1¢l)—SMATIKs 1) )#{TETALJ)-STETALIK)}/

161
160G

147
L07

170

148
108

ED
ORIGINAL PAG
OF POOR QUM“‘ITY'a

2.0 MAIN DATE = 77210

RGT{2,2)=ROT{1,1)
RGT{2y3)=—RGT(1,3)
RECT{2,4)=R0T(1,4)
ROT{3+1)=2%R0OT(2+3]
RCT(3,2)=2%ROT(1,31}
ROT(3,+3}=0COS(2%PHI(J}])
RCT({374)}=RAT(1+4)
ROTL{4,L)=ROT{L,4)}
RLT(4+2)=RCGT(1,4)
ROT{4,+3)=ROT(1,4)
ROT{4454)=1.000

DC 122 K=ls41

IF {(TETA{J) .GE. STETAIK) .ANDe TETA{J) .LE. STETA{K+1l}) GOTO 123

CONTINUE
GGTG 5040

LISTETAIK+LI-STETALK)}

THETA({Z2,2)= SMATIKy2)+[SMATIK#1,2}-SMATIK,2})*(TETALJI-STETAIK)}/

LISTETA{K+1)-STETA{K) )

THETA({3,3)= SMAT(K,33+({SHMAT(K+1,3)-SMATIK,3))}*{TETA{JSI-STETA(K}}/

L{STETAIK+L)~STETA{K]}))
(HETA{4,4)=THETA[3,3)

THETA(4,3)= SMATIKs4)+H{SHMATIK+1,4)~SMATI{K 4} ¥ {TETALJI-STETALK}}/

LISTETA{K+1)-STETA{K)}
THETA(3,4)=—THETA(4,3)
THETN=.5%(THETA{1,1)+THETA(Z2,2)])
DC 160 [=ls4 °
DC 161 Ji=1l+4%

THETA(L ,JJI=THETAUI ,JJ)/THETN

CONTENUE
CONT INUE
DO 07 I=1:4
SSFIN(I}=0.000
DC 147 K=1.,4
SSFIN{[)=SSFIN({I)+ROT(I,K)®SFINT(L,K)
SSSFI{I)=8SSFINII)

CONTINUE
CONT INUE
DC 170 i=1l,4
SFINTILyI}=SSSFII(I]

CLNT INUE
DC 108 [=1:+4
SSFEN{I}=0.0D0
DG L48 K=1.,4
SSEIN(II=SSFINIL)+THETALI,K}*SFINT{Ls+K)
SSSFILT)=SSFIN(I)

CONTINUE

CONT INUE
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N IV GL

RELEASE

171

109

5000

4G00

4C0L
3569

98
4004

112

97
4003
4002

500

ORIGINAL PAGE Is
OF POOR QUALITY

2.0 MAIN DATE = 77270 L3/59/45

DO 171 I=1.+4
SFINT{L,I)=SS5FI{1l)
CCONTINUE
NSC=NSC~1
J=J+1
IF (NSC.GT-0})} GOTO 106
DC 109 I=1,.,4
SEINTCLyI)=SFINTIL, [ }*{DEXP(—AS%GAMA})
CGNTINUE
WRITE({6,110} L
WRITE{6sL1L) (SFINTiL 1)sI=1s+4)
NTGT=L
L=L+1
GOTC 102
D0 4002 h=L1¢NS
DO 4003 M=1,NRAD
SRAD=SRA{MI*S (N}
NTOT1=0
DG 5000 I=1,4
FINT(I]1=0.0D0
DG 3959 L=1,NTOT
IFIRADIL} «.LEs SRAD) GO TO 400C
GLTC 3999
NTOTI=NIGTIT+1
UG 4001 I=1,4
FINTUE)=FINT(L)+SFIANTIL, 1)
CONTINUE ’
WRITEL{654004) S{N),SRA(M)
WRITE(6,98) NTGTT
FORMAT{/T10, "NUFBER CF PHGTCAS USED = 1,[5)
FORMAT{//T1047S VALUE=Y3£5.2:5X415P0T SIZE ="'4F5.2]
DC 112 [=1+4
FINT{I)=FINT{I1}/NTGTT
WRITE(G6,113)
WRITE{G6,114) (FINT{I)yI=1,4}
PCLR={FINT{1)-FINT[2}}%%2
POLR=POLR+FINTI3 ) %x2
POLR=PULR+FINT{4)%%2
PGLR=SCRTIPOLR}
PCGLR=POLR/IFINT{L1)}4FINTLZ2})
WRITEL6+59) POLR
RFAC=FINTIZ2)/FINT{1}
WRITEL6497) RFAC
FORMATI/TL0s*R—FACTCRIEY/EX]) = Y45 Ta4s//}
CONT INUE
CCNTINUE
s1Qp
END
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LISTINGS FOR POLYMIE AND DBMIE ROUTINES USED TO
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30

35

MAIN

MAIN PROG POLYMIE(VECTOR)

THE FOLLOWING DOUBLE PRECISION INPUTS ARE REQUIRED:
RFR=REAL PART OF REFRACTIVE INDEX

REI=TMAGINARY PART OF REFRACTIVE INDEX

RADU=UPPERBOUND ON RADIUS(MICRONS)

WAVE=WAVELENGTH IN MICRONS

A(I}=PARAMETERS FOR DISTRIBUTION ONE

B{I)=PARAMETERS FOR DISTIBUTION TWO

THETG{J)}=VECTOR OF ANGLES FROM 0-90 {COMPLIMENTS ARE ALSO CALC}
OTHER INPUTS ARE:

JX=NUMBER OF ANGLES FROM 0-90

NRAD=NUMBER OF RADII BETWEEN O-RADU

NPARA=NUMBER OF PARAMETERS IN DISTRIBUTION DONE
NPARAZ=NUMBER OF PARAMETERS IN DISTRIBUTION TWO

TWO=LOGICAL VARIABLE TO ENABLE THE USE OF TWO DISTRIBUTIONS

TWO FUNCTION SUBPROGRAMS DIST{RAD,A) AND DISTZ(RAD'B! ARE REQUIRED
IN ADDITION TO PDBMIE SUBROUTINE

TWO DATA SETS (6 AND 8) ARE USED FOR DUTPUT; NORMALLY 6=PRINTER
AND 8=TAPE

FORMAT{3D15.5)

FORMAT(2D15.51

FORMAT{D15.5])

FORMAT({D15.5,15])

FORMAT(215]

FORMAT(LS)

FORMAT{15])

FORMAT(D15.5) '

FORMAT{1HL)

FORMAT{//T10,'ELEMENTS OF THE TRANSFORMATION MATRIX FOR A SPHERE
1WITH SIZE PARAMETER = ¢,F15,.5)

FDRT?T(IITLO,'REFRACTIVE INDEX. REAL = *,D15,5,T60,' IMAGINARY',D15
154771}
FORMAT{T3,*ANGLE? , T17,*SIGMAL® ,T31,'SIGMA2*,T46,7SIGMA3Y ,T61,'SIGH
1A%y 7764 * INTENSITY?,T91, "POLARIZATION/7 )
FORMAT{F10.4,5E15.6,F15.4}

FORMAT{//T10,' EFFICIENCY FACTDR FOR EXTINCTION?!,E15.6)
FORMAT(//T10,* EFFICIENCY FACTOR FOR SCATTERING' ,E15.61)
FORMAT(//T10,' EFFICIENCY FACTDOR FOR ABSORPTION?+E15.6)
FORMAT(//TL10+" ASYMMETRY FACTOR® 4E15.6//1)

FORMAT(//T10,"' TOTAL TIME FOR THIS CASE IN SECONDS= ",F15.3//)
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2 FORMAT{//T10,'PROBABILITY FOR THIS SIZE PARAMETER = *,0D15.5,//]
3 FORMAT({//T10,"NDRMALIZATION FACTOR FOR THIS SET OF SIZE PARA=?,

80

g0

95

61

62

1D1545,/7/)

REALTB RFRyRFIyXyQEXT,QSCAT,QABS,THETD(100},PQEXT,PQSCATPQABS
FORMATE//TL10,* SCATTERING CROSS SECTION®+E15.6)
REAL*8 ELTRMX{4y10042)yAL.AM;CONyCTBRASyAVCSTH,PELTMX{4,100,2]

REAL*8 PAVCTH,THE{100)+PBSCAT
REAL™4 AIN(100,21},POLR{100,2)
REAL*4 PAIN(100+2}yPPOLR{100,2]
REAL44 PAT{100,2},PPOL{100,+2)}
REAL=8 PROB2,PNORM2

REAL*3 PQEX,PQSCA,PQAB,PBSCA,PAVCT,PELTM(4,100,2)
REAL¥*8 RADU,DRAD,WAVE GAMMA,A{20),PROB,B(20)

LOGICAL WRN,THWOD
WRN=.FALSE.
CON=3.1415326535837932D+0
INTEGER NPARASNPARAZ
READ [5,10) RFR4+RFIsWAVE
READ {5,141 JX,NPARA
READ (5,12) (THETD{I),I=1,JX])
READ {5,13}) RADU.NRAD
FORMAT {D15.5)

DO 5 I=1,NPARA

READ (5,1} AL}
CONTINUE

READ(5415) THWO

DO 95 TI=1,JX
THE{ [ }=THETO({1I)

IF (TWO) GO TO 61

G0 TO 62

READ(5,16} NPARAZ

DO 62 I=1,NPARAZ
READ(5.,17}) B{I1)
CONTINUE

PRQEXT=0.0D0
PREX=0.0D0
PRQSCA=0.0D0
PQAB=0,0D0
PBSCA=0.0D0
PAVCT=0.000
PQSCAT=0.000
PQABS=0.0D0
PBSCAT=0.0D0
PAVCTH=0.0D0
DRAD=RADU/NRAD

DO 1900 J=1,JdX

DO 1000 K=1,2

DO 999 I=1l.+4%
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PELTMX{I +J+K)=0.0D0
PELTM(I,J,K)=0.0D0
999 CONTINUE
PAIN(J¢K)=0.0D0
PAI(Js+KI=0.0D0
PPOL{JyK)=0.0D0
PPOLR{JyK}=0,0D0
1000 CONTINUE
RAD=0.0
PNORM2=0,0D0
IF {TWO} GO 70 91
PNORM2=1.000
91 CONTINUE
PNORM=0.JD0
TIMEL1=0.0
00 3330 L=],NRAD
RAD=RAD+DRAD
0O 190 J=1,4X
100 THETD{J)=THE{J)
X=2+JD0CON*RAD/WAVE
PROB=DIST{(RADA)
IF {THWO) GO TO 63
PROBZ2=0.0D0
GO TO 64
63 PROB2=DISTZ{RAD,B}
64 CALL SETCLK
CALL PDBMIE [ X,RFR4RFIyTHETDyJX,yQEXTQSCAT,CTBRAS,ELTRMX,,WRN)
CALL READCLI(TIME)
IF (WRN) 60 70 1001
PNODRM=PNORM+PROB
PNORMZ2=PNORM2+PROB2
TIME1=TIME1+TIME
QABS=REXT-QSCAT
AVCSTH=CTBRQS/QSCAT
PO 150 K=1,2
DO 150 J=1,JX
AIN(JSK)= ELTRMX({1,JsKI+ELTRMX(2,d4+K)
POLR{JsK)= {ELTRMX{2 3 JyKI=ELTRMX{1sJ K} I/AIN(JsK)
AIN{J4K)= JB5*AIN{J,K])
PAIN{JyKI=AIN{J,KIHPROB+PAIN{(J+K)
PAI(J,KI=AIN(J K P¥PROBZ+PAI (J,K)
PPOL{J+K)=POLR{J,KI1¥PROB2+PPOL (JyK)
PPOLR(J+K)=PPOLR(JsK)+POLR{J,K)¥PROB
150 CONTINMNUE
DO 2000 I=l.4
DO 2000 J=1,JX
DO 2000 K=1,2
PELTMX{T ¢ JoK)=PELTMX{I yJsK)+ELTRMA{I ,J,K)*PROB
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2000

"
c

233

213

1001
3000

4001

ORIGINAL ppgp .

OF pPog
Iz‘ﬂldld]@g
MAIN
PELTM(1,dyK)=PELTM{I+J 4K} +ELTRMX{I,JsK)%PROB2
CONTINUE
WRITE{&, 20)

WRITE{6,25) X

WRITE(6430) RFR,RFI

WRITE{6,35)

WRITE(6+40) ((THETD{J)y{ELTRMX(I4ds1)yI=1s4)+AIN(Jy1}+POLR(JS1}1},
1d=1sJX)

WRITE(B,40) ({THETD(J)s{ELTRMX{IyJs1)sI=1y4) AIN{J41)4POLR{IS11}},
lJd=1,J4X}

DO 249 J=1,J4X

THETD(J)}= 180.0D0-THETD(J)
CONTINUE

JMX=JX-1

B0 2103 J=l,JMX

JJ=dX=J

WRITE(G6 s4IMMTHETDLJJ ) s (ELTRMX(I,d4+2)21=1,4)4AIN{JJy 2),POLR{JJ,2))
WRITE(By 40} THETDLJJ) s (ELTRMX(I yJd92) yI=1s4) 4 AIN(dI42)+POLR(JI,2))
CONTINUE

WRITE(6,45) QEXT

WRITE(6,50) QSCAT

WRITE(6,55) QABS

WRITE(6,60) AVCSTH

WRITE(6,2) PROB

WRITE(6,2) PROB2Z

WRITE(6, 20}

WRITE(6,70) TIME
PQSCAT=PQSCAT+QSCAT*PROB
PQSCA=PQSCA+QSCAT*PROB2
PQEX=PQEX+QEXT#PROB2
PQAB=PQAB+QABS*PROB2
PBSCA=PBSCA+QSCATH*{RAD®™Z2 }*PROB2
PAVCT=PAVCT+AVCSTH* PROB2
PREXT=PQEXT+QEXT*PROB
PQABS=PQABS+QABS*PROB
PBSCAT=PBSCAT+QSCATH{RAD*+2}*PROB
PAVCTH=PAVCTH+AVCSTH¥PROB

WRN= ,FALSE.

CONTINUE

0O 4000 J=1,4X

DO 4000 K=142

DD 4001 I=1,4

PELTMX{I s J+K)=PELTMX{1,JsK}/PNORM
PELTM(I,Jd,K)=PELTM{I4+J,K)/PNORM2
CONTINUE
PATIN{JsK)=PAIN(J K}/ PNORM
PAI{d4K)=PAT(J,K)/PNORM2

PPOL {JsK)=PPOL{JK)/PNORM2
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PPOLR{J+KI=PPOLRI{J,K)/PNORM
4333 CONTINUE
c END FILE 8
PUSCAT=PQSCAT/PNORM
PREXT=PQEXT/PNORM
PQABS=PQABS/PNORM
PBSCAT=PBSCAT#CON/PNORM
PAVCTH=PAVCTH/ PNORM
PQSCA=PQSCA/PNORM2
PQEX=PQEX/PNORMZ
PQAB=PQRQAB/PNORM2
PB SCA=PBSCAYCON/PNORM2
PAVCT=PAVCT/PNORM2
DO 6000 J=1,JX
6000 THETD(J)}=THELJ)
WRITE{6,20)
65 FORMAT(//TLO,*ELEMENTS OF TRANFORMATION MATRIX FOR POLYDISPERSION?
14/7)
WRITE(6,065)
WRITE{6s30) RFR.RFI
WRITE{H6,y 35}
WRITE{(6,40) ({(THETD(J)} »(PELTMX{I v Jel)sI=1,43,PAINCJ,1),PPOLR(Jy1}
1)9J=ngX)
C WRITE(8,40) {(THETD{J),{PELTMX{I sJs1)+sI=1,%)sPAIN{JIy1)sPPOLR(J,1)
C 1),J=l,JX)
DD 5000 J=1,JX
THETD({J)=180.0D23-THETOD{M)
5000 CONTINUE
JMX=JX-1
b3 5001 Jd=1,JdMX
Jd=JX-J
WRITE{6,40) (THETDUJJ)} +(PELTMX(I3JJ92)31=144)sPAIN(JIL2)PPOLR
1(34,2))
C WRITE{8,40}) (THETD(JJ) +(PELTMX(E 4 JdJ12)s1=1s43,PAINIJJ,2) +PPOLR
c 1{dJ:2}) ’
5001 CONTINUE
C END FILE 8
WRITE(G6y45) PQEXT
WRITE{6,50) PQSCAY
WRITE(6455) PRABS
WRITE{5,80) PBSCAT
WRITE(6,60) PAVCTH
WRITE{6+3) PNORM
WRITE(6, 70} TIMEL
WRITE(6,20)
DO 5010 J=1,4X
5010 THETD(J)=THE{ J}
IF {TWO} GOTO 5302
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C
c

c

002

GO T4 5003
WRITE{6420}
WRITE{6,65)
WRITE(6,30)
WRITE(6,35)
WRITE(6,40)
1)1 2d=1,JdX}

WRITE(8,40)
L)sd=14JX)

MAIN ]NAJ_‘
ORIG
or poOR QU

RFRyRFI
((THETQ(JJ;(PELTM(I;Jnl).I=1:4):PAI‘J:11.PPGlegli

{{THETD{J )y (PELTM(1,Jy1)4I=144},PAL{Js1)4PPOL(Jy1}

DO 5004 J=lsdX
THETD{J)}=180.0B0-THETD{J)
5J04 CONTINUE

JMX=J X1

DO 595 J=1,

Jd=dX-d

WRITE(6+40)
1{dJs21))

WRITE{8,40)
1{Jds21)

5005 CONTINUE

5003

END FILE 8

WRITE(6,445)
WRITE(6,50)
WRITE{6,55)
WRITE(6,+80)
WRITE(6,60)
WRITE(643)

WRITEL6,4T70}
WRITE(6,20)
STOP

END

JMX
{THETDU(JJ )y (PELTMIT 4 JJe2) 2 I=124) s PAT{Jdy 24,PPOL

{THETD{JJ ) 9 (PELTM(I¢JJs2},I=1,4),PAT(dd, 2),PPOL

PQEX
PQSCA
PQAB
PBSCA
PAVCT
PNORMZ
TIME1
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SUBRGUTINE PDBMIE (XsRFRyRFIy THETD+JIX,QEXT,QSCAT,CTBRQS, ELTRMX, WRNI
1) BT

RADIATION SCATTERED BY .A SPHERE. THIS SUBROUTINE CARRIES OUT ALL
SUBROUTINE FOR COMPUTING THE PARAMETERS OF THE ELECTROMAGNETIC
CIMPUTATIONS IN SINGLE PRECISION ARITHMETIC.

THIS SUBRQUTINE COMPUTES THE CAPITAL A FUNCTION BY MAKING USE OF
DOWNWARD RECORRENCE RELATIONSHIP.

X 3 SIZE PARAMETER OF THE SPHERE,{ 2 * PI * RADIUS OF THE SPHERE}/
WAVELENGTH OF THE INCIDENT RADIATION].

RFY  REFRACTIVE INDEX OF THE MATERIAL DF THE SPHERE. COMPLEX
QUANTITY..FORMO (RFR — I -* RFI )

THETD(J) D ANGLE IN DEGREES BETWEEN THE DIRECTIONS OF THE INCIDENT
AND THE SCATTERED RADIATION. THETD{J)} 1S5 - OR = 90.0.

IF THETD(J) SHOULD HAPPEN TO 8E GREATER THAN 90,0, ENTER WITH
SUPPLEMENTARY VALUEO SEE COMMENTS BELOW ON ELTRMX..

JXO TOTAL NUMBER OF THETD FOR WHICH THE COMPUTATION AREREQUIRDE.
JX SHOULD NOT EXCEED 200 UNLESS THE DIMENSTONS STATEMENTS

ARE APPROPRIATELY MODIFIED.

MAIN PRUGRAM SHOULD ALSO HAVE REAL THETD{200)} sELTRMX{4,200,21}.
DEFINITIONS FOR THE FOLLOWING SYMBOLS CAN BE FOUND EN " LIGHT
SCATTERING BY SMALL PARTICLES, He Co VAN DE HULST, JOHN WILEY +
SONS, INC., NEW YORK, 1957 %,

QEXT82 EFFIEC IENCY FACTOR FGR EXTINCTION, VAN DE HULST, P.l4 + 127
QSCATB2 EFFIECIENCY FACTOR FOR SCATTERING,VAN DE HULST+P«14 + 127.
CTBRQSY AVERAGE(COSINE THETA) ¥ QSCAT,VAN DE HULST, P. 128.
ELTRMX(I4J,K)O0 ELEMENTS OF THE TRANSFORMATION MATRIX F,VAN DE HUL
5TyPa34,45 + 125+ 1 = 10 ELEMENT M SUB 2..1 = 20ELEMENT M SUB la..
I = 30 ELEMENT 5 SUB 2l4a I = 40 ELEMENT D SUB 2l...

ELTRMX{I,J,1) REPRESENTS THE ITH ELEMENT OF THE MATRIX FOR

THE ANGLE THETD{J)}.. ELTRMX{I,J4,2) REPRESENTS THE ITH ELEMENT

GF THE MATRIX FOR THE ANGLE 180.0 — THETD{(J} ..

FORMAT{10X* THE VALUE OF THE SCATTERING ANGLE IS GREATER THAN 90.0
$ DEGREES. 1T IS ",E15.4)

FORMATL(//1JX" PLEASE READ THE CODMMENTS'//)

FORMAT(//10X* THE VALUE OF THE ARGUMENT JX IS GREATER THE 10017}
FORMAT{/710X*THE UPPER LIMIT FOR ACAP IS NOT ENOUGH. SUGGEST GET
1DETAILED QUTPUT AND MODIFY SUBROUTINEf//}

REAL#B X, RXsRFRyRFI,QEXT,QSCAT»TI5}+TA{4),TB(2),7C{2),TD{2),TELZ},
2 CTBRQS,ELTRMX[4+100+2)4PI(3,100},TAU{3,100]),
3 CSTHT(:1001},SI2THT{100), THETD{100}

COMPLEX*16 RF ¢RRF,RRFX,WM1,FNA,FNB,TC1,TC2,WFN(2),ACAP{B000),
2 FNAP,FNBP

LOGICAL WRN

FORMAT{//T10y"WARNING,ACCURACY NOT ACHIEVED*//])

TA{1}0 REAL PART OF WFN(1l).. TA{2}0 IMAGINARY PART OF WFN{l)a.
TA{3)0 REAL PART OF WFN{2).., TA{4)0 IMAGINARY PART OF WFN{2)..
TB8(1310 REAL PARY OF FNA...TB{2}0 IMAGINARY PART OF FNA...

TC(1)0 REAL PART QOF FNBeaseTC{2}0 IMAGINARY PART OF FNBoesw
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21

23

28

30

20

22

24

25

TO(L1}0 REAL
TE{1}0 REAL
FNAP # FNBP
TQUIVALENCE
EQUIVALENCE

IF ( JX .LT.
WRITE (64 7)

WRITE(G, &)
STOP 1}

ORIGINAL PAGE I5
OF POOR QUALITY

POBMIE

PART OF FNAP.. TD{2) IMAGINARY PART OF FNAP..s
PART OF FNBP.ss TE{2)0 IMAGINARY PART OF FNBP ...
ARE THE PRECEDING VALUES OF FNA + FNB RESPECTIVELY.
[WFN{L), TA(L)}, (FNA, TB(1)}s (FNBy TC{1))

{FNAP, TD(1}), {FNBP,s TE(1l)})

101 ) GO TO 20

RF=DCMPLX{RFR+~RFI)
RRF = 1.3D3/RF

RX = 1l.0D0/X

RRFX = RRF % RX
TOL)={X*=2) = (RFRA®2+RFI¥*2)
T{L)y=05QRT(T(1)}}

NMX1 = 1.10D0 * T{(1)

IF {NMX1 .LT. 7999} GO TO 21

WRITE{&, 8)

IF {NMX1 .GT. 150) GO TO 22

STOP 2

NMX2 = T{1l)
NMX1 = 150
NMX2 = 135

ACAP{NMX1 +

‘1 , = { O-ODO' D.ODD ’

DO 23 N = 1, NMX1
NN = NMX1L - N + 1

ACAP{NN]) =
CONTINUE

DO 30 J = 1,

{NN+1) %* RRFX = 1.,0DO/{{NN+L)%RRFX + ACAP(NN+1})

JX

IF { THETD(J)} «LTe 3.0D00 ) THETD(J)} = DABS(THETD(J})
IF { THETD{J) «GT. 0,000 ) GO TD 24
CSTHT(J) = 1.9D0

SI2THT(J} =
GO TG 39

0.000

IF { THETD{(J) .GE. 90.000 )} GO ¥0O 25
TLLl) = { 3.14159265358979320+0 =# THETD{J)})/180.00

CSTHT(J) = DCOS{T{1)}

SIZTHT{J) + 1.3D0 = CSTHT (J)#x2
60 TO 30

IF { THETD(J) .GT. 90.0D0 ) GO TO 238
CSTHT(J} = 0.0D0

SI2THT{Jd) = 1,000

GO TO 3¢

WRITE {6y 5) THETDI(J)
WRITE{6,6)

STOP 3

CONTINUE

DO 35 J = 1,

JX
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PI{1l.,Jd} 0.000
PIL24d) 1.00C
i TAU{1l,J) = 0.000

300 TAU (2, J) = CSTHT(J)

35 CONTINUE
T{l¥ = DCOS(X)
Tl2) = DSINIX)
WM1=DCMPLX(T(1),-T{2}])
WFEN{LY=DCMPLX{T{2},T{1})
WFN{2) = RX # WFN{l} - WMl

TC1 = ACAP{l) * RRF + RX

TC2 = ACAP(1}) *» RF + RX

FNA = (TCI = TA(3) — TA(L)) / (TCl ¥ WFN{2) — WFN{1))
FNB = (TC2 * TA(3) — TA{1)) / (TC2 * WFN{2) — WFN{1))
FNAP = FNA

FNBP = FNB

T(1y = 1.5GD0

TB{1) = T(1) = TB{1}

TB(2) = T{1l) « TBl2)

TC(Ll) = T(1) = TCA1l)

TC(2) = T{l) = TC(Z2)

DO 69 J =1lyJX

TB{1) * PI{2,d) + TC(1} * TAU{Z2,J])
TB(2} * PI{2sd) +TC{2) * TAU{2,4J)
TC{Ll) #PI{2,Jd) + TB{l} 4 TAU(2,J)

ELTRMX(1lydsl)
ELTRMX{Z24dy1l)
ELTRMX([34+d41)

ELTRMX(4sJdsd) = TL{2) % PI{2,d) + TBI2) = TAU(2,Jd)
ELTRMX{1,J,2} = TB{1l) & PI{2,4) — TC{1l) * TAU(2,J)
ELTRMX(2:J52) = TBI2) % PI{2sJ) — TCH{2) # TAU{2,d)
ELTRMX(3:Js2) = TC(1}) = PI{24Jd) =TB{L) * TAU(2Z2,J}

ELTRMX{4yJds2) = TC{2) = PI{2,J) — TB{(2} ¥ TAU(2.,J)

60 CONTINUE
QEXT = 2.000 # { TB{1) + TC{Ll)
QSCAT =({TB{Ll)+™2 + TB(2)%¥2 + TC{l)¥¥2 + TC{2)}¥x2)/2.75D0
CTBRQS = 0.0D0

N =2

65 T{l) = 2% N -1
T(2}) = N =1
T(3) = 2 ¥ N + 1
DOT70J=1,JX

PI(3,0)=(T(LI=PI{2y J}HCSTHT{II-N=PI{1l,d})/T(2}
TAUL3 4 J)=CSTHTCIIH(PTI (34 )-PTI (1, ) I-T(LIRSI2THT{JIIHP 1{ 29 JI+TAUL 14J
1)
T0 CONTINUE
WMl = WFN{L)
WFEN{1}) = WFN(2)}
WFN(Z2Y = T(L} # RX & WFN(1l) — WMl
TC1 ACAP(N) % RRF + N * RX
TC2 ACAP(N} # RF + N 4 RX
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FNA = (TCl #TA{3} - TA(1})} / (TGl * WFN{2} - WFN{1l})
ENG = (TC2 % TA{3) — TA(1}) /7 {TC2 v WFN{2} — WFN(1))
T(5) N

Tl4) = T{1) / (T{B) « T{2}))
T{2) = {T{2)%(T(5} + 1.0D0}}/T{5)
CTBRQS = CTBRQS + T{2) ¥ {TD{1)} * TB{1l) + TD(2} % TB{Z} + TE{(1l) ~

$TCLL) + TE(2) * TC(2)) + T(4) * {TD(1) * TE(1l) + TOD(2) + TE(2))

QEXT = QEXT + T(3) * {TBL1) + TC(1})

Tl4) = TBLLI*¥¥2 + TBL2)%%2 + TC{Ll)*42 + TC{2)rk2
QSCAT = QSCAT + TI(3) +» Ti{4i}

TL2) =N & (N + 1)

T{l) = T{(3) /7 T{2}

K= (N/ 2} ¢+ 2

DU 83 J = 1. JIX

FLTRMX{LyJ e L) =ELTRMX( 1, S5 L)+T{L)¥ (TBIL)#PT{3,J)+TCIL}*TAUL3, J))

ELTRMX(2 ¢ 2yl ) =ELTRMX {2y LI+T{LI(TB(2IFPI(3,J)+TCI2)%TAU{3,J}]

ELTRMX(3,Jsl ) =ELTRMX{3 sy LI+T{LIR{TC{LI*PI(3,J)+TBILIH*TAUL3,J)])

ELTRMX {49 Js L) ZELTRMX{ 4y dy LI+TLLPRITCL2)4PI(3,J)+TBI2)=TAU(3, )]

IF{K.EQ.N} GO TQ 75

ELTRMX{ 1,9 2)=ELTRMX{ LsJo2)#T{LI2{TB(L)2PI(3,J}-TCI1I+TAU(3,J})

FLTRMX(2 4 J o2 F=ELTRMX {29 J» 23 +T {1 1F(TBI2)*PI{3,4}-TCI21FTAU{3, 30}

ELTRMX(33Js2) =ELTRMX( 3y J 21 +T{LIH(TCLIIYPI(3,J)=TBILixrTAU{3,J})

ELTRMX{4 ¢ Je2) =ELTRMX (&9 Je2)#T{L)E(TC(2VEPI(34J)=TB{2):TAU(3+J})

GOTo80O

ELTRMX( 1292} ELTRMX {1 Jy2)+T (L) {-TB{L)2PI(3,J)+TC{LI*TAU(3,J))
ELTRMX (2522 )=ELTRMX{ 2, J 2}+TLL ) (-TB(2)¥PI{3,J)+TCL2)3TAU(3,4) 1}
ELTRMX(3,J,2) 2ELTRMX{(34J,2}+T(L)# (-TCL{LI*PI(3,J)+TB(L)*TAU(3,J)]
ELTRMXE4 3 Jo2 ) =ELTRMX (49 Je 2)+T (134 (~TCL2I%PI{ 3,1+ TEB{ 2}¥TAU(3,J})
CONTINUE

IF{ T{4) .LT. 1.0D-14 ) GO TO 109

N==9nN4+1

DO 93 J = 1,4 JX

PI{ly J) = PI(2y J}
PI{2,y J} = P1{(3, J}
TAU{Ll, J) = TAU{Z2, J)
TAU(Z2, J} = TAU(3, J)
CONTINUE

FNAP = ENA

FNBP = FNB

IF {N .LE., NMX2} GO TO 65
WRITE(6, 91}

WRN = «TRUE.

RETURN

DO120J=1,JX

COL2JK=142

DOLli5I=14+4
T{E)=ELTRMX{I 44K}
CONTINUE
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ELTRMX{2,J,K) = T{1)#%€2 3 T{2)%*2
ELTRMX{13J9K) = T{3)%%2 + T{4}¥%2
ELTRMX{3yJyK) = TU{I)*T{3) + T{2)%T (4}
ELTRMX{4yJd,K) = T{21%T{3) — Ti4)*T(1)
CONTINUE . i

T{1) = 2.0D0 # RX*%2

QEXT = QEXT # T(1)

QSCAT = QSCAT * T{(1) .
CTBRQS = 2.0D0 * CTBRQS * T{1}
RETURN

END
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DIST

FUNCTION DIST(RAC,A) pAGER
REAL*8 A(20) ,RAD ORIGN%&?
REAL*8 DISTyB,C OF POO

B=—A(3)

C=RAD**A(4)

C=B%C

DIST=A{1)¥(RAD**A(2))I*DEXP(C)

RETURN

END
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FUNCTION DIST2{RAD,B}
REAL*8 B{20) ,RAD

REAL*8 DIST2,A
A=-(B(2)+1)
DIST2=B{1)¥B{2)%(RAD*¥A)}
RETURN

END
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APPENDIX E

PROGRAM LISTING FOR CURFIT ROUTINE USED TO FIT THE
THEORETICAL SIZE DISTRIBUTIONS TO THE EMPERICAL DATA
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c
c
C
C
C
c
Cc
C
c
C
C
C
C
C
c
c
c
c
c
C
C
c
c
c
c
C
c
c
c
C

MAIN

SUBRDUT INE CURFIT

MAKES A

LEAST SQUARES FIT TO A ACGN-LINEAR FUNCTION

DESCRIPTICN OF PARAMETERS

X

Y
SIGMAY
NPTS
NTERMS
MODE

A
DELTAA
FLAMDA
YFIT
CHISQR

=-ARRAY OF IND. VARIABLE DATA POINTS
~ARRAY OF DEP. VARIABLE DATA POINTS
~ARRAY OF STANDARD DEVIATIONS FOR Y DATA PDINTS
-NUMBER OF DATA PEINTS
-NUMBER OF PARAMETERS N
~DETERMINES WEIGHTING FOR LEAST SQUARES FIT
+I{INSTRUMENTALY W({I)=1./SIGMAY{ I)%*%2
Of{NO WEIGHTINGIW(I)=1.
~LISTATISTICALY WCI)=l ./Y(I)
—ARRAY 0OF PARAMETERS
~ARRAY OF INCREMENTS FOR PARAMETERS
~PROPOGRTION OF GRADIENT SEARCH INCLUDED
—ARRAY OF CALCULATED VALUES OF Y
-REDUCED CHI SQUARE FOR FIT

SUBROUTINES AND FUNCTION SUBPRGGRAMS REQUIRED
FUNCTN{X+I,4)
EVALUATES THE FITTING FUNCTION FOR THE ITH TERM
SSP ROUTINE DSINV
INVERTS CURVATURE MATRIX

COMMENTS

DATA FORMAT
NPTSyNTERMS4+MODE{315)
XUI)eY{I)s (SIGMAY{T) },(2{3)EL2.¢)}
DIMENSION X(100),Y{100),SIGMAY(100),A{20),DELTAAL20),SIGMAAL20),
LYFIT{1003,YFITI{100)
LOGICAL GRAD,CUR,GRID
21 FORMAT{3L5)
READ(S55,21} GRAD,CUR,GRID
READ(591l} NPTSyNTERMS,MOLE

—

FORMAT(31I5)

IF (MCDE} 2,2:4

“ O\ wWN

READ(5+3) (X{I)ysY{I),I=1,NPTS)
FORMAT{2E12.4)

G3 TO &

READ(5¢5) (X{I)eYII),SIGMAY{I) I=1,NPTS)
FURMAT{3E12.6}

READ(S547) {AUJ) sDELTAA{JY =14 NTERMS)
FORMAT(2EL2.6)

ISUM=0
CHISQl=1.0
14 FLAMDA= .COL

. E B
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MAIN

IF{CUR) GO TO 22
IF(GRID) GO TO 23
CALL GRADLS{X,YySIGMAY,NPTS 4NTERMS,MUDE, A, DELTAA,
IYFIT4CHISQR)
GO YO 24
22 CALL CURFIT(X,Y+SIGNMAY, NPTS,NTERMS, MODEsAsDELTAA,SIGMAA,FLAMDA,
LYFIT,CHISGQR)
GO TO 24
23 CALL GRIDLS(X,Y sSIGNAY,NFTS,NTERMS,MODE, A4DELTAA,
1SIGMAA, YFIT,CHI SQR)
GO TQ 24
24 PRINT 8, {A{J),J=1,NTERMS}
8 FORMAT(?® %,E12.¢}
PRINT g9,CHISQR
9 FORMAT(® ", 'CHISQR=',1XsE12 64/}
IF (CHISQ1-CHISGQR} 12,13,12
12 CHISQl=CHISQR
ISUM=ISUM+]
IF {ISUM~-10) 14:13413
13 DO 11 I=1,NPTS
11 YRFITI(I =1./YFIT{I}
PRINT 10
10 FORMAT{® 1,13X, *INDeVAR " 412X "DEPeVARaY311X, TINVeDEP VAR, /)
PRINT LSsUX(I) YFIT(I},YFITI(I) I=1,NPTS)
15 FORMAT{Y ¥, 10Xy ELl2.6,8X+E12.648BX4E12.6)
STOP
END
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CURFIT

SUBROUTINE CURFIT{X+YsSIGFAYsNPTSyNTERMS sMODE A
1»DELTAA,SIGMAA, FLAMCA,YFIT,CFISQR)
DOUBLE PRECISIDN ARRAY
DIMENSION X{100),Y{100),SIGMAY{100),A{20},DELTAA(20)+SIGMAAL20),
1YFIT{100) JWEIGHT{100),ALPHA(20,20),BETA({20),DERIV{20),ARRAY {20,
120)+8(20)
11 NFREE=NPTS-NTERMS
IF {NFREE) 13,13,20
13 CHISQR=0.
60 TG L10
C EVALUATE WEIGHTS
20 DO 30 I=14NPTS
21 IF (MCDE) 22427,29
22 IF {Y(I)) 25,27,23
23 WEIGHT(Ii=1./Y(I)
G0 YO 30
25 WEIGHT({I)=1la/{-¥(1})}
GC TC 30
27 WEIGHT{I)=1.
GG TO 30
29 WEIGHT(I)=1./SIGMAY (I}**2
30 CONTINUE
C EVALUATE ALPHA AND BETA MATRICES
31 DO 34 J=1,NTERMS
BETA(J}=0.
DO 34 K=1,J
34 ALPHA(J,K)=0.
41 DO 50 I=1,NPTS
CALL FDERIV(XsI 4A,BELTAANTERMS,DERIV)
DO 46 J=14NTERMS
BETA(JI=BETA{JI+WEIGHTII}*{Y{I)—FUNCTNIX, I,A}I*DERIV(J}
DO 46 K=l,J
46 ALPHALJKI=ALPHA{J,K)+WEIGHT(II*DERIV{J)IMDERIVIK]
50 CONTINUE
51 DO 53 J=1,NTERMS
DO 53 K=1,J
53 ALPHA{K,JI=ALPHA(JsK)
C EVALUATE CHISQR AT STARTING POINT
61 DO 62 I=14+NPTS
62 YFIT{IY=FUNCTN(X,I,A)
63 CHISQI=FCHISQ{YsSIGMAYyNPTSyNFREE +MODE,YFIT)
C INVERT CURVATURE MATRIX TO FIND NEW PARAMETERS
Tl OO 74 J=1,NTERMS
72 DO 73 K=1,NTERMS
73 ARRAY(JS,KI=ALPHAL{J,K)}/SQRT{ALPHA(J,JI*ALPHAIK,X])
T4 ARRAY{J,yJ)=1.+FLAMDA
80 CALL MATINV{ARRAYyNTERMS,1)
81 DO 84 J=14NTERMS
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CURFIT

BlJi=ALJ)
DO 84 K=1,NTERMS
B(JI=B(JI+BETA{ KI*ARRAY(JsKI/SQRT(ALPHA(J,J}*ALPHALK,K})

C IF CHI SQUARE INCREASED,INCREASE FLAMD

91
92
S3
95

101
103

110

DO 92 1=1,NPTS *
YFIT{I)=FUNCTN(X;IsB)
CHISQR=FCHISQ(Y,SIGMAY,NPTS s NFREE ;MODE, YFIT)
IF {CHISQ1-CHISQR) 95,101,101
FLAMDA=10.*FLAMDA -

60 10 71’

DO 103 J=1,NTERHS

ALJI=B(J)

FLAMDA=FLAMDA/10.,

RETURN

END

RIGINAL PAGE'H
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FOERIV

SUBROUTINE FDERIV(XyIsAsDELTAA,NTERMS,DERIV)
DIMENSION X(100),A(20),DELTAA(20),DERIV{20)
D3 18 J=1,NTERMS

AJ=A(J)

DELTA=DELTAA(J)

A(J)=AJ+DELTA

YFIT=FUNCTN (Xy14A)

AL JI=AJ-DELTA
DERIVIJ)=(YFIT-FUNCTN(Xs1,A))/(2.%DELTA)

Al J)=AJ

RETURN

END
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SUBROUTINE MATINV{ARRAY,NTERMS,MCODE)
DOUBLE PRECISION ARRAY,8

DIMENSICON ARRAY (20,20),8(210}

DO 1 I=1,NTERMS

DG 1 J=14NTERMS

CALL LOC(IydsIJ4NTERMS;NTERMS,y MCODE)
B{IJ)=ARRAY{ 1,4}

EPS=1.0E~16

CALL DSINVIB,NTER¥S,EPSs IER)

IF (IER) 24443

PRINT 10

FORMAT(* %, *NO RESULT'4/}

GO TO 4

PRINT 11

FORMAT(* %, *WARNING',+/)

DO 5 1=1,NTERMS

DO 5 J=1+NTERMS

CALL LOC(TIsJsIJsNTERMS,NTERNS,MCCDE?
ARRAY(I;J)=B(1J)

RETURN

END

115
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FCHISQ

FUNCTION FCHISQ(Y,SIGMAY,NPTS,NFREE,MODE,YFIT)
DIMENSION Y(100),SIGMAY(100)},YFIT{100}
SUM=0.

DO 5 1=1,NPTS

IF(MODE) 142,3

W=zl./Y{(1)

GO TO 4

W=1.

GO TG 4

W=1./(SIGMAY({I)*%*2) i
SUM={ Y{I)=YFIT{I})*(Y(I]-YFIT({I) ¥y
CONTINUE

FCHISQ=SUM/NFREE

RETURN

END
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SUBROUTINE DSINV

PURPOSE
INVERT A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX

USAGE
CALL DSINV{AsN,EP5,I1ER}

DESCRIPTION OF PARAMETERS

A — DOUBLE PRECISION UPPER TRIANGULAR PART OF GIVEN
SYMMETRIC POSITIVE DEFINITE N BY N COEFFICIENT
MATRIX.

ON RETURN A CONTAINS THE RESULTANT UPPER
TRTIANGULAR MATRIX IN DOUBLE PRECISION.

N -~ THE NUMBER OF ROWS (COLUMNS) IN GIVEN MATRIX.

EPS ~ SINGLE PRECISION INPUT CONSTANT WHICH IS USED
AS RELATIVE TOLERANCE FOR TEST ON LOSS OF
SIGNIFICANCE.

TER — RESULTING ERROR PARAMETER CODED AS FOLLOWS

IER=0 — NO ERROR

IER=—1 — NO RESULT BECAUSE 0OF WRONG INPUT PARAME-
TER N OR BECAUSE SOME RADICAND IS NON-
POSITIVE (MATRIX A IS NOT POSITIVE
DEFINITE, POSSIBLY DUE TO LOSS OF SIGNI-
FICANCE)

IER=K — WARNING WHICH INDICATES LOSS OF SIGNIFI-
CANCE. THE RADICAND FORMED AT FACTORIZA-
TION STEP K+1 WAS STILL POSITIVE BUT NO
LONGER GREATER THAN ABS{EPSAA(K+1,K+1)).

REMARKS ——
THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE
STORED COLUMNWISE IN N*{N+1)}/2 SUCCESSIVE STORAGE LOCATIONS.
IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU-
LAR MATRIX IS5 STORED COLUMNMISE TOO.
THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN O AND ALL
CALCULATED RADICANDS ARE POSITIVE.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
DMFSD

METHOD
SOLUTION IS DONE USING FACTORIZATION BY SUBROUTINE OMFSD.

LA R BN R NEEERESAENERNEIENJENRJEJENENRHNERIEIRENERJEENENENENIENENNENNNENMNJENXRJRJENRIREH®.RH:EMSEN]
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SUBRUUTINE DSINVIAyN,EPSyIER)

DIMENSION A{210}
DOUBLE PRECISIDN A,DIN,WORK

FACTORIZE GIVEN MATRIX BY MEANS OF SUBRQUTINE DMFSB
A = TRANSPOSE(T) * T

CALL DMFSD(As+N+EPS,1ER)

IF(IER)} 941.1

INVERT UPPER TRIANGULAR MATRIX T
PREPARE INVERSION-LOQOP
1 IPIV=Nx(N+L)}/2
IND=IPIV

INITIALIZE INVERSION-LOOP
G0 6 I=14N
DIN=1.DO/ALIPIV)
A(IPIVI=DIN
MI N=N
KEND=[-1
LANF=N-KEND
IF{KEND) 54542
2 J=IND

INITIALIZE ROW~-LOOP
DO 4 K=1,KEND
WORK=3.D0
MIN=MIN-1
LHOR=IPIV
LVER=J
START INNER LOOP
DO 3 L=LANF,MIN
LVER=LVER+]
LHOR=LHOR+L
3 WORK=WORK+A(LVER}*A(LHOR)
END OF INNER LOOP

A{J)=—WORK*DIN
4 J=J-MIN
END GF ROwW-LOOP

5 IPIV=IPIV-MIN

6 IND=IND-1
END OF INVERSION~LOOP
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CALCULATE INVERSE(A) BY MEANS OF INVERSE(T}
INVERSE(A) = INVERSE(T) »* TRANSPOSE{INVERSE(T))

INITIALIZE MULTIPLICATION-LOGP
00 8 I=1.N
IPTV=IPIV+I
J=1P1lv

INITIALIZE ROW-LOOP
DO 8 K=I,N
WORK=0.00
LHOK=J

START INNER LOOP
DD 7 L=K4N
LVER=LHOR+K-I
wORK=WORK+A{LHOR}+A(LVER)
LHOR=LHOR+*L

END OF INNER LOOP

A{J)=WORK
J=J+K
END OF ROW— AND MULTIPLICATION-LOGP

RETURN
END
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SUBROUTINE DMFSD

PURPOSE

FACTOR A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX

USAGE

CALL DMFSDIA,N,EPS,1IER)

DESCRIPTIDN OF PARAMETERS

EPS

IER

REMARKS

— DOUBLE PRECISION UPPER TRIANGULAR PART OF GIVEN

SYMMETRIC POSITIVE DEFINITE N BY N COEFFICIENT

MATRIX .

ON RETURN A CONTAINS THE RESULTANT UPPER

TRIANGULAR MATRIX 1IN DDUBLE PRECISION.

THE NUMBER OF ROWS (COLUMNS) IN GIVEN MATRIX.

SINGLE PRECISION INPUT CONSTANT WHICH IS USED

AS RELATIVE TOLERANCE FOR TEST ON L05S OF

SIGNIFICANCE.

RESULTING ERROR PARAMETER CODED AS FOLLOWS

IER=0 — NO ERROR

IER==1 - NO RESULT BECAUSE GF WRONG INPUT PARAME-
TER N OR BECAUSE SOME RADICAND IS NON-—
POSITIVE {MATRIX A IS NOT POSITIVE
DEFINITE, POSSIBLY DUE TO LOSS OF SIGNI-
FICANCE)

IER=K — WARNING WHICH INDICATES LOSS OF SIGNIFI-
CANCE. THE RADICAND FORMED AT FACTORIZA-
TION STEP K+1 WAS STILL POSITIVE BUT NO
LONGER GREATER THAN ABSI{EPSFA{K+1,K+111}).

THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE
STORED COLUMNWISE IN N¥(N+1)}/2 SUCCESSIVE STORAGE LOCATIONS.
IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU-
LAR MATRIX IS STORED COLUMNWISE TOO.

THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN O AND ALL
CALCULATED RADICANDS ARE POSITIVE.

THE PRODUCT OF RETURNED DIAGONAL TERMS IS EQUAL TO THE
SQUARE--RDOT OF THE DETERMINANT DOF THE GIVEN MATRIX.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

NCNE

METHOB

SOLUTION IS DONE USING THE SQUARE-ROOT METHOD OF CHOLESKY.,
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THE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TWO TRIANGULAR
MATRICES, WHERE THE LEFT HAND FACTOR IS THE TRANSPOSE OF
THE RETURNED RIGHT HAND FACTOR.
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SUBROUTINE DMFSD{AsN,EPS+ IER)

DIMENSION A{210)
DOURLE PRECISION DPIV,DSUM,A

TEST ON WRONG INPUT PARAMETER N
IF{N=-1} 12,1,1
IER=D

INITIALIZE DIAGONAL-LDOP
KPIV=0
DO 11 K=1.N
KPIV=KPIV+K
IND=KPIV
LEND=K-1

CALCULATE TOLERANCE
TOL=ABS (EPS*SNOLIALKPIV)Y) )

START FACTORIZATION-LOOP GVER K-TH ROMW
D0 11 I=K.N
DSUM=0.D0
IF{LEND) 2,4,2

START INNER LOOP
D3 3 L=1.,LEND_
LANF=KPIV-L
LIND=IND-L
DSUM=DSUM+A(LANF)+A{LIND)
END OF INNER LOOP

TRANSFORM ELEMENT A{IND)
DSUM=A{IND}-DSUM
IF(I-K} 10,5,10

TEST FOR NEGATIVE PIVOT ELEMENT AND FOR LODSS OF SIGNIFICANCE
IFISNGLIDSUM)-=TOL) 646,:9
IF{DSUM) 12,12,7
iF{IER) B8+8,+9
IER=K-1
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11

12

DMFSD

COMPUTE PIVOT ELEMENT
DP IV=DSQRT (DSUM}
A(KPIV})=DPIV
DPIV=1.00/DPIV
GO 70 11

CALCULATE TERM3S IN ROW
A{IND)=DSUM=*DPIV
IND=IND+I )

END OF DIAGONAL-LOQOP

RETURN
IER=-1
RETURN
END
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