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i. INTRODUCTION

The aerosol backscatter coefficient _ [m2m-3sr -I = m-lsr -1 ]

is defined as the fraction of incident electromagnetic energy at

wavelength l [m] which is scattered by atmospheric aerosol

particles in the backward direction per unit solid angle, per

unit atmospheric length (Measures, 1984, pgs. 53 and 239, and

Kavaya and Menzies, 1985). It is assumed to be constant over the

measurement volume of interest. In general, the atmospheric

scattering (including backscattering) will be due to a complex

distribution of scatterers that vary in composition, size, and

shape. In order to account for arbitrary polarizations of the

incident and scattered (detected) light, _ must be generalized to

a 4 x 4 Mueller matrix (Kavaya, 1987; Anderson, 1989). Once the

Stokes vectors of the incident and detected light are specified,

e.g. for a specific laser radar (lidar) system, then the

backscattered energy is proportional to

subset of the 16 _ Mueller matrix elements.

be considered an effective scalar value of

assumed here.

a weighted sum of a

The weighted sum may

_. This will be

A Light Detection And Ranging (lidar) system may measure

in many different ways: 1) the lidar may be continuous-wave (CW)

or pulsed; 2) the lidar may employ direct detection or heterodyne

detection; 3) the laser beam may be focused or collimated; and 4)

the measurement volume may contain numerous aerosol particles

(volume mode - VM), a few particles, or only one particle at a

time (single particle mode - SPM). The NASA GLObal Backscatter

Experiment (GLOBE) program is attempting to increase the

knowledge data base of global aerosols and their backscatter

coefficient with particular emphasis on assisting the design of

the proposed NASA Laser Atmospheric Wind Sounder (LAWS) lidar

system. This Earth-orbiting wind profiling lidar will depend on

aerosol backscatter for its signal. It will most likely be a

pulsed, heterodyne (coherent) detection, collimated lidar system

making global _ measurements in the volume mode over the entire

troposphere. If it orbits at a height of 800 km and if the laser

beam has a nadir angle of 52.70 , for example, then the
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interaction of the laser light with tropospheric aerosol

particles will occur at a range of 1500 km with an effective

(local) nadir angle of 63.50 . The relative Doppler shift between

the laser light and the aerosol particles will depend on the

satellite velocity, the lidar's azimuth scan angle, the latitude,

and the wind velocity.

This contract effort addressed the measurement and

calibration of _ by a CW, coherent detection, focused lidar

system operating either in single particle mode or in volume

mode. It will be shown that within reasonable assumptions, the

value of _ measured by the CW VM or SPM lidar is identical to the

value which affects the LAWS instrument performance.

Other important issues of position (latitude, longitude,

altitude), spatial resolution, time, temporal resolution,

wavelength, Doppler shift, incident and detected polarizations,

atmospheric conditions, origin of air mass, recent weather

conditions, measurement volume size and shape, and lidar

beam-to-measurement volume orientation are not addressed here.

In Section 9 we describe the work performed in development

and testing of a 2-Bm Tm,Ho:YAG coherent lidar system. The

system was recently moved to the Table Mountain remote field site

(N I0 miles north of Boulder, CO). Preliminary hard target and

atmospheric data are presented in Section 9.3. We believe this

to be the first demonstration of a coherent eyesafe solid-state

lidar system.
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2. OVERVIEW OF THEORY

The aerosol back,scatter coefficient _ is a measure of the average power backscattered by the

atmosphere. For coherent detection laser radar, the transmitted beam is confined to a narrow angular

region of the atmosphere. This permits the propagation, scattering, and reception of the fields to be

described by Fresnel diffraction theory. For coherent detection lidar, the intermediate frequency

(IF) signal from the detector Is (t)[A ] is the basic signal for generating statistics to estimate 13. Since

the IF signal is a random quantity, a statistical estimate for 13 (a function of IF signal samples that

approximates the true value of 13) is required.

A satisfactory estimate for 13requires that it is an unbiased estimate of 13and that the estimate is

accurate. Both volume mode (VM) and single particle mode (SPM) estimates of [3 are unbiased for

ideal operating conditions. The ideal operating condition for the SPM method requires that the

"threshold level" for identifying single particle events is low enough to sample enough of the

scattering particles that contribute to 13.

The accuracy of the estimates is affected by three main sources of error: 1) the additive noise

of the detector, 2) the random fluctuations of the heterodyne power, and 3) the systematic errors of

the system. The relative errors of these three components are denoted by Ap(noise) Ap(randorn )
p ' p '

and A_(systematic), respectively. If all these errors are small, then the total relative error (i.e.,

accuracy of estimate or figure of merit) of the estimate is

A-_- - [I A[_(n_/se) ] 2 + [ AI3(r_nd°rn) ] 2 + I Al_(sTst;_c) 11 I_[3 (1)

Note that A_ (noise) is related to the signal-to-noise ratio (SN'R), Al](random ) arises from the ran-

dom heterodyne detection process, and A[3(systematic) is linked to sensitivity analysis.

The merit of any unbiased estimate of _ is then given by this total relative error. The first two

error terms will be considered in this report, for both VM and SPM operation. The systematic error

requires involved calculations of the actual lidar system parameters. This analysis may be the most

important since systematic errors may be the dominant source of error. Sensitivity analysis is one



part of systematic error analysis. Quantitative analysis of performance will be obtained using the

current Marshall Space Flight Center (MSFC) C'W coherent Iidar system parameters [V¢.D. Jones,

personal communication, 12/9/89 & 1/4/90].

3. VOLUME MODE (VM) MEASUREMENTS OF [3

3.1 Introduction

A coherent detection lidar [See Figure 1] consists of a transmitter laser described by the scalar

field ETfff, z )[(Win-2) xr2]where ff = (ux jay )[m] is the transverse coordinate at a propagation distance

z[m]; a dimensionless effective receiver lens WC¢) where V= (vx,vy)[m] is the transverse coordi-

nate in the receiver plane z = 0; a detector in the plane z = L described by the quantum efficiency

function Vl(V_)[electrons/photon] at mmsverse coordinate _[m] on the detector surface; and a

local-oscillator (LO) field ELO (_,z). The irradiance profile of the transmitter beam Ir (ff,z)[Wm -2]

is given by

and normalized such that

Ir O_,z)--ErO_,z)Er"_,z )

er = 1Ir_,z_

where PT[W] is the power of the transmitted beam in the absence of extinction.

(2)

when

(3)

An analyticexpressionforlidarperformancecan be obtainedfora Gaussianlidarsystem;i.e.,

= exp - _2-T2 - 2F1"J
(4)

is thetransmitter field,
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is the receiver lens, and

- j

is the LO field backpropagated to the receiver plane z = O.

(5)

2Ft.,o (6)

The parameters rT, r R , and rLo [m]

represent e -1 (37%) intensity radii; and the parameters F r, FR, and Fzo [m] represent phase curva-

tures. (The actual MSFC CW coherent focused lidar systems may have truncated Ganssian transmit-

ted and LO beams due to a 15 em diameter rectangular or "top hat" receiver mirror function. The

solution for this ease is much harder and may not lead to an analytic expression.) The current MSFC

CW lidar system will be modeled as a matched monostatic Gaussian lidar:.

rT = rzo = 0.02157 m, mmsmitter and local oscillator 1/¢ intensity radii (lie 2 radii = 0.0305m)

rR ffi **, no truncation of the LO by the receiver

Far = FR ffi F ffi 10.59 m, transmitter and receiver radius of curvature

Ft. o = **, local oscillator phase radius of curvature at receiver plane

_. = 9.114519 lain ,CO 2 laser wavelength [9R(20) line of 12ctS02 isotope]

11 = 0.12, optical transmission + detector AC quantum efficiency [electrons/photon]

PT = 4 W, transmitted power

BvM = 100 kHz, VM bandwidth (SAW)

Bs/, g = 1.5 MHz, SPM bandwidth

VA TcosO = 100 m

VA [m Is ] = airplane velocity

T Is ] = 1s observation time

0 [rad] = angle between lidar optical axis and the perpendicular to the airplane velocity vector

5



Volume mode operation occurs when many scattering aerosols are illuminated by the

transmitter laser. The statistics of the backscattered field is then described as a complex Gaussian

!
random process which is sometimes called speckle statistics. The backscattered field from the aero-

sols is collected by the receiver lens and mixed with the local oscillator field in the detector plane.

The square of the IF signal/s 2 [A 2] (obtained using a square-law-detector) is the coherent IF power.

If the detector is larger than the local oscillator beam and if the detector quantum efficiency is uni-

form over the illuminated area of the local oscillator, and ff the additive shot noise is negligible, then

the average IF power is related to [3by (see Appendix A)

<is 2> = [3GvPT (7)

where <,> denotes ensemble average, G v is the system gain [,4 2 m sr W-I], i.e.,

and

Gv - _Gv (R)dR (S)

rTIGDe]2 _,2- f..._<IT _,R )G 0#I,]_,R)G* C_2,]_,R)>

W (VOW" (V2)ELo *C¢I,0)ELo (V2,0)dVldV2di_ (9)

is the volume mode coherent lidar system range gain density [A 25r W -1] as a function of range

R [m ]. Here, GD = dimensionless amplifier gain, h = 6.626x10 -34 [J$] is Plancks constant, and

G C¢,i_,R)[m -2] is the Green's function; i.e., the field at (V,0) due to a unit point source at _J_ ).

Under the Fresnel approximation and no extinction

G(C'rI'R)= k exp[ ik :t2-"-_" -_-(V- i_) (10)

where k = 2rd'k [m -1] is the wavenumber of the optical field. The system range gain density func-

tion identifies the dominant scattering regions as a function of range.
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The aerosol backscatter coefficient [}[m-t sr -1] is given by

13= _on (o)d o (11)
0

where n (o)[m-Ssr] is the number of aerosol particles per unit volume per unit cross-section

o[m 2 sr-1] and is assumed to be constant over the measurement volume defined by Gv (R). The

system gain Gv can be determined from the system components which requires integration of Eq.

(9), which is difficult for a real system. Alternatively, the system gain Gv can be characterized by a

measurement of Gv (R) at appropriate ranges R.

Since a measurement of lidar IF power includes the additive shot noise signal i,, (t), the correct

statistic for VM measurement of [3is

e =e(signal) -e(noise) (12)

where

T

(13)

is an estimate of the IF coherent signal power [A 2] with shot noise included for an observation time

T[s ], and

T

P(noise)=l!iaz(t)dt

is an estimate of the IF noise power [A 2]. The estimate P [A 2] is an unbiased estimate of [3, i.e.,

<P > = _ Gv PT •

(14)

(15)

The dimensionless lidar SNR is the average coherent lidar power </2> normalized by the aver-

age noise power <i,2>. For the given assumptions

SNR = _GsNR PT (16)

where the system gain [m sr W -1] for SNR is



where

G_I R -

N N

h vBPLo .....

w ccDw"_2)Ew" (VI,0)Ew(_,0)dV_dV#_ (17)

m

Pw ="] IEwt_J+)12d¢
°110

(18)

is the LO power [W] measured by the detector. Then

GSNR - _GsNR (R)dR, (I 9)
0

where GsNR (R) [sr W -1] is the SNR range density function. GSNR(R) can also be determined from +

system parameters but this is difficult to do accurately.

The system range density function (Gv (R),GsN R (R)) indicate the regions of propagation range

that are most important for system performance. Another measure of this behavior is the cumulative

distribution function (CDF) defined by

CDF (R ) =

R

fCv(R' "
0

m

_Gv(R)dR
0

(20)

which indicates the fraction of the signal statistic from aerosols with range less than R.

For the Gaussian lidar system, the range density function is

Pw rE2[x (R)]2

R R .2 k2r2 ]

(21)

where



1 1 1 (22)

and K (R) is the dimensionless one-way irradiance extinction.

For the Gaussian lidar system, the SNR range density function is

4gqrE2[K (R )]2

Gs R(R)- + -  '2r2 n )2t2r l
hvBvl_cr_x_R2L__ rE2 l'T R rR

(23)

InthelimitasR ----_,therangedensityfunctionapproachesa constant.Normalizingtherangeden-

sityfunctionby thisconstantproduces

k2(r 2 + r_)
GvN (R) = (24)

I _ _.2r 2
I I ÷(I__7._7)2._+(I_F_R._÷ R )2k2r2]

Performing the integrals in Fxls. (8) and (19) for the matched monostatic model of the MSFC lidar,

uniform _, and constant extinction K produces

Gv = 2)J'I.O _ hv ] L2 + tan-l(kr2/F
(25)

and

G_R = h vBvw

The total system gain for a focused lidar will vary by only a factor of two for any change in radius of

curvauae F or beam dimensions r, assuming uniform _ and constant K. Therefore, these parame-

ters can be chosen to improve other aspects of system performance.

9



3.2Error Due to Additive Shot Noise

For the VM estimate of 13,a measure of the shot noise component of error is defined as

Al3(no/se) = WAR [P (no/se)1)1/2 = </2>
13 <P > <P >(TBvu) v2

(27)

where Bvu [Hz ] is the VM bandwidth of the square-law-detector and the noise power has been accu-

rately estimated from a calibration run. For the MSFC matched monostatic system using the SAW

spectrum analyzer with a 100 kHz bandwidth,

A_(noise ) = h vBvM = 5"02x10-13 (28)

13 xX13PrTlcosO(TBv u )1/2 IMos0

For cosO= 1 and 13= 10-12 m-lsr -1, A_(noise) = 0.5, which is detectable (50% error). An observa-
13

tion time of T = 10s would produce A_(noise) =0.16, and an observation time of T = 100s
13

would yield A[5(no/se ) = 0.05 (5% error).
13

3.3 Error Due to the Random Process

The error of the VM estimate for [5 due to the random fluctuations in heterodyne power is the

dominant source of error for high SNR and negligible systematic error. For ideal VM performance,

the heterodyne power has "speckle statistics," i.e., the IF current is a zero-mean complex Gaussian

random process and the heterodyne power has a negative exponential distribution. For focused VM

operation, the IF power may be characterized by single particle events. The IF power then has non-

ideal statistics (not speckle statistics) and a more complex analysis must be performed.

The variance of the VM estimate P [Eq. (12)] due to speckle statistics is

<e > 2Td
VAR [P ] = (29)

T

where T d [s ] is the temporal decorrelation time of the "speckle process." The accuracy of P is then

10



For Td = ll_s , A_(random )

A_(random ) = (eAR [P ])1/2 = [TdlT]I/2
[_ <P>

= 0.001= 0.1%,assuming a T = Is observationtime.

(30)

3.4 Calibration of VM Measurement of

VM measurements of _ can be calibrated using a diffuse target with reflection

p [sr-1]. The backscattered irradiance I(¢,0) [Win -2] at the receiver is given by

I('¢,0)= PPc
R 2

coefficient

(31)

where Pc [W] is the calibration power transmitted onto the target. The average coherent IF power

from the hard target at range R is then

<is2(R )>c= OPcGv(R) (32)

yielding

<is2(R)>c
Gv(R) = (33)

PPc

asa measure ofGv (R).The systemgainGv isobtainedby integrationofG v (R) withrespecttoR.

As with calibrationof lidarpower rangedensity,a measurement of SNR from a known hard

diffusetargetisa measure ofGxvR (R);i.e.,

GSNR (R )= SNR (R ) (34)
PPc

II



4. SINGLE PARTICLE MODE (SPM) MEASUREMENTS OF [3

4.1 Introduction

A focused C'W lidar beam will have an effective sensitivity or gain along its optical axis which

is peaked at the focus. For a tightly focused lidar beam, and for sufficiently low values of 13 (this

implies low particle concentration), the received signal power witl be characterized by randomly

occurring events as particles of different composition, size, and shape traverse the focused beam at

different ranges along the optical axis R [m ] and at different distances Px [m ] above or below the

opticalaxis. We assume the lidar system is moving through the atmosphere with velocity VA in the

direction of the + y axis (e.g., in an aircraft) and that it is aimed in the y-z plane at an angle to the

+ z axis (see Figure 2). For example, O was + 17.440 during a recent flight measurement program

(Gras et al, 1988).

The maximum lidar signal Sj(px,p_,R ) [A 2] for the jth particle event will occur at some

coordinate (Px,Pym,R) = (r_,n,R) of the trajectory, where Pz is the displacement from the laser

beam axis. The proper statistic for estimating 13 in the absence of additive noise (see Section 4.6 for

correction for noise spikes) is the sum S [A 2 ] of the maximum (or peak) signals:

N

s - Z (35)
j=l

If the threshold for the identification of peak signals is low enough to identify all the scattering parti-

cles, then

<S > - 13VA TP r Us cos0 (36)

where G s [A 2W-Xsr] is the total system gain given by

aD

Gs = I I Gs (Px,R )dpxdR (37)
O-m

and

12



:.:. exp -_- ('_'m- V'l)2 ('_'m""¢_

w  Ow"  gELO" (-¢l,0)Ewf-C2,0),t-¢ld '2

isthesystem'swansverseareagaindensity[A2W-Im-2sr ]fora scatteringparticleat(i_m,R )and

(38)

Ir ,e)
Jr _,R ) ffi (39)

PT

is the normalized transmitter irradiance [m-2] at transverse coordinate _ [m ] and range R. For the

general Gaussian lidar system, the ensemble average of the normalized transmitted beam profile is

then

where

[__L1 exp -
<Jr (_',R)> = _r2(R ) r2(R )

(40)

R )2 ( R )2 R ]2 (41)
rB2(R)frT2(1 -_ + _ +2[kSo(R) '

where rB is the e-I intensity radius [m ] of the ensemble averaged transmitted beam profile, and

So(R) ffi 2 C_(R')(1- )dR (42)

is the field coherence length [m] due to refractive turbulence, H - 2.914383, and C2(R ) [m -2/3] is

the refractive index structure constant profile. The last term in Eq. (41) is the spread of the transmit-

ted beam profile due to Kolmogorov refractive turbulence with zero inner scale. This effect must be

negligible for simple calibration. If it is not negligible, then the calibration will depend on refractive

turbulence conditions. We assume it is negligible in this paper.

The transverse area gain density function Gs (Px,l?) for this idealized system is

13



where

8I TIGDe l 2

Cs_'x'_)= [ hv J

px 2 px 2
(43)

1 1 1

7=¥+W

and the effective receiver area is zr_, and

R R )2

(44)

(45)

rM (R) [m ] is the contribution to the gain function from phase mismatch between the received field

and the local oscillator.

The range gain density function Gs(R )[A2W"lm-lsr] is obtained by integrating Gs(Px,R )

overpx , i.e.

8_ll2 [ "qGD e ] 2

GsfR) = [ hv J k2r 2 tr2(R )r2(R )(r2(R ) + r2(R ))]1/2
(46)

It is highly rexx)mmended that both theoretical and experimental sensitivity analyses of G s (R)

be performed about a candidate operating point of the lidar system.

In the limit of small R

87tlt2I rlGo e ] 2 PLO r2

Gs(O)= [ hv J k2ri_o [rfrg22(r:2 + rE2)],/2 (47)

G s (R) becomes independent of R for small R just as the VM range gain density function G v (R),

did. We may normalize F_.q. (46) with Eq. (47) to obtain

Gs(R) 2 2 2 r/._)]I/2[r:r:.(r:+
G_ (R) = = (48)

Gs(O) tq(R )r2(R )(q(R ) + r_(R ))] _/2

For the MSFC matched monostatic system, [rt,o = rr = r, F w = rR = **, F r = F R = F,

c. :ol

14



and

Assuming R = F

R )2 + (R)2r2(R ) = r2 = r2 = r2(1 - _-.

k3r 6

Gs_v (F ) = F323t2

(49)

(50)

(51)

IfR ..+o.

r3(3/4) 1/2

GsN(R'_)= 3i r 2 1..._)( r..._2 2..._)(3r__.2. 2 3 :t
R [(_-_-+ t2r2 2F 2 + t2r2 2F 2 + k-_-r2

1/2

For tightly focused conditions, it is safe to assume F << ]o"2/2, so that Eq. (52) becomes

F 3
GsN(R ___) = m

R 3

If F >> kr 2, Eq. (51) should be used with R substituted for F.

(52)

(53)

4.2 Error Due to Additive Shot Noise

For an unbiased estimate of 13 in SPM operation, the threshold level for signal spike

identification must be low enough to sample the majority of aerosol particles that contribute to 13.

When this is satisfied, the contribution of noise spikes that are erroneously counted as signal spikes

is negligible unless 13 is low and few spikes are observed. The error analysis will assume that the

number of signal spikes is much larger than the number of noise spikes.

For the SPM estimate, the error due to additive shot noise is

A13(noise)= CCAR[S(n°ise) ])I/2 - <i2><NsP/ke>I/2 = <i_> (54)

13 "<S > <S > <Nst,_ > I/2<Sj>

where <Nsp _ > isthe average number of spikesobserved.For the MSFC matched monostatic Gaus-

sian system

15



<in 2> Fh vB _ 3.34x10 -14

<Sj > 4(25) larVA TP r _llcos0 l_,os0
(55)

Determining the error of the SPM estimate due to additive shot noise requires knowledge of the

average number of spikes observed in the observation time T. This is given by

where

o - - Lac_, 2)

(56)

hvBe
ac(Px2 )= (57)

nPTH (px,R )

is the cross section [m 2 sr -1] for particles at range R and offset p= that produces a peak spike at the

threshold of the peak detector and the function H (Pz ,R ) [m-2 sr ] is

H (Px,R ) - -R--_p_o exp -V1)2-(I_m-V2)

W ('_l)W* (_2)ELo" (_I,0)ELo (V_2,0)d_ld_2 . (58)

The function H (Px,R) is the normalized system gain at range R and offset Px • The threshold is

defined as e<i2> and it is assumed that the contribution of the noise spikes above the threshold is

negligible (see Section 4.6 for noise spike correction). For useful operation, E>3, provided there are

more signal spikes than noise spikes. If e is not high enough, especially for low _, the number of

noise spikes will become larger than the number of signal spikes, and it will be difficult to accu-

rately correct for the noise spikes. For a matched monostatic Gaussian system with no beam trunca-

lion

2Px2 ]H(Px2)= k4r------Texp- j (59)

The average number of peak signals above the threshold level depends on system geometry and the

form of the distribution of scattering cross section n (a).
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4.3 Error Due to the Random Process

The accuracy of the SPM estimate of _, due to the random fluctuations of heterodyne power, is

determined by the fluctuations in peak signal levels, i.e.,

A_(random ) = (V,AR IS]) 1/2 =

p <S> N

 [vArcos0]I'2fI'H
-mO

(60)

where

=
(o)do (61)

is the second moment [m sr -2] of particle cross section. A small ratio of -_ is desired (a narrow

distribution of o values for a small SPM random error). For the MSFC matched monostatic Gaus-

sian system

Ap(random ) = 2_4k (r/F)3r2_2_

13 13[ZSVAroosO] _a (62)

An accurateestimatefor_ requiressamplingmany spikes,which samplesthemany differentsized

aerosols.If[_issignificantlyaffectedby largepanicles,thentheestimatefor[3can be poor sinceit

would requirea long time toobservetherateeventsdue to therelativelyfew largeparticles.The

firstand second moments of [_providetheinsightintothe importanceof differentsizedparticles

withinn (o)foraccuratelyestimating13.

4.4 Calibration of SPM Measurement of [3

The lidar system can be calibrated by shooting test particles with cross section o c through the

laser beam of power Pc, at an angle 90 o - 0c , beam offset pxc, and range Rc • The particle's cross
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section o c

Sc [A2] is

may be determined theoreticallyor experimentally.The maximum (peak) lidarsignal

Sc (p_ d_c ) = Pc aces (p_ ,Rc ) (63)

Therefore,

Os_,_,Re)= $c_'_,Re)/(Pcac) (64)

may be experimentally determined. Ideally the measurement is deterministic, but averaging of mul-

tiple test particle shots may be employed to reduce noise, trajectory jitter, etc. -

The total system gain a s requires a 2-D integration over range Rc and offset p_. The integra-

tion overp_ produces the system's range gain density [A2W-lm-Xsr] as a function of range, i.e.,

tm

Gs (Rc) = _ Gs (P_ ,Rc )dp_, (65)
° @O

which allows identificationof the region (in R) of the maximum contributionto the overallsystem

gainG s .This region willbe near the focus of the lidarsystem.

The dependence of the functionsG s(Px,R) and G s (R) on various system parameters isimpor-

tantfor optimal design of a CW SPM lidarsystem, and for optimum calibrationmethodology. The

calibrationapparatus should span valuesOfPx and R sufficientto include,forexample, allvalues of

Gs (Px,R )down to I% of itsmaximum value.

Assume that Oc = e, i.e., the trajectory of the calibration test particles through the laser beam

is at the same angle as the trajectories of atmospheric aerosol particles during flight. Then, an esti-

mate for _ is [see Appendix B, Eq. (B6)]

N

j,. 1 (66)
9= PTGs V/_rcose

The cos0 dependence reflects thatthe effectivesensingvolume of thelidardecreaseswith increasing

0. For the san_ SPM statisticS, a largervalue of 0 impliesa largervalue of 13.
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Table 1 summarizes the assumptions made in arriving at Eq. (66) for calibrated SPM. Appen-

dix C discusses the calibration methodology if the particular value of Pxc for a test particle is not

known, but the probability density function (PDF) of the values of p_ for many particles is known

to be uniform.
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Table L Assumptions of Calibration Methodology

I. Fresnel approximation (narrow angle scattering).

2. Negligible refractive turbulence.

3. Sufficient resolution and coverage in p_ and Rc during calibration to accurately determine sys-

tem gain.

4. ec=O.

5. The test particle's velocity equals the atmospheric measurement lidar system velocity or the

lidar system receiver gives the same peak signal reading for different particle speeds (i.e., flat

bandwidth).

6. Known value of a c of test particles.

7. Good linear peak power detector.

8. Lidar system unchanged between calibration and aerosol back,scatter measurements.

9. [3represents weighted sum of 16 Mueller matrix elements.

10. Statistical process yielding peak signals is ergodic and stationary.

11. n (¢_) constant over dominant region of measurement volume.

12. [3uniform over measurement volume.

13. Sufficiently large number of particle events during SPM atmospheric measurement.

14. Sufficient SNR.

15. The mean heterodyne signal power is available.

16. The heterodyne detector is bigger than the LO beam.
r
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4.5.Requirements for SPM Operation

Therequirementsfor accurateSPMestimatesinclude:

1) Heterodynepower signal with well defined peak signals.

2) Enough peak signals above threshold to produce unbiased estimates of _.

3) Errors due to shot noise and statistical fluctuations in peak signals require knowledge of n (_).

4) Errors due to misalignment and optical mismatch (beam size and curvature) require numerical

calculations.

5) Accurate method of obtaining peak signals:

a) Am must be large enough to sample spike events. For the MSFC system and VA = 100 m Is,

the spike events are 7.1_ (z,,, in Figure 3).

b) Either average IF power (dashed line in Figure 3) is used or peak IF power (solid line in Fig-

ure 3) with no filtering is used. If z,t <<_,, then using a smoothing filter with time constant

1:f, where zd <xf <_, will produce a more accurate signal where the peak value is the average

IF power of the signal. If xd=_ , then the maximum IF power must be used, and then the

peak power Pp,_ = 2<Pv,,,t >, where <P_ > is the peak of the average IF power </2>

shown as the dashed line. If 'rd >_, the IF frequency is not high enough to sample the single

spike event and SPM is not recommended.

4.6. Noise Signal Correction for SPM

For low 13, the number of signal spikes from aerosol scatterers will be small and the contribu-

tion from random noise spikes must be considered. An estimate that removes the contribution of

noise spikes is

N

Y = y.Si(P_:y,,: ) - <N_a_o_)><S _ > -[<N_ia > -<N_o_,)>]<i2>
j=1

(67)

where <Nsv_(,,o/,o)> is the average number of noise spikes above the threshold and <S,u,/.,e > is the
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average Lidar power of the noise spikes. The second term corrects the contribution from noise spikes

and the last term corrects the contribution of the additive noise power to the signal spikes. When the

number of noise spikes is comparable to the number of signal spikes, the error analysis must be

extended to include the noise spike contribution.

4.7. VM Random Error in SPM Regime

The VM estimate for _ is unbiased even when operating in the SPM regime (i.e., the measure-

ment volume does not include enough particles to cause speckle statistics). However, the random

fluctuations of the heterodyne power are not characterized by exponential statistics but determined

by the random fluctuations of the single panicle events. The accuracy of the VM estimate due to

these random fluctuations is given by

1
A_(random) .. (VAR [P ])1/2 = (68)

<p> -..

- mO

where

W (VI)W* (V2)ELo"('¢I,0)ELo(V2,0)d_*ld_:_py (69)

isthe integratedIF power [W] fora singleparticleeventwith offsetPx. For the tightlyfocused

MSFC matched monostaticGaussianlidarsystem(F <</0"2)

A_(random ) 4_21/2
= (70)

_'5/4_[6Fr]/ATcosO] I/2
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$. SYSTEMATIC ERRORS

There arc many systematic errors in lidar calibrations. These include nonuniformities in quan-

tum efficiency over the d¢_ non-line_"ides in the photo detector and square-law-detector, errors

in the parameters of the _'ansmitter field, LO field, and receiver response; and fluctuations in all

parameter settings after calibration is perf--. The magnitude of the systematic errors that

involve system parameters can be determined by a sensitivity analysis, which identifies which

parameter settings cause the most change in system gain due to small changes from their nominal

settings. A major source of sensitivity for coherent detection lidar is beam alignment. Ideal opera-

don of coherent detection lidar requires an excellent match between the wansmitted Gaussian beam

and the back-propagated local oscillator (BPLO) beam, especially for tightly focused conditions. For

VM operation and equal transmitter and BPLO radii, the effects of beam axis offset d' [m ] and point-

ing angle error AO) [rad ] are given by

Gv (R ) ="Gw (R )exp[-(A_)R +_)2/(2r_(R ))] (71)

where Gvl (R) is the ideal system gain density with no misalignment between the transmitted beam

and local oscillator beam. The effects of misalignment can be easily calculated.

For the focused system, the major contribution to 13 comes from a small region around the

focus. An angle error of 67 wad between a perfectly matched transmit beam and local oscillator

beam would produce a 40_ error in the estimate of _. An offset of 0.71 mm between a parallel

transmit and LO beam would also produce a 40% error.

The error in the SPM estimate of J3due to misalignment of the transmitter and LO beams can

be calculated in a similar fashion as for the VM case. The behavior will be more complex but have

a similar scaling.

SPM measurements suffer from a bias since a threshold is required to determine if a single par-

ticle event occurred. A measure of this bias is the ratio of the ensemble average of the SPM statistic

with a threshold <S#, > to the ensemble average with no threshold, i.e.
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where

<S_=>
BIAS= =

<S >

m

(72)

DN[x]=

is the fraction of _ due to aerosol particles

6. COMPARISON OF VM AND SPM

N N

j'a, (a a j'a,,(a)da
X Z

- p
Ion(a)do
o

witha cross section o largerthanx.

(73)

6.1 Comparison of Range Gain Density Functions

Figure 4 shows the normalized range gain density functions for both SPM and VM plotted vs

R/F for the MSFC matched monostatic Gaussian system. Both curves become independent of R

and equal to 1 for small R. The SPM G s (R) falls as R-3 for large R [see Eq. (53)] and the VM SNR

falls as R-2 for large R [see Eq. (24)]. This difference is due to the effective 1-D integral through the
Z

Gaussian beam in SPM and the effective 2-D integral over the entire Gaussian beam in VM. For =

large R the beam waist is proportional to R. Therefore the 1-D integral is proportional to R-I and =

the 2-D integral is independent of R. Both SPM and VM have a further R-2 dependence due to the

decreasing solid angle of the receiver aperture. It is difficult to tell from Figure 4 how big an interval

in range must be included to account for 90% of the gain, for example. This requires the cumulative

density function (CDF) of Gs (R) and Gv(R) [see Eq. (20)] which is plotted in Figure 5. Since -

Fr = FR = 10.59 m, the abscissa values of 0.9 and 1.1 correspond to R = 9.53 and 11.65 m, respec-

tively. A slightly larger range interval is required for the VM case for equal percentages of the sig-

nal. Figures 6 and 7 show the same plots with the larger focal range and smaller beam radius used
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in a recent NASA GLOBE flight (W. D. Jones, personal communication, 4/20/90 and 9/18/90).

Since FT = FR = 50 m in Fig. 7, the abscissavaluesof 0.5 and 1.5 correspond to R=25 and 75 m,

respectively.As expected from Eq. (51),the SPM peak atR ---F(=90)isapproximately a factorof

9 10-3 smaller than the SPM peak at R = F in Fig. 4 (=104). Figure 8 shows the SPM G s (R) and

the VM Gv(R) for the same conditions as Figure 4 except _. = 1.064158 lain. The focusing is much

tighter with the shorter wavelength. As expected fi'om Eq. (51), the SPM peak at R = F (=6 l06) is

approximately a factor of 628 higher than the SPM peak in Fig. 4. The tighter focusing is also exhi-

bited in the CDF curves of Figure 7.

6.2 Error Comparison

Calculations of SPM performance require the distribution of aerosol particle scattering cross-

section n (o) [m-Ssr]. We assume a bi-modal, log-normal distribution of cross-section n (0) [David

A. Bowdle, "n (o) Distributions," 1-31-90]:

where

pn (0) =

+

(74)

(75)

is a normalizing parameter [m2sr-1], 01 = 2x10-12 m2sr -1, 0 2 = 3x10 -15 m2sr -I, and

A2
(76)

X-A1

where A I and A 2 are empirical coefficients [m -3] of the two aerosol modes, 81 = 1.4 and $2 = 1.6 are

the dimensionless geometric standard deviations of the two aerosol modes, and where n (0) =

Bowdle's n (0) [m -3] divided by 0 [m2sr-l], For this example we chose Z = 0.0003.
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The SPM gives a biased estimate of [3 because the smallest aerosol particles (values of o ) pro-

duce signal spikes below the threshold level, e<i2>. In this case _,,,e.a.wea = 0.185 [3_._, i.e., there is

a -81% bias in addition to the two error sources. The bias is independent of 13for SPM if the shape

of n (o) does not change, (i.e., ol,o2,_1,82, and g are constant). Note that there is no bias for VM

measurements of [3. The value of e is a free parameter. Raising e will worsen the bias, cause less

spikes to be seen in an observation time, but will reduce the number of noise spikes. Lowering e

will do the opposite. Moving to a tighter (closer) focus will lower (improve) the bias, but will

increase alignment difficulty, and might cause the laser beam to change the properties of the aerosol

particles. The effect this would have on <N_,/_ > is not clear.

Figure 10 shows the results for SPM. Both SPM noise error, and SPM random error assuming

no bias due to the threshold level are plotted vs _. (The effects of bias due to threshold level on

SPM random error could be calculated. A finite bias will increase SPM random error because the

average number of spikes above the threshold decreases.) The average number of SPM signal events

or spikes, <N_/_ > =N, that are greater than three times the average noise level (3<i_>) in the

measurement volume (VATcos0 = 100m ) is shown in the figure. As long as the n (o) model is held

constant, as in this case, N is proportional to J3. Both sources of SPM error in [3 are proportional to

_-1t2. The curve N -1_, which is proportional to _-1r2, is plotted for reference. In this example the

random error is greater than the noise error and exceeds 10% when ]3 < 3x10 -12. As _ approaches

10-12, the SPM number of spikes per observation time, N, approaches 1. It is very difficult to esti-

mate j3with a small number of signal spikes because of the large number of noise spikes. The noise

spike correction of section 4.6 should be employed. Future analysis should include the effects of the

noise spikes above the threshold. Increasing laser power will always improve SPM performance

until the laser power begins to change the particles properties. The SPM analysis is only valid if

indeed there are only single particle events.

Comparing SPM to VM is a difficult undertaking fraught with many subtleties. Figure 11 is

similar to Figure 10, but the N and N -1/2 curves are removed, and a VM noise error and two VM

random error curves are added. The theory for VM error diverges whether one assumes operation in
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a single-particle regime or in a many-particle regime (Gaussian statistics). The VM error curves in

Figure I l assume the many-particle VM regime except for the curve for VM random error in the

SPM regime. Here, the many signal spikes below the SPM threshold level are included in the VM

estimate. This reduces the random fluctuations of the VM estimate compared to the SPM estimate

which improves the VM accuracy. The random error for VM in the SPM regime may be better than

the VM speckle regime. This can only be determined by calculating the boundary between the VM

and SPM regimes. The VM random error in the speckle regime is independent of _ and equals

[Td/T] ]/2. We assumed Td = signal decorrelation time = I}.LS, and T = observation time = I s,

yielding an error of 10-3 (0.1%). The VM noise error is proportional to _-l and to B I/2 [see Eq.

(28)]. We assumed BvM = BspM = 1.5 MHz for these calculations. In actual practice, one would try

to reduce BvM as much as possible. The curve may be scaled for other values of BVM, e.g., if

BVM = 150 k/-/z, the VM noise error is lower by 10 ]/2.

For this particular example, SPM appears to be the best choice only for a narrow region near

= 10"-11. For _ > 3x10 -II, the VM errors are lower, and for _ < 3x10 -12, the number of SPM

spikes per observation time is less than 3. This eliminates SPM because the noise spikes would con-

taminate the estimate. The SPM error is dominated by the random en'or component while the VM

error is dominated by the additive noise component.

It must be remembered that the SPM measurement is biased low, while the VM measurement

is unbiased; that the SPM and VM analyses are only valid in SPM and VM regimes, respectively;

that the operational value of BvA4 may be much lower than BsPM; and that systematic errors have

not been addressed.

The two methods of operation (VM and SPM) should be compared with separate optimization

of parameters, and not necessarily equal focal settings or detection banciwidths, if the main goal is

accurate measurement of 13 • However, if information about n (o) is also desired, then a tightly

focused geometry is required, and the VM-SPM comparison should be done with the same system

parameters. Without this theory it is not clear whether focused VM operation, which violates the

Gaussian statistics assumption (many particles), is better or worse than collimated VM operation.
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7. TRADE-OFFS

7.1 VM Trade-offs

The shot noise and random error (speckle statistics) contributions to total error for ideal VM

operation are very small. The main sources of error are systematic. A focused beam has a factor of 2

more system gain than a collimated _ However, a focused beam senses a much smaller

volume, may not have "speckle statistics," is more difficult to align, and may change or destroy the

aerosol particles. Since systematic errors are likely dominant, a factor of 2 loss in gain with a col-

limated beam could be worth the decrease in systematic errors. Improving beam quality at the

expense of transmitted power may improve overall performance.

7.2 SPM Trade-offs

SPM operation is more complex and difficult to analyze. For useful operation, the system

parameters must be chosen to provide single particle events over the specified range of _. This

requires a focused system where beam alignment may be difficult. Them are many trade-offs

between beam geometry and system gain. The transmitted beam can be focused and the local oscil-

lator beam collimated. This provides a larger range of SPM operation at the expense of system gain.

A tightly focused system also requires higher bandwidth to observe the narrow brief pulses. This

sacrifices SNR. Improving beam quality at the expense of u'ansmitted power may improve overall

performance.
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8. FUTURE WORK

8.1VM

1) Investigate temporal dccorrelation time (we assumed 1 _).

2) Investigate systematic errors:

a) Beam geometry (collimated vs focused)

b) Specifications on sensing volume and range

c) Signa/processing (rms detector, peak detector, power detector, lincarity, background subtrac-

tion, drift)

3) A_(random) with single particle behavior. Are there parameter regimes where VM estimates in

the SPM regime have better accuracy compared to speckle statistics (many scattering particles)

i.e., collimated vs focused?

4) Improved signal processing. What is the IF signal bandwidth (instantaneous and IF drift)?

5) Is there an automatic gain control and what are the specifications?

8.2 SPM

1) Need reliable n (o) models.

2) Calculate A_(noise) and

beam offset).

3) Calculate average number of spikes <No, _ > for general system.

4) Calculate disu'ibution of spike amplitude and width.

5) Determine SPM operating regions.

A_(random) for general parameters (beam size, focus, alignment,
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Figure i. Geometry for a coherent detection laser radar system.
An actual system would have overlap of the XMTR and

BPLO beams at the target.
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Figure 10.

1

1
N

Figure I0. Error in _ vs __ for the MSFC lidar in SPM.

the average number of spikes observed.
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9.0 DEVELOPMENTOF A Ho:¥AG SOLID-STATE PULSED LIDAR

Spatially resolved, accurate measurements of atmospheric

wind velocity are needed for many civilian, military, and

commercial applications where the state-of-the atmosphere is

important. Examples include weather forecasting [National

Academy of Sciences (1980)], and the premonitory detection of low

altitude wind shear by aircraft JR. Target al. (1990)]. This

section documents the results of work performed during this

effort toward the development of a pulsed, coherent, Tm,Ho:YAG,

2 _m laser radar system capable of making range-resolved

measurement of atmospheric wind and aerosol backscatter profiles.

Until recently, the mature C02 laser has been the almost

exclusive type of transmitter employed in coherent laser radar

(CLR) systems. The C02 laser and CLR technology has developed to

the point where several CLR systems have been built for wind

velocity and/or aerosol backscatter measurements. [see e.g.,

Hardesty, et al. (1988) and Menzies et al. (1984)]. The

C02-based LAWS instrument is currently being designed for

space-based measurement of global wind fields [Beranek et al.

(1989)]. Several issues relating to frequency stability,

lifetime, pulse frequency chirp, and efficiency remain to be

solved or demonstrated before C02 CLR transmitters can be space

qualified [Hardesty et al. (1988)].

Solid-state laser technology is a rapidly advancing

competing technology. With the advent of high efficiency, high

power, semiconductor laser diodes as pump sources for solid-state

lasers, all-solid-state CLR transmitters can be envisioned which

have the advantages of low mass, small size, long shelf and

operating lifetime, and the absence of consumables. In

applications where atmospheric turbulence isn't too severe, the

shorter wavelengths of solid-state lasers (0.7 - 3.0 #m) offer

superior overall performance compared to the longer wavelength s

of C02 lasers (9-11 _m). In addition, the continuous-tuning

ranges of solid-state lasers are typically large enough to allow

very low atmospheric extinction and/or multiwavelength

differential absorption lidar (DIAL) measurements.
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A 1.06-_m CLR system using Nd:YAG lasers was recently

developed by Coherent Technologies, Inc. [Kavaya et al. (1989)].

Velocity and range measurements from hard targets and atmospheric

aerosol particles have been routinely demonstrated using this

system at a remote site near Boulder, CO [Henderson et al.

(1990A)]. One of the chief deficiencies in the 1.06-_m Nd:YAG

technology is the lack of eye safety.

The advances made in eyesafe 2 _m solid-state lasers during

the mid-1980s led CTI to begin, under funding from the U.S. Air

Force-Space Division, the development of the first eyesafe

solid-state CLR system in 1987. Details of the 2-_m CLR

development are included in the Air Force final report [Henderson

et al. (1990B)]. An overview of the 2-_m CLR is given in Section

9.1.

A breadboard master oscillator (MO) was developed under the

Air Force funding and was utilized to demonstrate, for the first

time, single-longitudinal-mode operation of a Tm,Ho:YAG laser

[see Appendix E]. This breadboard was also used to "zero in" on

a MO design which was functional. The NASA/MSFC funds provided

during this effort were used to design, construct and test a

"hardened" version of this MO which exhibits much better long and

short-term frequency stability. This hardened MO is described in

detail in Section 9.2.

With the aid of funding from the Wright Research and

Development Center (Wright-Patterson AFB), the coherent 2-Bm CLR

system was recently relocated to the Table Mountain field test

site located _ 10 miles north of Boulder, CO. In Section 9.3, we

describe preliminary field measurement results using the CLR.

9.1 Overview of the 2-_m CLR System

This section contains an overview of the Tm,Ho:YAG coherent

laser radar system. More detail about the master oscillator

developed during this effort is provided in Section 9.2. The

2-_m CLR system was primarily designed for measurements of

atmospheric water vapor.

A diagram illustrating the CTI Tm,Ho:YAG CLR system is shown
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in Figure 12. The MO is a continuous-wave (CW) diode laser

pumped single-longitudinal-mode (SLM) Tm,Ho:YAG laser. This

oscillator, which we designed and built, utilizes a linear cavity

with an intracavity Brewster plate for polarization control, and

two solid fused silica etalons for frequency control. With the

MO laser crystal thermo-electrically cooled to N 230 K, the SLM

output power is N 50 mW near 2090 and 2097 nm. The wavelength

can be tuned continuously between 2086 and 2100 rim. By changing

the reflectivity of the output coupler, tuning near 2121 nm has

also been achieved. The linewidth and short-term frequency

jitter (seconds) of the MO is < 1 MHz, and the long-term

frequency drift (N 1 day) is N 300 MHz peak-to-peak.

The output of the MO is first passed through a Faraday

isolator which isolates the MO from the rest of the system.

Additional isolation from the slave oscillator is provided by a

98% reflector. A portion of the reflected power serves as the

local oscillator (LO) beam. The MO power that is transmitted by

the 98% reflector is frequency shifted by 27 MHz using an

acousto-optic frequency shifter (AOM in Figure 12). The

frequency-shifted beam is then mode-matched and injected into the

Q-switched slave oscillator. The flashlamp-pumped Cr,Tm,Ho:YAG

laser crystal in the slave oscillator is water cooled and

operates at approximately room temperature. The injection-seeded

slave oscillator is capable of producing 50 mJ, _ 150 ns, SLM,

TEM00 pulses at 3 Hz. The required frequency match between the

slave oscillator and the MO is maintained by an automatic servo

system which controls the slave cavity length using an end mirror

mounted on a piezo-electric translator (PZT). More detail about

the performance of the injection-seeded transmitter is provided

in Appendix F.

The SLM output of the slave oscillator is incident upon an

eccentric-pupil Dall-Kirkham telescope which expands the beam to

N 20 cm and transmits the pulse into the atmosphere.

Backscattered radiation from the atmosphere is collected by the

telescope and mixed with the LO beam using a beam splitter whose

reflectivity is N 15%. The coherently-mixed signal and LO beams
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are then focused onto a 100 _m-diameter room-temperature

extended-wavelength InGaAs detector. The quantum efficiency of

this detector at 2.1 _m was measured to be 0.69 electrons/photon.

The heterodyne signal from the detector, which is in the

bandwidth between N 5 and 50 MHz (target velocities from N 23 m/s

to _ -24 m/s), is amplified, filtered, then digitized every 10 ns

using one channel of a LeCroy 9400 dual-channel digital storage

oscilloscope (DSO). The digital data is then transferred to a

DEC MicroVax II digital computer using a general purpose

interface bus (GPIB). The raw data is then processed using very

flexible processing software, to extract Doppler velocity (first

moment), velocity width (second moment), and backscatter (zero

moment) information.

The CLR is constructed on a 4' x 8" Newport optical table.

The laser transmitter consisting of the MO, Faraday isolator,

AOM, and slave oscillator, is mounted on a separate 1' x 5'

breadboard. Figure 13 consists of two photographs showing

different views of the complete laser transmitter. The scale in

the photos is given by the I" hole pattern of the 1' x 5'

breadboard.

9.2 Frequency Stabilized Master Oscillator

As described in Section 9.0, a breadboard oscillator was

used to demonstrate that SLM oscillation could be achieved. This

hardware allowed us to try many different resonator

configurations to arrive at an operating condition which

performed best. The performance we were able to achieve with

this breadboard hardware is described in Appendix E and in the

final report to the Air Force [Henderson et al. (1990B)]. A

photograph of the breadboard hardware is shown on the top half of

Figure 14.

The performance data collected with the breadboard-level

oscillator was used to design and construct a highly stabilized

SLM laser (Figure 14 bottom). In addition to mechanical and

thermal improvements, a significant change in the basic cavity

design (as compared to the design presented in Appendix E) was
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incorporated as a result of earlier tests. The resonator

configuration chosen for the stabilized laser is shown in Figure

15. The intracavity lens LI allows for a "collimated" leg inside

the cavity between the lens and the output coupler M2, where the

Brewster plate polarizer P and tilted etalons El and E2 could be

installed. This effectively reduces the walkoff loss experienced

in those elements, which reduces overall circulating intracavity

losses and permits higher tilt angles of the etalons before

excessive loss is incurred. This in turn assures a very clean

TEM_0 spatial profile in the output beam, as all intracavity

optics (and their inevitable surface reflections) are capable of

being tilted well off of the beam axis. This technique also

reduces output beam astigmatism due to the tilted Brewster

polarizer to a negligible level. Very high spatial beam quality

in the LO source is essential for maximum heterodyne efficiency,

and could not be compromised in the laser design. Details of the

resonator optics follow.

The flat resonator mirror MI is a high reflector at

wavelengths near 2100 nm and transmits _ 88% of the diode laser

pump light near 785 nm. Resonator mirror M2 is also flat and

serves as the output coupler, transmitting TM 2.5% of the laser

light near 2100 nm. The cavity mirrors MI and M2 are separated

by _ 117 mm. The intracavity lens LI has a focal length of _ 75

mm, is located TM 75 mm from M1, and is AR-coated at 2100 rim. The

uncoated solid-fused silica etalon E2 is 0.09 mm thick. El is a

0.5 mm thick solid-fused silica etalon with the surfaces coated

for 18% power reflectivity near 2100 nm. The Tm:Ho:YAG laser rod

is 4 mm in diameter and 4 mm long. The end faces of the crystal

are polished flat and AR-coated for wavelength near 2100 nm. The

AR-coating reflects < 0.5% of the 785 nm pump light. The laser

rod is cooled to _ -400 C using a 3-stage thermo-electric cooler.

A great deal of effort was expended on the opto-mechanical,

thermal, and acoustical engineering issues associated with

producing a very frequency-stable oscillator. To assure absolute

frequency jitter of less than 1 MHz out of 1.4 x 1014 Hz (i.e.,

2.1 pm wavelength), requires dimensional stability of the
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resonator mirror spacing on the order of N 8 _ (for the cavity

length of _ 117 mm). In addition, it is desirable to limit

long-term frequency drift due to thermal and/or pressure changes

in the environment to a very low level. Negligible frequency

drift must be achieved in the MO/LO both to assure that the

effects of atmospheric absorption remain constant during laser

radar operation, and to simplify the frequency-locking

requirements in the injection-seeding subsystem.

For these reasons, we designed and built a box-like

resonator structure made from super-invar, an ultra-low thermal

expansion steel alloy, shown in Figure 14 (bottom). Both

resonator mirrors are located against solid shoulders milled into

either end of the common structure, assuring immunity against

mechanical vibration and, to first order, thermal changes in the

environment. The entire super-invar body is temperature

stabilized using a small closed-loop constant-temperature water

circulator. This arrangement also permits cooling and thermal

stabilization of the thermoelectric (TE) heat pump module used to

cool the laser rod. This TE cooler module is powered by a very

low noise (a few mV p-p) DC power supply, further assuring that

thermally-induced refractive index fluctuations in the laser rod

are held to a minimum.

To provide isolation from acoustic vibrations and pressure

changes in the environment, the entire resonator body structure

is hermetically-sealed and filled with dry nitrogen. The

nitrogen backfill also prevents frost buildup on the YAG rod,

which is typically operated at -400 C. The stabiiized laser's

output power and frequency tuning, as observed with the

quarter-meter monochromator and complementary spectrum analyzers,

produced data very similar to that described in Appendix E for

the breadboard-level oscillator.

As expected, the engineering refinements described above

have resulted in very low short-term jitter and drift in the

laser output frequency. By optimizing the finesse of a scanning

confocal spectrum analyzer (free spectral range of 300 MHz), it

was possible to resolve and characterize sub-megahertz frequency
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fluctuations in the stabilized laser output. Figure 16 shows

typical frequency jitter and drift magnitudes for one-second and

five-second operating periods. The horizontal dimension of the

oscilloscope traces represents 1.13 MHz per major division (200

_s); frequency jitter is observed as a horizontal movement of the

interferometer transmission profile over the scope camera

exposure time. The width of the transmission profile is due to

the resolution of the 300 MHz interferometer. Typical jitter and

drift values observed were less than 0.5 MHz peak-to-peak for up

to 5 second periods, and correspondingly much less for the

short-term (10's of _sec) round trip times of interest for

atmospheric coherent laser radar. Long-term frequency drift has

been found to be _ 300 MHz/day peak-to-peak in this laser,

resulting in ' extremely stable, mode-hop-free SLM operation. It

should also be noted that jitter and drift recorded in these

photographs are contributed to further by the scanning

interferometer diagnostic itself. Finally, the photographs were

taken with the laser and interferometer mounted on a standard

optical table which was not vibration isolated. The optical

table was located inside a relatively noisy laboratory on the

third floor of an office building.

9.3 Preliminary Field Measurement Results

The system was very recently moved and integrated at our

remote field test site _ 10 miles north of Boulder, CO (Building

T-1 at Table Mountain - a DOC facility). Only a small amount of

CLR data has been taken at this time. We include here examples

showing some of the preliminary results which exhibit the

fundamental operation of the CLR system.

For all of the examples shown below, the transmitted pulse

energy of the CLR was _ 20 mJ. The CLR was running at a PRF of

3.2 Hz. A LeCroy 9400 DSO was used to capture the temporal data

shown in the following figures. Figure 17 shows the temporal

profile of the 20 mJ pulses. Note that the full-width at

half-maximum (FWHM) duration of the SLM pulses is _ 220 ns.

Figure 18 shows the heterodyne signal due to the single-shot CLR
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return from a mountainside located _ 14.9 km down range. The

telescope was focused at infinity for this data taken on October

4, 1990. Figure 19 shows an example of a return from clouds

located _ 13.8 km from the CLR taken on October 4, 1990. When

this single-shot data was taken, the telescope was focused at

2 km.

Figure 20 plots the power spectrum of the return from a

cloud located approximately i0 km from the CLR. A 256-pt.

fast-Fourier-transform (FFT) centered at 9.89 km was used to

compute the power spectrum. Note that the radial velocity of the

cloud is N 7 m/s toward the laser radar. Figure 21 gives an

example of a wind measurement made on October 7, 1990. The

telescope was focused at 2 km and the beam was aimed to the north

at N +80 from horizontal. Figure 21 is the plot of the power

spectrum of aerosol return in a thin slab of atmosphere centered

at 3.75 km. A 256-pt. FFT was used to generate the spectrum.

Note that the radial wind velocity is _ 8 m/s toward the CLR.

To date, atmospheric wind velocity has successfully been

measured to horizontal ranges exceeding 20 km on hazy days and 5

km on very clear days. When the lidar beam is pointed

vertically, the highest altitudes above ground level for which

aerosol return has been observed to date is _ 4 km. Figure 22

shows the A-scope display of aerosol return signal for 111 shots

averaged. For this data taken on 24 Oct. 1990, the lidar was

aimed approximately horizontal and focused at ®. The receiver

bandwidth was _ 41 MHz. The A-scope display is the result of

squaring the IF aerosol signal from each shot and averaging 111

consecutive shots. The lower trace of Figure 22 defines the

background noise and is the result of averaging 111 shots with

the telescope output blocked. When narrowband FFT processing is

utilized, the signal-to-noise levels shown in Figure 22 are

sufficient for wind measurements beyond 20 km (> 130 _s).
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Figure 13. Injection-seeded Cr,Tm,Ho:YAG transmitter, comprised
of master oscillator, slave oscillator, and 27 MHz

AO modulator.

ORIGINAL PAGE

BLACK AND WHIT£ PHOTOGRAPH

50



Figure 14. CW Master Oscillator. Top: Breadboard-level

hardware configuration. Bottom: Final stabilized

oscillator with top removed from resonator structure.
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1 second

5 seconds

Figure 16. Typical frequency jitter and drift measured during

1 second and 5 second observation times using a

300 MHz free spectral range interferometer. The

combined jitter and drift is <0.45 MHz peak to peak.
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I0. SUMMARY AND CONCLUSIONS

VM is much simpler and more promising than SPM. The SPM

analysis is much harder than the VM analysis. The non-systematic

errors for VM (shot noise and speckle contributions) are less

than 1% for _ > 10"11m-lsr "I with a 10 s measurement time.

Therefore, VM systematic errors will dominate. Priority should

be given to perfecting VM operation, e.g., ensuring small

systematic errors by optimal choice of system parameters

(sensitivity analysis), improving alignment methods, improving

signal processing methods, improving field calibration

techniques, and improving beam quality. A crucial element of VM

and SPM operation is accurate conversion of IF signal to IF

power. Alternativces to a SAW processor should be investigated

and may prove to be cheaper, more accurate (linear), and more

reliable (less drift, etc.).

A Tm,Ho:YAG 2-_m laser radar system has been constructed and

preliminary measurements demonstrating the first laser radar

returns using an eyesafe solid-state CLR have been made.
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APPENDIX A. Volume Mode Estimation of 13

The average coherent lidar power </s2>[A 2] is given by

<i2> = 2 M$(_I,'_2,0)W(I_I)W" (-_2)ELO* (_I,0)ELo (-_2,0)dVldV 2 (Ai)
L ',v J ....

11= detector AC quantum efficiency [electrons/photon]

Gn = amplifier gain [dimensionless]

h = 6.626x10 -34 [Js ] = Plancks constant

c = frequency of the optical field Is -1]
v=_

ELo iV,0) - IX) field back-propagated to receiver plane [Wm-2] 1/2

W (V) = transfer function of receiver lens [dimensionless]

Ms ('¢1,_'2,0) - <E s _¢l,O)Es* ('¢2,0)> - mutual coherence function of received field at the receiver

[Win -2]

For randomly dismbuted aerosol particles, the mutual coherence function of the total backscattered

field is the sum of the mutual coherence functions from each aerosol particle. The mutual coherence

of the backscattered field from an aerosol at fif, R ) with cross section o [m 2sr-1] is

Ms (V1,¢2,0) = X2o</r (ILR)G (¢l,]f,R)G* C¢2,]$,R)> (A2)

where G flt,]$,R ) is the Green's function [m-4]; i.e., the field at C¢,0) due to a unit point source at

(-I$,R). The mutual coherence function of the total field is the sum of the mutual coherence functions

of all the scattering aerosol particles, i.e.,

Us  Y2,O) = J"l [.X2on(o )<Ir(  )aO  .l  )a'cc2,1 ,R)>doai aR (A3)
0 -*.0

where n (o,R)[m-Ssr] is the number of aerosol particles per unit volume per unit (_ at range R. If

n (o,R) is independent of range R, then
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(A4)

where

is the aerosol backscatter coefficient [m-tsr-1]. The average coherent lidar power is then

W _ m

W C¢11W* (_2)ELo * (_I,0)ELo (_2,0)d¢ld'¢2d]_lR

(A5)

(A6)

It may be written

where Gv is the system gain [A 2mW-Zsr], i.e.,

and

av = av (R)dR

2[1]GDel2 _.2

W (V'I)W*(Y2)ELo * (_I,0)ELO (V2,0)dVldV2d]l'

is the coherent lldar System gain density [A 2srW-l].
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APPENDIX B. Single Particle Mode Estimation of [3

The mutual coherence function of the backscattered field from a single particle of cross section

a [m2sr-1], which is far enough away that the received field approximates the field from a point

source under the parabolic approximation, is given by

where

-- _x ,Py ] -'- tx_.n_ier_a*, u_jectory of the particle [m] at range R,

= -_0-c_-_ d_t_d_t2,Ir _,R) (2_)2.. er fu'_,0)_T*_2,0)exp _-

(B1)

(B2)

ff = [ux,u s ] is the trafi_'¢_-'r_ecoordinate [m].]at the transmitter plane perpendicular to the R _is,

ET 01,0) = transmitted field [Wm-2] 1/2at R = 0,

IT(11,0) = gr ffI,O)ET* (if, O) ffitransmitted ixradiance [Win -2 ] .....

The maximum lidar signal Sj [A 2] for the jth particle event will occur for some coordinate

fp_ _,R) of the trajectory, where Px is the displacement from the laser beam axis. This maximum

signal is given by

w_Dw* _)Ew" _,O)Ew _2,o)a_'la_V'2 033)

where l_m = (Pz :yM) is the transverse coordinate of the maximum signal for the jth particle (see Fig-

ure2)andJr_,R ) =lr(_ )/er [m-2]is thenormalizedinadiance.

The proper statistic for estimating _ is the sum S [A 2 ] of the maximum (or peak) signals:

N

j=l
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For large N (many particle events), this statistic will be very close to its ensemble average <S>.

(Since is assumed constant over the observation volume, the statistical process is ergodic and sta-

tionary.) The observation volume is determined by the observation time T[s]. During this time the

lidar system will have traversed a distance VA T through the atmosphere. We obtain <S > by per-

forming an ensemble average over all the aerosol particles contained in the observation volume:

<S>=f I fSJ(Px'P_ "R)n(O)dOdydpxdz=2PT f f f hv
0-" 0 0 0-" 0 0-" R 2

[ik exp _- -¢l) 2- _.,- V92]]WCC )W"tVgMw"fe ,c ,o)av a-c2ctoay4o:az (s5)

The integrand in Eq. (B5) is independent ofy so the y integral may be evaluated, producing VA T. If

the laser's 6-ptic axis is at angle 0to the Z axis, then z = R cos0. e_

the particles' trajectories will be 90 o = 0 :_Th_ integrationov_FzJ':=_is more conveniently performed by

_gv_0 and integrating over R. The o integration be performed
may

__- if we assume n (o) is constant over the dominant region of integration. Then

<S > = [IPr Gs VATcose, (B6)

where Gs [A 2W-lsr ] is the total system gain given by

0 . ,l,I

(B7)

(The definition of 13in Eq. (B6) is the same for direct detection and heterodyne detection volume

mode measurements.) Gs (Px,R) is the system's transverse area gain density [A 2W-lm-2sr ] for a

scattering particle at ('ll_) given by

w  pw"  gEw" f%O)Ew e%o -c ,f¢2 (B8)
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APPENDIX C. Monte Carlo Calibration of SPM- !

umed tha-_e calibration of the lidar system utilized apparatus that shot individual

tegCparticles through the beam with known test parameters o c,Pc,pxc , and Rc. Both Px and R

were assumed adjustable over a sufficient volume. This appendix treats the case when the particle's

value of Pxc is not known, but the probability density function (PDF) f _xc) of the value Pzc is uni-

form. Specifically,

/(p=)=

1

L" if -L/2 < p_ < L/2

0 otherwise

(Cl)

We define the Monte Carlo statistic Z to be

L /¢c

Z(p:)= Vcoct¢ c _,Sc@:,Rc) (Ca)j=1

where Sc (Pxc,Rc) is the maximum lidar signal power for the jth calibration particle event, Pxc is the

random displacement from the laser beam axis, and N¢ is the (large) number of observed events.

The average of the statistic Z is

<zo,=)>:. O,=)zo,,_= = Vc(_Nc E Sc(v=,Rc)aV= (c3)

If we assume L is much larger than the beam width at R c , the integration may be considered from

- o. to .o, and, referring to Eqs. (64) and (65),

<z>=Cs(Rc). (C4)

Equation (C4) is used to obtain the system gain Us in Eq. (36) to calibrate [3.Any deviation from the

uniform PDF behavior of Pxc will produce an error in [5.
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ABSTRACT

The SNR equation of a CW, monostatic, coherent laser radar

system is examined for the case of a distributed aerosol target.

Calculations and plots are presented showing the location in

range and the volume of the laser radar measurement.
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I. Introduction

Monostatic, coherent detection laser radar (LADAR or LIDAR,

light detection and ranging) systems with continuous-wave (CW)

laser sources, with the atmosphere serving as a distributed

target, have proven to be important+rem0te sensing tools for many

applications such as measurements of radial or line-of-sight

(LOS) wind velocity, *'6 true airspeed of aircraft, 7"8 transverse

wind velocity, 0 aircraft trailing vortices, *0 and atmospheric
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aerosol backscatter coefficients. **-14 Comparisons of CW laser

radar wind measurements with other wind velocity monitors have

been performed, 3,8,7,9,15,1e as have investigations of intensity

calibration issues. I*,.2,17,18

A separate but very important consideration when discussing

CW coherent laser radar (CLR) measurements based on backscatter

from atmospheric aerosol particles is the question: "Exactly

where along the optic (range) axis is the measurement being

made?" This question comprises the issues of i) whether the

range resolution of the measurement is too small or too big, 2)

whether a high backscatter region far from the laser radar (e.g.,

cloud or ground) corrupts the desired backscatter or wind

velocity measurement, i6 3) whether a region of large wind shear

far from the laser radar corrupts a wind velocity measurement by

broadening the signal spectrum, and 4) over what ranges must a

hard calibration target be used to achieve a desired

characterization of the laser radar. The laser beam diameter vs

range is important to ascertain eye safety and whether the beam

irradiance may alter the properties of the aerosol particles.

Also, the laser radar measurement volume is important since too

small a volume may violate the statistical assumptions (many

particles) of the laser radar theory, or may cause a measurement

bias by missing scarce yet important large aerosol particles that

contribute to the backscatter coefficient. The measurement

volume is also important in explaining differences between CW

laser radar measurements, and measurements made with other

instruments. To our knowledge, published discussions of these

effects have been limited to the range interval yielding, e.g.,

50% of the signal under tight focusing conditions. *,3,7,*°-I_,.8

In this paper we solve the laser radar SNR equation for any

percentile range of the received signal, and therefore for any

definition of range resolution; and we also solve for the

measurement volume of a CW coherent laser radar system under any

focusing conditions.
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2. SNR Equation

We start with the general untruncated Gaussian beam

monostatic, pulsed, shot-noise-limited CLR signal-to-noise ratio

(SNR) equation and assume: i) CW transmit laser power Pcw [W],

2) negligible atmospheric extinction, 3) negligible atmospheric

refractive turbulence effects, 4) constant aerosol backscatter

coefficient _ [m-lsr -1] vs range R [m], 5) matched diameter and

phase curvature F [m] of the untruncated Gaussian transmitted and

back propagated local oscillator (BPLO) optical fields, 6)

negligible beam truncation by the transmit/receive lens or

telescope, and 7) a photovoltaic detector. Under these

conditions the dimensionless SNR equation becomes 19

SNR =  'PcJ dR
hvB 0 4R 2 R 2

+ (i -
DO

_2D2
O

412

= "PcJ ; (i)
- R 2 R_h//B o R 2 + (1 _)

where _ [electrons/photon] is the detector quantum efficiency at

the signal frequency, h = 6.626 10 -34 [Js] is Planck's constant,

v [Hz] is the optical frequency, B [Hz] is the receiver

bandwidth, I = c/v [m] is the wavelength of the optical field, c

[m/s] is the speed of light, and DO [m] is the e-2 (14%)

intensity diameter of the transmitted and BPLO Gaussian fields.

The Rayleigh range [m],

(2)

is defined for Gaussian beams as the distance from the beam waist

(minimum diameter = Do) to the point where the beam area has

doubled. 20 Alternatively, for light diffracted by an aperture of

diameter Do, ranges much larger than RR will satisfy the
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Fraunhofer or far-field assumption, and the field at range R will

be the Fourier transform of the field in the aperture, 2. changing

only in size but not in shape with increasing R.

The two terms in the denominator of Eq. (i) reduce the

coherent detection SNR. The first term represents the effect of

the finite receiver solid angle, and the second term represents

both the speckle effects from the size of the illuminated diffuse

aerosol target, and the phase-front mismatch (PFM) at the

receiver when R # F. The integrand I in Eq. (I) is the

"weighting function" of the received signal along the range axis

under the assumed conditions. For small R (R << F and R << RR) ,

the integrand becomes independent of R and equal to RR-*. As R

decreases, the gain in SNR, due to increasing receiver solid

angle, exactly cancels the SNR loss due to speckle/PFM. For

large R (R >> F or R >> RR) the integrand decreases as R-2 due to

the decreasing receiver solid angle.

For R - F, the integrand equals

I(R = F) = RR _ D2-- == O

F2 41F 2 '
(3)

which is the proportional to the effective solid angle of the

receiver.

The range to the peak Rp [m] of the SNR weighting function

is found by setting the derivative of the integrand in Eq. (I)

with respect to range R to zero, yielding:

where

F4 F
" 4 2 (4)Rp + F 2 = I + FN

FN A=FiRe (S)
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is the focal range normalized by

(dimensionless). For small FN (F << RR),

the Rayleigh range

Rp _ F, (6)

and the peak SNR occurs at the

focusing). For large FN (F >> RR),

focal range (i.e., tight

F

Rp _ =F 2 '
FN

(7)

and the peak SNR range is proportional to F-1 , i.e., the peak

originates close to the laser radar. One result of this is that

for laser radars focused far away (F >> RR), the very term

"focus" loses its meaning. The range to the peak SNR goes to

zero for both very small and very large F. Since Eq. (4) is also

the range to the Gaussian beam waist, s° we conclude that the peak

SNR always comes from the beam waist position.

For R = Rp, the peak SNR will be proportional to the

integrand in Eq. (1) which becomes

_+F 2

I(a - Rp) = F2 (8) ,aa

For small FN (F << RR), I(R = Rp) _ RRF'2 and the peak SNR gets

very large since receiver solid angle SNR losses and speckle/PFM

losses are simultaneously low. For large FN (F >> RR), I(R = Rp)

R_ I , a constant value identical to the small R value of I,

since Rp is small and we assumed R = Rp. The ratio of the SNR at

the focal range to the peak SNR is found by combining Eqs. (3)

and (8) :

.2
SNR (R=F) = "_ = 1 (9)

2
SNR(R=Rp) _ + F2 1 + FN
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For small FN (F << RR) , the ratio approaches unity, indicating

that the peak SNR occurs at the focal range. For large FN (F >>

RR), the ratio approaches zero as F-2 , indicating that a

negligible contribution to SNR comes from the focal range.

The value of F which maximizes Rp is found by setting the

derivative of Eq. (4) with respect to F to zero, yielding:

Pp-- (i0)

The value of Rp when F = Fp is found by substituting Eq. (i0)

into Eq. (4):

Rp(Fp) z _ (Ii)

When F = RR, the peak SNR (and the beam waist) is at its greatest

range and this range is RR/2. Focus settings smaller or larger

will cause the peak SNR to move closer to the laser radar. As F

is increased from 0 towards m, the peak SNR decreases and moves

to larger ranges until F = RR. Then the peak SNR continues to

decrease and moves back to smaller ranges. For small F, the

illuminated aerosol spot at R = F is very small, and the losses

due to finite receiver solid angle and speckle/PFM are both

small. On the other hand, the losses due to speckle/PFM increase

quickly away from the focus. Therefore the SNR is high and peaks

sharply at Rp _ F. For large F, the effects of speckle/PFM loss

compete with the effect of R 2 , producing a broad SNR curve with a

peak collocated with the beam waist at Rp < F. When the focal

range is set to the Rayleigh range, the integrand value at the

Rayleigh range is I(R - F = RR) = R_*. The integrand takes on

this same value for very small R, from which we draw the

remarkable conclusion that, e.g., the first cm of range

contributes the same SNR as a 1 cm slice of range at R _ RR,

which may be many km away. Put another way, the solid angle SNR

loss at R = RR exactly equals the speckie/PFM SNR loss at small

R.
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As shown by Sonnenschein and Horrigan, 22 the integral in Eq.

(i) may be solved analytically. Eq. (I) may be written as

FN

where

SN R/Rs (13)

is the range normalized by the Rayleigh range (dimensionless).

Letting a = I, b = -2/FN, c = 1 + I/F_, and _ = 4ac-b 2 = 4, we

may look up the integral 23

d__xx = 2A-I/2 tan-l[(b + 2cx)A-1/2]
a + bx + cx 2

(14)

for A > 0. Using Eq. (14), Eq. (12) becomes

SNR(®) = 2--_ 1 + --_- tan -I (15)

where the argument _ for SNR indicates that all ranges from 0 to

m are included.

Note that only the second term in the brackets contains any

dependence on D O or F, the beam diameter and focal range. For a

sufficiently tight focus, FN << I, the expression in the brackets

equals 2. For FN >> i, i.e., a collimated beam, the expression

in the brackets equals I. Therefore, the beam diameter and focal

range may affect the SNR only within a factor of 2 (3 dB). A

tightly focused CW laser radar will have twice the SNR of a

collimated CW laser radar in a uniform atmosphere. (Recall that

we are neglecting atmospheric extinction and refractive

turbulence effects.)
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3. Comparison to Past Work

Eq. (15) may be directly compared to Eq. (24) of
Sonnenschein and Horrigan _2 . The RHS of theiK Eq. (24) must be

multiplied by 2 due to an unreported error. Also their variable

"R" is the e-2 intensity radius and corresponds to our D/2.

Finally, our Eq. (I) is for a photovoltaic detector as is their

Eq. (24) when multiplied by 2. With these caveats, our Eq. (15)

equals their Eq. (24).

4. Wavelength Dependence of SNR
Since y = c/l, Eq. (15) contains an explicit 12 dependence.

The detection bandwidth B will also be proportional to I-* if

allowance is made for a fixed atmospheric velocity width AV

[m/s], or for a maximum unknown radial velocity of the aerosol

particles, Vma x [m/s], either toward or away from the laser

radar. Ignoring any I dependence of _ or Pcw' and neglecting the

terms in the brackets, we see that SNR(®) _ _I 3 . The 1

dependence of _ varies greatly in nature but lies between 1° (Mie

limit) and 1-4 (Rayleigh limit). A commonly used approximation

that _ • 1-2 would result in SNR(®) _ I, favoring larger

wavelengths. Of course, larger values of I may lower SNR(m) by

as much as 3 dB through the bracketed terms in Eq. (15).

(Strictly, the above reasoning applies only to aerosol

backscatter measurements. Wind velocity error expressions

include both SNR and other terms that also depend on I.)

5. Cumulative SNR

The dimensionless cumulative SNR is defined as

& (RN)= SNR(=) (16)

where SNR(_) is given in Eq. (15). Using Eq. (12)
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"Pc_ ;0_SNR(_)- hvB

1

dz

2z + I1 + 1 -] z2FN 2
FN

(17)

Employing Eq. (14) to solve Eq. (17) produces

_PcwBl {tan-I [ 1 + [i _N ] ] [_-_N]SNR(RN) = huB FN + RN + tan -I } (18)

We now use the trigonometric identity ms

.°-.x+,ao-',-+,an-'["+ ]1 - (19)

where a = 0[rad] if xy < l, _ -- x if x > 0 and xy > i, and _ = -_

if x < 0 and xy > 1. We set

and

1
x = -- (20)

F N

Y(RN) = [i+ 1 ] 12 _ F N
FN

(21)

yielding

FN

(22)

In the limit of a tight focus, FN << i, xy(RN) N RNF_3which will

be greater than 1 except for very small values of RN. In the

collimated limit, FN >> I, xy(R N) N RNF_* which will be less than

1 except when R > F. Using Eqs. (18) and (19) we find

_Pcw B1

SNR(RN) = hvB
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x a(R N) + tan -I[ I ]
= hub U(RN) + tan-i (23)

I -

where _ is shown as a function of RN since a depends on the value

of xy(RN) . Combining Eqs. (15) , (16) , and (23) , we obtain

CUMS (R.) -
+ tan -I

(24)

CUMSNR(RN) should range from 0 to 1 as RN goes from 0 to ®. For
-2

very small R N, xy(R N) _ FN , , = 0, and CUMSNR(0) = 0. For very

large R N, a = f, and using

tan -l(-z) - - _ + tan -I( ) (25)

for z > 0, we find CUMSNR(®) = 1, as expected.

Figure 1 shows CUMSNR vs normalized range R N for normalized

focal ranges FN of 0.i, 0.5, 1, 5, and 10. The range at which

CUMSNR = 0.5, the 50th percentile range RN(50%), is always

smaller than FN, with the difference increasing with increasing

FN. (Inclusion of atmospheric extinction and refractive

turbulence in the theory would increase the difference between

RN(50% ) and FN.) The range resolution, e.g., the range interval

over which cumulative SNR increases from 5% to 95%, increases
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with increasing values of FN. Note that for some values of RN,

the cumulative SNR does not monotonically decrease with

increasing values of FN. The curves may be translated into

actual range R and focal range F values through knowledge of the

Rayleigh range RR of a particular laser radar system.

6. Percentile Ranges and Range Resolution

As stated in the introduction, we would like to know the

range to any percentile of the SNR. For a desired value of

CUMSNR(RN) , e.g., 5%, 25%, 50%, 75%, 95%, etc., Eq. (24) may be

inverted to solve for RN:

RN(CUMSNR ) =
FN tan7

FN +tanT
(26)

where the angle 7 [tad] is given by

7 = (CUMSNR)[_ - tan-iFN] (27)

Eqs. (26) and (27) are an analytic solution for RN(CUMSNR ) .

Figure 2 shows five normalized percentile ranges RN plotted

vs normalized focal range FN. The _(95%) curve (dashed line) is

shown divided by i0 to fit on the plot. Note the spread of

curves once the focal range F exceeds the Rayleigh range R R

(i.e., log, 0 FN > 0). _ becomes equal to FN for small FN. For

large FN, R N becomes independent of FN and equal to tan(_

CUMSNR/2).

The normalized range resolution of the CW focused CLR

measurement might be defined as the distance between two

particular normalized percentile ranges RN. For example, the

normalized 50% range resolution (dimensionless) would be

WN(50 ) RN(7S ) - RN(25 ) (28)

and the normalized 90% range resolution would be
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wN(9o ) - (29)

In general, we may use Eqs. (26) and (27) to calculate

:!1 + ta

WN(1-2_) = [ [FN + 1 + tan6]
FNJ FN J

(30)

where the angle 6 [rad] is

6 = _(_ - tan-iFN) (31)

and 0 < _ < 0.5 [dimensionless]. The normalized range resolution

for any percentile of the signal is solved analytically. For

WN(50%), we insert 6 _ 0.25, etc. For small values of FN, Eqs.

(30) and (31) become

and for large FN,

WN(1 - 2_)

2
2 FN

tan(z_) '
(32)

2

WN(I - 26) _ tan(f6) " (33)

Note that W(50%) = RR WN(50% ) [m] which equals 2F2R_ * and 2R R for

the tight focus and collimated cases, respectively.

As with RN, WN becomes independent of FN for large FN.
2

However, for small FN, WN is proportional to FN. Figure 3 plots

WN(50%), WN(60%), WN(70%), WN(80%), and WN(90% ) vs normalized

focal range FN. As predicted by Eq. (33) for large FN, Figure 3

shows WN(50% ) = 2 when FN = I00.

• Tight Focus Case

We now examine the special case of a tight focus, i.e., FN
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<< I. In most cases we can set _ = _. Under these assumptions

Eq. (24) becomes

(R.) =

_ + tan-I I"FNFNRNI_ RN

- FN
(34)

Inverting Eq. (34) we find

RN (CUMSNR) =
FN tan(fCUMSNR)

FN + tan(_CUMSNR)

(35)

We may also obtain Eq. (35) from Eqs. (26) and (27). Letting

CUMSNR - 0.5 we obtain RN(50%) = FN or R(50%) = RRRN(50%) - F, as

expected. Half of the SNR is due to ranges from 0 to the focal

range F. Similarly, we can calculate

F 2

R(25%) _ F(I - FN) - F.- _ (36)

F2

R(75%) _ F(I + FN) = F +
(37)

Using Eqs. (36) and (37), or Eq. (32), we also find

W(50%) = R(75%) - R(25%) - 2FF N "

2F 2 81F 2
mI (38)

This answer matches the results of others s,*6 who assumed tight

focusing and calculated the distance between ranges where the SNR

fell to half of its peak value. However, Eqs. (26) and (27) are

valid under any focusing conditions and for any definition of the

CW laser radar range resolution. It is interesting to note that

for the tight focusing case W(50%) can, through the use of Eq.

(43), be written as
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2
_Dmin- (39 )

w(50%) -- 2 41

which is just twice the Rayleigh range of the focused spot [see

Eq. (2)]. Also, the product of W(50%) and the receiver solid

angle is simply 21, independent of focal range. I_ This is

interesting since the SNR is approximately proportional to the

product of the interaction length, W(50%), the receiver solid

angle, and _.

8. Beam Diameter

Calculations of the behavior of the beam diameter are

necessary for the measurement volume calculations in Sections 9

and 10. The e-2 intensity diameter [m] of the beam at any range

is19

D(R) = DO 1 RF 2 + (40)

At the focal range, R = F or R N = FN, the beam diameter is

41F DoF

D(F) = ,D° DoFN (41)

The e "2 intensity diameter at the beam waist (peak SNR) position,

R - Rp, is

D(Rp) = Dmi n =

D O
(42)

For a tight focus (FN << 1)

Dmi n _ DoF N (43)

which is identical to D(F) since Rp _ F. The tight focus beam
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waist is simply the transmitted beam diameter multiplied by the

normalized focal range. For the large F (FN >> i) case

Dmi n z D o, (44)

which together with Eq.

the transmitter and

range.

(7) implies that the beam waist occurs at

that the beam gets larger with increasing

9. Measurement Volume

The e-_ intensity diameter of the Gaussian beam at any

range, D(R), is given by Eq. (40). The measurement volume V [m s ]

may be found by integrating elements of volume dV = _D2 (R)dR/4

from a lower range limit RL to an upper range limit, RU:

IRU D 2 (R) dR = o 2 2
v= RL 4 RL

(45)

We define V(50%) as the measurement volume calculated with RL =

R(25%) and RU = R(75%), and therefore as the measurement volume

from which 50% of the SNR arises. Plots of the 50% and 90%

measurement volumes will be given in the next section. Inserting

Eqs. (26) and (27) for RU and RL into Eq. (45) leads to an

analytic expression for V, which is quite complicated. We can,

however, make a rough estimate of V(50%) for the tight focusing

case. We have shown that the 50% range resolution in this case

is W(50%) = 2FF N [see Eq. (38)]. An approximate volume can be

calculated by taking the volume element as a cylinder of this

length and with a diameter D = DoF N. Since at the extremes of

the true volume element the beam diameter will be _2 larger, this

estimate will be less than a factor of 2 too small. The volume

of this cylinder can then be written as
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V(50%) Z 32 13F4 (46)

_2 4
Do

beam diameter.

values, and for

consideration in

at high altitudes.

From this expression we see that in the tightly focused case, the

50% contributing volume is proportional to the optical wavelength

cubed and to the fourth power of the focal range. It is

inversely proportional to the fourth power of the laser radar

This rapid decrease in V for smaller I and F

larger DO values may be a very important

cases where aerosol densities are low, such as

We find it interesting to note that, as far as we can

determine, there exists no "natural" volume to which the

calculated volumes can be normalized. The parameters R and F can

be normalized to the Rayleigh range RR, whereas volumes cannot.

I0. Example Plots

The equations and plots of normalized parameters provided so

far will allow investigators to characterize their specific laser

radar system over a wide span of parameter values. Familiarity

and intuition can be gained from examining unnormalized parameter

plots for a specific laser radar system. We will examine the

case of the NASA-Marshall Space Flight Center (MSFC) monostatic

CLR system I*'.3 that has recently made two Pacific ocean basin

survey flights on the NASA DC-8 aircraft for the purpose of

measuring the atmospheric aerosol backscatter coefficient _ as

part of NASA's Global Backscatter Experiment (GLOBE). The laser

radar's parameters were approximately I = 9.13 _m, D o = 6 cm, and

F = 50 m; resulting in a Rayleigh range of 309.7 m.

Figure 4 shows relative SNR vs range R for six settings of

the focal range F [see Eq. (i)]. Close examination shows that

the peak SNR occurs at the greatest range when F = RR = 309.7 m,

and is located at RR/2, as expected. The curves were normalized

to have a value of 1 at R = O. The normalization constant

involves only D O and I, but not F.
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Figure 5 plots CUMSNRvs range R for focal ranges F of 50,

I00, 200, 400, and I000 m. Eq. (24) is employed with R = RRR N

and F = RRF N. These curves correspond to five of the six curves

in Figure 4. Even when focused at 50 m, at least 1% of the

signal comes from ranges greater than 250 m. Therefore, a cloud

or other object located at R _ 250 m, with a backscatter

coefficient 10 or more times greater than the aerosol backscatter

coefficient, will cause errors of 10% or more.

Figure 6 shows percentile ranges R(x), for x = 5%, 25%, 50%,

75%, and 95%, as a function of focal range F [see Eqs. (26) and

(27)]. The maximum plotted focal range of 200 m is still smaller

than the Rayleigh range of 309.7 m. Therefore, Figure 6

corresponds to the left half of Figure 2. Figure 7 gives the

range resolution for the "center" 50% of the signal, W(50%) =

R(75%) - R(25%), and also the range resolutions W(60%), W(70%),

W(80%), and W(90%) vs focal range F. It corresponds to the left

half of Figure 3. Figure 8 plots the same five range resolutions

W vs diameter D O when F = 50 m. The largest values of W (poorest

range resolution) occur for D O _ 2 cm. The existence of a

diameter giving the poorest range resolution is perhaps not at

first obvious, but it can be explained as follows. For very

small diameters Do, the beam will diffract quickly and hence as

DO _ 0, the range contributing to SNR also goes to zero. For

large Do, the beam can be focused tightly, and as DO _ _ the beam

waist diameter approaches zero, and hence the contributing range

again approaches zero. Between these two extremes lies an area

where the range resolution W must be nonzero, and as a result, a

maximum must exist. Figure 9 plots five percentile ranges vs

diameter. The smallest percentileranges appear monotonic for

this excursion of diameter values, while the largest percentile

ranges exhibit a peak. Therefore, the range resolution peaking

observed in Figure 8 is due to the larger percentile ranges.

Similar plots for F = 200 m show the poorest range resolution

(largest W) occuring at DO _ 5 cm. For very small values of Do,

both the percentile ranges R and the range resolutions W are

_. For large Do, the percentile ranges R becomeproportional to DO
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independent of DO and converge to the value of F, and the widths

W become proportional to D_ _ . This is consistent with the small

and large FN behavior discussed earlier, since that corresponds

to large and small DO behavior, respectively.

Using Eq. (45), Figure 10 presents V(50%) vs focal range F

for diameter DO values of 2, 4, 6, 8, and i0 cm. For F = 50 m

and DO = 6 cm, V(50%) _ 10 -3 m3 . Figure 11 shows the

corresponding values of V(90%). For F = 50 m and DO = 6 cm,

V(90%) _ 7 10 "2 m 3, or a factor of 70 larger than V(50%). For

small values of F, the larger values of DO have smaller

measurement volumes due to greater focusing efficacy. The

situation is reversed for large values of F; larger values of Do

have larger measurement volumes, since the beams are

approximately collimated. Figures 12 and 13 plot V(50%) and

V(90%) vs diameter D O for values of focal range F of 10, 100,

i000, and i0,000 m. The measurement volumes peak for some

diameter D O depending on F and I. Both V(50%) and V(90%) appear

to peak at the same value of Do. We suspect that the diameter

yielding the maximum measurement volume is the same as that

yielding the largest (poorest) range resolution (see Fig. 8).

For the special case of a tightly focused beam, one can make

rough estimates of the ratio V(90%)/V(50%). Such estimates show

that the ratio is approximately 100. Numerical calculations bear

this out, and in addition, show that the ratio stays in the very

narrow range of 50-100 for all values of F and D O shown in

Figures 10-13. While it appears difficult to prove this

statement analytically, it is nevertheless an interesting result.

Figures 10-13 exhibit a large dynamic range of measurement

volumes.

11. Conclusions

The CW laser radar SNR changes by only a factor of 2 due to

beam diameter and focal range, and is proportional to _I 3 .

General analytic expressions were derived for the cumulative SNR

vs range, for the range to a given value of cumulative SNR, for

the range resolution of the measurement given any definition of

85



it in terms of percentile ranges, and for the measurement volume.

The equations are valid for any parameters of the CW laser radar.

Plots were presented in normalized parameters to cover a large

portion of parameter space, and in unnormalized parameters for a

specific example to gain familiarity with, and intuition from the

curves. The behavior of the measurement volume vs focal range

and beam diameter was plotted. The ratio of the volume

containing 90% of the signal to the volume containing 50% stays

in the narrow span of 50 to i00. Both the range resolution and

the measurement volume peak for a certain diameter value• The

measurement volumes vary over a large dynamic range. The

question of whether small or large values of range resolution and

measurement volume are desired depends on the specific

application of the focused CW laser radar system.
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14. Figure Captions

Figure I. Cumulative SNR vs normalized range as a function of
normalized focal range.

Figure 2. Normalized percentile ranges vs normalized focal range.

Note that RN(95%) is divided by I0 and shown as a

dashed line.

Figure 3. Normalized range resolutions vs normalized focal range.

Figure 4. Relative SNR vs range as a function of focal
The SNR is normalized to 1 at R = 0.

range.

Figure 5. Cumulative SNR vs range as a function of focal range.

Figure 6. Percentile ranges vs focal range.

Figure 7. Range resolution widths vs focal range.

Figure 8. Range resolution widths vs beam diameter.

Figure 9. Percentile ranges vs beam diameter.

Figure 10. V(50%) vs focal range as a function of beam
diameter.

Figure 11. V(90%) vs focal range as a function of beam
diameter.

Figure 12.

Figure 13.

V(50%) vs diameter as a function of focal range.

V(90%) vs diameter as a function of focal range.
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Tunable single-longitudinal-mode diode laser

pumped Tm:Ho:YAG laser

Sammyw. H_x_son andC_ P. H_e
Coherent Technologies, Inc., P.O. Box 7488, Boulder, Col-
orado 80306.
Received 2 October 1989
0003-6935/90/121716-03502.00/0.
@ 1990 Optical Society of America.

Continuoum wave single.longitudinal.mode power of 58
m W and frequency tuning of .-1 THz has been obtained

near 2.1 _n uzing a diode laser pumped thermoelectrically
cooled Tm:Ho:YAG laser. Key wordL" solid state lasers,

single-frequency lasers, holmium laser#.

Recent demonstrations ofcw diode laser pumped thulium
(Tm) and holmium (Ho) doped solid state lasers operating at
wavelengths near 2 #m have shown that these lasers can
operate efficiently at or near room temperature. 14 Fan et
el. _ f'u-st demonstrated cw room temperature operation of a
diode laser pumped Tm:Ho:YAG laser, obtaining laser
threshold with only 4.4 mW of absorbed pump power. Kintz
et aL 4 demonstrated • slope efficiency of 56% in a room
temperature cw diode laser pumped Tm:YAG laser and
Kane and Wallaco 5 demonstrated a slope efficiency of 58% in
a cw diode luer pumped TnuHo:YAG laser cooled to -55"C.
The long lifetime of the upper laser levels in Tm:YAG and
T_'Ho:YAG laser/make efficient energy storage for pulsed
operation • pemibility. Their emiesion wavelengths near
2/_m are eyeufe, making theh" use in appUcatioml requirJ_
atmospher/c propagation attzactive_ In this Letter we de-
scribe • tunable cw single-longitudinal-mode (SLM)
Tn_Ho:YAG laser which is being developed as part of • 2.1-
_un coherent luer radar system. This is, to our knowledge,
the first demonstration of SLM operation from a d/ode

pumped T_HcYAG ls_r.
The rmouator confll_Lratiou k ahown in Fig. I. The fiat

resonator m/rror, Mz, is a high reflector at wavelengths near
2100 nm and transmits 88% of the diode laser pump light
near 785 rim. ENonator minn_ M_ _rv_ m the ontput
coupler transmitting -..2.5% oft, ha Immr light neat 2100 rim.
Tbe radius of cttrvatum of this mirror ia 7.5 cm and tho two
resonator mirrors are in • near hemispberic eonfi_mtiou
being separated by ,-,7.5 _ The Crfrm:Hc_YAG crystal
used in these experiments has nominal dopant concentre-
tionm of 7.9 X 10zs-cm-z CP +, 8.2 X 10=°-era-s Tea s*, and 6.0
x 10zs-cm -s Ho _. The Cr m axe present for _p
pump/nit and do not play an active rok in the enerly txamfer
under diode pumpin_ z The cysts] dimmzsiom ere 4 mm
wide X 2 mm hlgh x 3 mm lou& T_ endfac_ of tbe cry_d
am polished fiat and AR costed with the pow_ _vity
be/nl <0.2% at wsvs]mq_s near 2100 nm and <5.0% at the
785-nm pump wawfleng_ The 3-ram long laser crystal
ta_mnn/te 26_ oftho inc/dent 785-um diode ]uer pump light.
The crystal is mounted ou a _ tbem_ectric (TE)
cooler allowing ira temixmwtum to be veried fxom +30 to
-40"C. All the dam re_r_ below is for operation at
-40"C. Tho TE cooler end lain= crystal eru enclomai in •
nitroeen-purpd chamber end oue end of the leer cry=ml is
_0_ mm h_n M_.

The uncoatod solid fussd _ etalo._ E_ and E_ have
thickn_ of 1.0 and 0.09 ram, rmp_ely. The thin eta-
Ion, E_, is uMd to conU_l the _ wavelength and the thick
et_don, £_, is mad to _ SLM operation. Tha fumd _lJca
B_ ph,te coutn, k the poler_tiou of the l_r. The

is lonSitudinal_ Wmped with the output _mm • tan-

M2

2.1 um

Brewster
Plate Cr : Tm: HO: YAG

"_ 78.5 nm

Sc_mad¢ of the died-, k_r pumped T_Ho:YAG _cil/ator.

E2 E I

J!;
Fig. L

I I I

.-q
J_

e_

"o

Fi¢2.

S-

i-

I I
mm mN

PUMP POIER _CIDI_r ON Ms [mW]

Lam_ output pow_ near 2100 nm w diode IMer pump power
near 785 nm incident oa mar cavity ndrr_ Mr.

stripe 500-roW cw phase coupled diode lamer array (Spectra
Diode Labs SDL-2432-P1). The diode laser wavelength is
Umed to the Tm:Hc_YAG absorption maximum n_r 785 um
and cont_llod them _ another "rE cooler which b int_
gral to the diode laser peckN_ The optical train that cou-
plm the diode _ output into the laser crystal delivers
•-,85_ of the diode liner output to the rmonator end mirror,
Mr, and foctmu it to a spot size of _ x 37 _,m in tbe
Crflhn:I-I_YAG crystal.

With the two intracavity etalom removed, th• output from
the liner is made up of esveral longitudinal modes at both
2090 and 2096 rim. Tim output power w pump power inci-
dent on Ms for this TEMm multiple.longitudinal-mode
(MLM) olmmtiou at -40"C is shown in Fig. 2 (squares).
The _cillatiou thrmho]d occurs at 100 mW and the dope
_ency for points well above _old is 33_. The non-
linear behavior near threshold is characteristic of qmmi-
throe.loyal laser operatio_¢ _ Approxinutte]y 6,5% of the
pump power incident on M_ is absorbed by the lmmr crystal
Therefore, a plot of output power w absorbed pump power
wouki ykld a dope ¢_fici_.-y of 51%. _ compares favor-
ably with the theoretical maximum slope efficienc7 for
TnuHo:YAG _ of 7_ (L_, _, - 2n._wh_e n_ = k/_,_ -
785/2090 - 37.6% and the factor of 2 is for perfect two-for
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Fig. 3. Output power vs wavelength obtained by tilt tuning the

0.09-ram thick intracavity etalon E2 and with the 1.0-ram thick

in_acavity et_on El removed from the cavity.

one cross relaxation of the Tm ions3). Due to the Brewster
plate and a slight tilt of the laser crystal in the near hemi-
spheric resonator, the TEM00 laser output is slightly astig-
matic. The degree of astigmatism is a stror_ function of the
exact mirror separation. When the SLM data in Figs. 1-4
were taken, the eUipticity was _1.16 × 1.0, and the T_
spot size on Ml (I/e -°intensity radius) calculated from the far
field divergence was --81 × 70 _m.

If the thin (O.09-mm thick) eta]on is inserted into the
cav/ty, the laser typically operates on three to four nonadja-
cent longitudinal modes spread out over 30 GI'Iz. The laser
wavelength depends on the incident angle between the axis
of the laser mode and the normal to the etalon surface.

Figure 3 is a plot of output power v_ wavelength obtained by
angle tuning the thin etalon. The pump power incident on
M1 during the collection of data for Fig. 3 was 430 roW. The
initial tilt angle in Fig. 3 is --5* at _ = 2100 nm and increases
as _, decreases. The lower output power at 2090 nm com-
pared with 2097 um is due to increased walk-off loss due to
the higher tilt angle of the thin etalon. Operation with 78
mW of output power near 2090 nm can also be obtained with
a tilt angle of _2 °.

With all the other elements shown in Fig. I in place,
insertion of tldck eta/on El into the cav/ty at near normal
incidence results in SLM operation as shown in Fig. 4. Fig-
ure 4(A) shows the laser spectrum u measured with a scan-
ning Fabry-Perot interferometar. The two peaks are asps-
rated by the 15=GHz free spectral ranp (FSR) of the
interferometar and the linawidth is due to instrument resolu-
tion. The longitudinal modes of the laser are separated by
~2 GHz and, if other longitudinal modes were present, they
would easily be resolved by the Fabry-Perot. Figure 4(B)
shows the spectrum u measured by a scanning confocal
interferometer having a FSR of 300 MHL Again the 1.7-
MHz FWHM I/new/dth is due to instnm_ant resolution.

The laser was operating at 2090.3 rim, as measured with a
0.25-m monochromator, and the output power was 55 mW
when the spectra of Fig. 4 were recorded. The output power
ws pump power incident on._! for SLM operation at 2090 nm
and at -40"C is shown in Fig. 2 (triangles). Oscillation
threshold occurs at 162 mW and the slope efficiency for
points well above threshold is _. By angle tuning thin
etalon E2, SLM operation was demonstrated at several
points in the tuning range between 2088 and 2099 nm with a

t i(_)
±

Ii 1

................
J............I....

±

.... Io.o.

T

I Ic II
.....I....I....I....I

!iJ
\ I

_z (o.z ms.c/_ [r_z_z_c_ (_09 _/nn_]

Fig. 4. Spectrum of the sinzle-long/tudinal-mode Tm:Ho:YAG la-
_er. (A) The spectrum u measured using a scanning Fabry-Perot
interferometer. The peaks are separated by the 15-GHz free spac-
ed range of the interferometer and the linewidth is due to instru.
ment resolution. (B) The spectrum as measured with a scanning
confocal interferometer whose free spectral range is 300 MH_. The

Unewidth is a_ain due to instrument resolution.

response vs wavelength very similar in shape to that shown in
Fig.3.

Iftbe 2.5% output coupler (M2 in Fig. 1) is replaced with a
0.5% output coupler, the laser can also be made to operate
SLM and tune at wavelengths near 2121 nn_ This depen-
dence of operating wavelength on output coupling in
Tn_Hc_YAG lasers has been described by Fan et el. s

In summary, we have achieved broadly tunable SLM oper.
ation _rom a TE-cooled diode laser pumped Tm:Ho:YAG
laser operating at -40"C. No special precautions have been
taken for long term stability with the current hardware. The
laser mirrors are mounted on an aluminum baseplate and the
TE cooler for the laser crystal is not actively stabilized.
Even so, the laser runs for many tens of minutes before two-
mode operation or longitudinal mode hops occur. In the
near future, we will replace the aluminum baseplate with a
super Invar beseplate and actively stabilize the TE cooler to
achieve long term stability.

This research was part of a Small Business Innovation
Research program monitored by the Defense Meteorological
System's Advanced Technology Office at the U.S. Air Force
Space Division, Los Angeles Air Force Base, California.
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APPENDIX F

I_I_ S_EED OPERATION OF A

Q-SWI_ Cr,Tm,_b:YAG L_SER
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P.O. Box 7488
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the

ABSTRACT

Si_e-_ Tm,_: Y_ ._a T_ Y_ lasers
operating near 2 pm are atTmacti_ somx_s
for se_ applications includir_ ey_safe
laser radar (lldar) and pusping of l_Q_e=
_ic csuillatons for efficient

ea_ara_ of loDsar .a_lem_s. As part
of a proBzam to dew_acoherent ]Jdar
system using Tm.Bb:Y_ lasers. ,e bare
developed a diode Isser-pu_ed, tunable, CW,
si_e-lo_i_-a0de (SI_) C_. Ts S_: Y_
laser and a flashlms_pumped, single-
tzansversetode, _switcbed Cr,Tm, Hb: YAG
laser. The CW laser bes been used to
Injection seed U_ flashlas_pu_ laser,
resultins iz. SIR _switcbed cu_

Operatioeal characteristics of the CW and
_swlte/wd Issers and in_seed_
results are zmported here.

SLAVE CSCI_

The flssh_pu_ _-switc_ slaw
oscillator utilizes a polarizatio_._oupled,

lar_-volums-T_ee cavit_ oo_fi_urstio_
(See Slave Osc_ in Figure 4.) The end
mirrors are flat high z_flectors at 2.09 pm
and the cmrlt_, is dy_ stabilized
usln_ the thersal lens of the pumped laser
rod. The Y_] laser c_stal has n_dnal

do_ant oo_ea_ratio_ of 759 x 101. cm "s
Crs+, 8.2 x 10 =° cm-s Tms , and 5.0x 101.
ca -s Hos+. In order to pvoduoe _e long
duratAo. _-swlte3sd pulses (i.e., the narr_
Fourier-_mmform- limited t_b_x[th) re-

quired for the cobazm_ lidar appllca_i_..
cavity _L-TOrS are _ b_ - I.2 --

The output enargy _s input e_-E_ for
opezatioa at _ 200 C is sbo_n in Figure 1
for both .ozml node and sie_le-pu_se

_-s_itc_d operation at a P_ of N 3 Hz.
_ote that _ 5_ of the norsal _0de e_arsy is
extracted in si_e _s.itched pulses. This

is e_ for the dopant concentration
utilized since the active Ho iotasonly store

N5_oft, he enez_ near room _ture.
with the Ta lore storing the other 50"4. The
transfer tim from Tm to Ho la estiamted to
be >5_s, .hichis inch lo.ear t_sn the
_switch_ pulse le_. This slo- ira.s-
far can result in =ul_iple pulses when the
laser is _s_itched; t to avoid this we gate
the w>Itaee applied to the Poc]mls cell,

_i_ the laser cavit_ back to a io--_
state _efore the second pulse evolves.

The lo_ slope efficiency sho.n in Figure
1 is due to the c_tio, of an
inefficlentflashla_p p_ chamber and a

loss¥ Poc]mls cell (t_l AR coatings).
The 5. I_ slope efficiency" demm_trated by
_uarles et al. ,= in a multiple trar_verse
and norml Hx_e Cr.Tm.H_: YAG laser, leads us

to expect an increase of a factor of four or
m_ in slope efficiency when the cavity
losses are _ and a rare efficient

pump cbsml_ is utilized. T_ pulse
duration for 30 m_ and 50 mJ @-switcl-ed
pulses is _.250 ns and .-150 ns _J,
respectively. AI_ no damme has been
e_perlen_ed, t_e _switched pulse energy has
bee_ limited to _ 50 mJ to date for fear of

da_ in_mcavitv optics.
At the 3 I_,- PRF used_this

stud_, the thermal lens created t_ the rod
is correct for _volume TEMoo operation

and e.w_ellentmode qualit_ is obtained. The
intensity l_ofile of the slave cecil_ator

output, _esured by scanning a I00-_
dla_ter lo_-,avele.6_,.h InCeAs photo-
detector acmes the beam. is sho_n in Figure
2. Also s_ is a Gaussian fit to the
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Figure 3. Scheantlc of _ optical configuration used in tlm
slngle-_ master oscl]L_tor.
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data. Operation of the slave laser in any
one of the four .avelenK_ re_ons near
2090, 2096, 2121, and 2128 nm can be
obtained by tilt-tun_ the intracavit¥
thin-film polarizer, frhe transmission of
the polarizer for p-polarization light
varies with .a_e_ and the spectral
transmission peak can be tuned by small
c_me_ in _e tilt a_/e. )

MAST_ OSCH/ATGR

The &tode laser-pumped, 6M meeter oecillator
shown In Flaure 3 utilizes a linear cavity
_ith an _vity Hre_ster plate for
polarization cout_l, and t.o solid
fused-silica eta/ore (thicknesses of O.5 and
0.09 ram) for frequent7 control. The 0.09 mm
thick eta]on, Ks, is uzzcoal_K][and the 0.5 mm
thick etalon, El, is coated for 18%

reflecti_itv at 2.08 _ The intracavlty
lens, L,, (focal length : 75 me) is utilized
to provide stahillty and to minimize the
.alk_ff ices introduced as the 0.5 mm thick
etalon is tilted. Bo%h mtrrorJ, Mt and M2,
are plano/_lano .tth Mz hi_ reflecting
and Ml ,_ 97. 5% reflec_ at 2.09 _ The
entire optical train is mm_ in a
_tmm-contzolled super Lnvar block
Other than hi_ frequency stability, the
other c_eratlo.a! characteristics of this
laser are vlrb_ identical to th0ee
described in refezenoe 3, so .m only ]_ovlde
a s_ hare. With the laser crystal
thezID-electmlcally cooled to _ 230 K, .e
have o_ _ 50 mN of SL8 output power
near 2090 nm and 2l]g6 r_ usLng 430 ./4 of
pump po.er from the diode laser. A scanntn8
confocal interf_ bee sho.n that the
_dth add short-term freqummcy Jitter
from this laser are lessthen l_k. By

tllt-tumlng the In_vlty etalo_s, tunir_
over the lalelength rathe he_ 2087 and
2099 r_ tins beem achie_sdL Tumhl rear 2121
r_ has also bee=, deE_strated, ustn_ the
laser described £nreference 3, b_ chan_ir_
the reflecttvtty of the out_ coupler.

INO-_CTI0_ S_DI}_

The apparatus used for the tnJection-
seedir_ studies is illustrated in F_gure 4.
The output of the master oscil/ator _s mode
matched and _ into _he sla_
c_cillator usi_ the "hack" of the
tn_vity thin-film polarizer. Isolation
of _40 dB is pmvidedb_ayittriusirc-
garnet Faraday Isolator. Neutral density
filters can he placed in betmeen the master
and sla_e oscillators to reduce the injected
intensity. The out_ of either laser can
he analyzed usir_ scannin_ Interfero_eters
_d a quarter-meter momochrc_r. A fast

lo_-_avelen_ _ photodetector is used
to observe the temporal profile of the

output. The lon_t.dinal mode
frequency of the slave laser is oontrolled
by translation of a slave cavity end mirror
which is mounted on a piezoelectric pusher.

this study the required retch
be_ the master oscillator frequency and
the slave cavity lor_i_ mode frequency
_s maintained by markedly controlling the
volteee applied to the end minx>r PZT. The
"man in the loop" adjusted the PZT _ItaRe
so as to minlmlze the observed pulse buildup
time. 4 A second quarter.ave plate can be
added to the slave oscillator (shown as the

optional A/4 plate in Figure 4) to minfmtze
spatial hole burning in the laser rod. s For
the results presented here, the optional
.a,_eplate .as not utilized.

Fiaure 5 sho_s an example of the temporal
evolution of the _-s_itched sla_ laser

pulse for both seeded and unseeded operation
.ith the _avelength near 2090 rim. The
rlsht-m0et 30 mJ unseeded pulse exhtbits
lo_tudlnal mode beating at _ 120 _.
(sbo,n as ,,, 20 _ due to altasin_ t_ the
100 masasample-per-second digital oecil-
loecope used). Note the earlier buildup
time and smooth profile for the left-most

seeded pulse. The lack of mode beating on
the seeded _dse su_ests S[_ output. In
this example, the seeded laser pulse
oontaJJas _ 70_ of the enarSy that the
unseeded laser pulse conta/ns. This
r_h_tlon is probably due to a oombination

of spatial hole burn_ in the laser crystal
and the lo_r _ain experie_d due to the
detu_mg of the seed laser frequenc7 fr_
line oenter (see neat paragraph).

With the ex_ oo_ditions the same
as those used to pnxluce Fteure 5, a
sca_ FabrF Pex_t (FP) eta/on whuse free
s_ ran6_ (_JH) is 75 _z _as used to
measure ths spectrum of the slave and m_ter
oscillator outputs (see Fi&nn,'e 4). Fl_n_ 6
sh_s the spectrum measured duri_ a 5(}
second scan .tth the ---tar oscillator
out4a_ blocked fro_ the slave oscillator.
The "grass" to the left is d_e to the
_mseeded _s_itched slav_ laser outpu% and
the smooth peak to the right is due to the
•aster _lllator output. The width of the
s_x)th peaks represents the r_olution of
the interferometer and the repetitive mature
of the display results from sca_i_ by more
than 1 FSR. The r_ht-most feature on the
displaF is due to r_ettin_ the FP mirror
spacin_ to te_in another sca_ Figure 6
sho_s that for this example the bs_dth of

the m_seeded _-s_te_ed outla_ is N I0
and _ _ of the C_ master
oscillator is offset by N 22 G_k fzom the
oe_zold of tSe slave laser out_
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frequercy. If the output of the CW master
o6cillator is _ to enter the slave
_cillator and if tim seed radiation is
resonant or r_arlF resonant _J.th a
lon_Lt_ilnal mode frequency of the slav_
c6clllator, the spectrum of the slave laser

eol_ arid is B,d.led to
lomgitudlaal mode which is closest to that
of the seed radlati_L This is i/lustrated
in Fieare 7 where the experimental
conditions .eze identical to those described
in the dtscussh_ of Fiaure 6, except that
the msBter _i11_to- was allowed to seed
the sla_e oscillator. The peak _lt_e seen

in F_gure 7 _ tim saturation
•olta_ of tbs detector cir_t_7.

H_ resolution spectra of the puised
are shown in Flgurem 8 end 9 for both

mmeeded and _ operatio_ For this
measuzemmt a semmt_ oonfocal tnte_ero-
meter M_se L_R is 300 _ ms used. The

upper tzaoe in both fJaures sho,s the
50-seomd _I_ ramp used to drive the

iuterfero_ter. Note that .ben
seededtbss_ool_ to < 6 M_

of which a larsepartisduetothe
resolutio_ of tbs interferomBter. The
transa[t_ed _it_ scale in Figure 9 is
ten times _ _ that of Figure 8. The
s_ of Fi_a'e 8 is unlfonely filled due
to a.Ltastr_ of t,be 10-20 G['k wlde unseeded
spectra into the 300 _ FSR of the
inte__.

Bi,'__'vele_;h of _ ,,,,_,,ter
c6cillator, ue bals achieved SLN operation
over a _ 250 G_ (3.7 nm) wide bard
at 2090 nm and - 100 GBk (1.5 m@ wide bands
centered at 2096.2 nm and 2097.7 n_ At the
center of eech of thase _nds, the _ of

seeded SI,B pULISeS :is ta,'jptcal.h, 80-90_, of
that of the u_seeded pulses. At the edges
of each mveIengthl_nd, _soededener_
is ,,, 5t_, of the _ e_rg_. Seeding
near 2121 nm and 2128 nm bss DOt been
attempted at thls _1_e.

Ame_sm_me_ of Um maxlm_ de_In_
bet_n t_s _ of the roster
oe_lllator and t_bat of t_e nearest slav_

cavit_ lon_ItmllnaI mode, .hich results in
SLN operation, _m lade as a function of the
_Jectedpo,er. Th_ mxlm_ _ is
oommonlF called the _tcxt-seed.in_ (or
locking) ran_. s A _ _seedin_

is useful si_0e it eases the
z_ulzmm_ts on ths _ system lock_ ths
f_ of the _ster _iUator to a
slav_ cavit_ ]nnsitudi.,ml mode. The

_on-seedl_ nmee vs _ po,er is
slx_n in Fiaut_ 10 for seedin_ at 2097.8 nm

ths tmseeded ixdse emars_ ws ,_ 25 mJ
andtheseededpuiseererl_ ,ms _* 20 mJ.
_ote t_at _lth unly 1 _ of injected p_er
the _jectic_seedi_ ra_e is - I0 _z. He

have also obtained SI_iQ-switched operation

with only 670 nW of injected power; this
point is not shown because the injection-

seedlr_ rane_ _as so small (< 2 l_[z) that a
reliable measurement could not be easily

rode.

SUMMARY

He bare demon_,_ated tunable injection-
seeded S[_ operation of a room temperatttre
_-s.ltcbed Cr, Tin, Ho: Y_G laser. To
aooompllsh this task a highly-stable tunable
sin_le-frequercy CH roster oscilhtor .es
constructed and a tuaable TI_oo _-switched
flas_pu_ oectllator which produces
over 50 _J/pah_ .as cor__. In the
near future _e .ill construct electronics to

automatically ser_ the slav_ cavity
longitudinal mode frequency resultin_ in
_tte_ded SLN _-swltnhed operation of the
slav_ laser.
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APPENDIX G

CALIBRATION CONSIDERATIONS FOR THE

AFGL PULSED CO2 COHERENT LASER RADAR

Michael J. Kavaya

Coherent Technologies, Inc.

An AFGL ground-based pulsed CO2 coherent laser radar (lidar)

has been used and will be used in the future to obtain calibrated

profiles of the atmospheric aerosol backscatter coefficient

(Alejandro et al., 1990). (See Section 11 for references.) This

appendix attempts to list the legion of calibration choices and

trade-offs faced by the lidar designer and operator. The typical

trade-offs for improved calibration are: increased cost,

increased complexity of lidar design, increased difficulty,

and/or increased measurement/calibration time. The overall goals

are:

lo

2.

3.

4.

Reduce random noise

Model measurement physics and reduce systematic errors

Obtain accurate system zero

Obtain accurate system gain

1. Telescope Overlap Function

The telescope overlap function (TOF), 8(R), also referred to

as crossover function or geometrical form factor, is a desired

term in the coherent lidar equation, for received signal power or

SNR, that is used to process received data and produce a _(R) or

_(z) profile. Ideally, 8(R) represents all range dependent

effects on the signal that have not been included in the lidar

equation and data processing steps. In this perspective, the

name telescope overlap function is a misnomer. The lidar

equation employed, Pr(R) or SNR(R), may originate from analytic
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theory or from computer numerical analysis, or may combine one of

these techniques with a heuristic modification of the equation.

A past analysis of 8(R) for a specific CO2 coherent lidar system

(Kavaya and Menzies, 1985) revealed that incorrect use or neglect

of @(R) could result in values of _ in error by factors up to 30.

Since that study was performed, newer lidar equations have become

available (Frehlich and Kavaya, 1990) that include more of the

range-dependent physics of the coherent lidar measurement.

Therefore, the TOF is an evolving function, and is specific to

each lidar system. It may or may not need to include the effects

of misalignment of the transmitted (XMTR) beam and the back-

propagated local oscillator (BPLO) beam; a bistatic lidar with

separated XMTR and BPLO; beam truncation by optical elements;

obscuration by the telescope (if any); the spatial profile of the

XMTR or BPLO beams, if not Gaussian; the detector size, shape,

and spatial profile of quantum efficiency; mis-positioning of the

detector (related to misalignment); and pulsed profile temporal

shape effects. For a bistatic lidar measuring at short ranges,

@(R) will be significant due to the XMTR/BPLO beam separation.

The best determination of 8(R) is to fire the lidar into an

unchanging atmosphere with well known total extinction _(R) and

aerosol backscatter _(R) profiles. With enough shots averaged to

reduce the effects of speckle; the SNR(R), _(R), and _(R)

profiles, and the chosen lidar equation could be used to

calculate @(R). This may be impossible for the present. A

relative (vs absolute) 8(R) curve may be determined if the lidar

is fired into a homogeneous atmosphere where _(R) = _ and _(R) =

_, both constants vs range. The most likely scenario is to model

8(R) to include as much physics as possible that is not included

in the lidar equation (Ancellet et al., 1986). This absolute

model of @(R) may then be checked by varying the settings of the

lidar and comparing experiment to theory, by firing into an

assumed uniform atmosphere and looking for a uniform _(R) result,

or by varying the elevation angle of the lidar and comparing the

resultant _ values at equal heights.
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2. Calibration Target

The method of choice for calibrating pulsed coherent lidar

measurements of _ is to use a hard calibration target (Kavaya et

al., 1983; Kavaya, 1985; Kavaya and Menzies, 1985; Kavaya, 1987).

The use of the total backscatter to Rayleigh backscatter ratio

calibration technique, which is used in the visible wavelength

region (often in concert with a hard target anyway), is not

feasible at CO 2 wavelengths since molecular backscatter is

negligible. The calibration technique that assumes a functional

relationship between backscatter and extinction (a field of

research in itself) does not apply since CO2 backscatter is

dominated by aerosol particles while extinction is dominated by

molecules. The rule of thumb that says to calibrate an

instrument with a known target as close in character as possible

to the eventual target (e.g., in this case, aerosol particles,

oil drops, homogeneous spheres, etc.) is not practical since it

is difficult to make a well characterized target that mimics

aerosol particles, and since this calibration target would have

to fill the expected measurement volume, which is more than 150 m

long for a l-_s long pulse. The technique of using a

comprehensive lidar equation and then characterizing the

reflectance or transmittance or gain of every component is very

hard and prone to errors as components change with time.

The ideal calibration target would be easy to fabricate,

inexpensive, lightweight, durable, and be as close to diffuse or

Lambertian in its scattering behavior as possible. A large

target area is desired so that it may be turned with respect to

the lidar beam (to avoid specular reflectance) while still

projecting a sufficient area to encompass the entire beam. The

target should be turned about a vertical axis to avoid

backscatter from the ground. While the field target should be

large, a small witness sample with exactly the same reflectance

behavior is desired to allow laboratory calibration of the

desired reflectance. The laboratory calibration of the witness

sample should employ conditions that match, as closely as

possible, the use of the large field target in calibrating the
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lidar system. Specifically, continuity should be sought for:

le

2.

3.

•

•

•

•

the target itself, its reflectance characteristics,

the laser wavelength and linewidth,

the incident and reflected (detected) polarization

states,

the polar angle of the laser beam with respect to the

normal to the target (450 is a nice compromise between

avoiding specular reflection and losing projected area,

i.e., projected area = 71% of actual area),

the incident and detected solid angles (as close as

possible),

the size relationship of the target area, the

illumination area, and the detector's field of view (it

is recommended that the target's projected area be the

largest, and be sufficiently big that the beam is

always contained in the projected area despite laser

pointing jitter and beam wander due to atmospheric

refractive turbulence),

complete averaging of speckle.

The target should exhibit no opposition effect (cube corner

behavior) since the necessarily different solid angles employed

in the laboratory calibration of the witness sample and the field

calibration of the lidar will lead to errors in the target

reflectance parameter p*, and hence errors in _.

It is desirable to ensure that the target is moving randomly

over a distance of many wavelengths of light in order to average

speckle effects• Often the wind or vibration from traffic will

guarantee this. The probability distribution function (PDF) of

the received IF power from the target shots should be checked to

confirm negative exponential behavior.

The optical train used for atmospheric and hard target

measurements should be identical. Any differences should be

compensated for.

For CO2 laser work, the researcher should employ the Lidar
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Target Calibration Facility at NASA's Jet Propulsion Laboratory

(Kavaya, 1985). Presently, there is no charge for calibration of

witness samples.

3a Atmospheric Extinction

Proper derivation of the _(R) profile requires knowledge of

the total extinction profile a(R) that was encountered by the

lidar beam. Components of extinction include molecular

absorption, molecular scattering, aerosol absorption, aerosol

scattering, and the effects of clouds. Ideally, _(R) would be

measured independently for each lidar shot and used in data

reduction. Practically, however, it is difficult to obtain _(R)

even as an average over the measurement time. Models of the

atmosphere may be employed to calculate _(R) for certain assumed

conditions. This is probably the only practical choice at

present. However, the atmosphere models do not account for a

ground-based lidar shooting through a boundary layer. It is

highly recommended that a separate measurement run of the lidar

(aiming slightly above horizontal) be employed to determine the

total extinction coefficient (assumed constant) and height of the

boundary layer (Kavaya and Menzies, 1985).

4. Lidar System Zero

If one could order an atmosphere with _ = 0, then the range

dependent system zero profile or minimum detectable _ profile

could be experimentally determined. Since this is impossible,

one has to choose a method of determining this curve. This

information is needed to subtract any DC offsets from the data

before processing, and to display a minimum detectable _ curve

along with the calculated _ curve.

Choices available include blocking the transmitter

telescope, using pretrigger recorded data (before the laser

fires), or using data at ranges so large that there can be no

signal. Blocking the telescope may create scattered light and

electronics saturation that is not present during actual

measurements. The pretrigger data may not include noise caused
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by the firing of the laser. The large

ringing of the electronics caused by

researcher should examine signals from all

determine the best approach.

range data may miss

firing the laser. The

three techniques to

5. Effects of Transmitted Pulse Profile

The effects of the actual temporal profile of the

transmitted laser pulse can affect the accuracy of the calculated

_(R) profile (Kavaya and Menzies, 1985). The most accurate

approach is to employ a lidar equation that has not assumed

anything about the pulse shape or duration. However, if the

pulse shape and duration are repeatable, a range-dependent

correction factor may be calculated and applied during data

reduction. Unfortunately, this correction profile depends on the

total extinction profile, _(R).

6. Averaging a Nonlinear Function of Received Power

• Because of speckle fluctuations, many lidar shots are

averaged to obtain an estimate of the mean profile of received IF

power. However, care must be taken since often the voltage into

the A/D converter is a nonlinear function of IF power. Examples

include outputs voltages that are the square root of power or the

logarithm of power. Averaging these voltages over many pulses

and performing the inverse operation on the average, e.g., V2 or

10 v, will cause errors

Ideally, it would be

proportional to IF power.

in $(R) (Kavaya and Menzies, 1985).

arranged to average a voltage linearly

If more dynamic range is needed, then

parallel A!D converters, or a switch to higher gain during the

return signal, or a ramping up of gain should be considered. If

this is not possible, then correction profiles for _(R) can be

calculated from knowledge of the nonlinear relationship and the

PDF of the detected voltage.

o Pulse Energy Normalization

Ideally, the received signal from every shot would be
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normalized by the pulse energy of that shot. Summing the pulse

energies independently and dividing the summed signals by the

energy sum may cause systematic error. If the laser is known to

have sufficiently small fluctuations in transmitted energy, then

the normalization step may be skipped, and appropriate error bars

added to the _(R) profile.

8. Gain Reduction for Hard Target Data

The reflectance p* [sr-*] of hard targets is typically so

large compared to atmospheric _ (actually _Crp/2 sr -t ) that the

lidar receiver gain must be decreased. Changing the telescope

aperture in any way is not advisable since this changes the

physics of the heterodyne detection, and hence changes the

correct lidar equation. A convenient technique is to reduce the

receiver gain by a known ratio (i.e., lower the gain by a known

number of dB). Preferably, this gain reduction is accomplished

with optical neutral density filters or low reflectance

beamsplitters rather than with lower electronic gain, so that

target calibration is performed under conditions similar to high

measurements. (The larger output of the beamsplitter could be

used for a direct detection measurement for estimating p*.) This

technique is fine provided the recorded voltage is proportional

to the IF signal power or its square root. Then the ratio of the

two gains employed is all that is required. However, the use of

a logarithmic amplifier in conjunction with this gain ratio

technique can make proper calibration very hard (Kavaya and

Menzies, 1985). The absolute values of the two receiver gains

are then needed, which are much harder to obtain than their

ratio.

9. Receiver Gain vs Signal Size

The lidar receiver should be mapped out to determine if its

gain varies with signal size, especially for low signals. If the

receiver gain is not constant, then the predetermined map should

be used during data reduction.
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10. Receiver Gain vs Signal Frequency

The return signal from a hard target duplicates the temporal

profile of the transmitted pulse. The atmospheric return signal

varies much slower in a mean value sense, but does have speckle

fluctuations imposed on it. Care should be exercised to ensure

the effect of the spectrum of the received signal on the receiver

gain is understood.

11. Receiver Saturation

Saturation of any of

errors in _(R). The absence

should be checked.

the

of

receiver components will cause

saturation in each component

12. Detector Operating Point

The DC and AC load lines imposed on the photodetector by the

bias circuit and preamplifier should be chosen to provide linear

operation over the required dynamic range of the signal (Post and

Cupp, 1990).

13. Shot-Noise-Limited Operation

The term shot-noise-limited is ambiguous. Most researchers

simply mean that shot noise is some factor larger than all other

sources of noise together. The adjective has also been misused

to mean that shot noise equals the sum of other noise sources.

It should be arranged that shot noise is a least 10 times larger

than the other noise. Otherwise, a correction factor should be

inserted into the lidar equation (Post and Cupp, 1990).

14. Detector Quantum Efficiency

Many HgCdTe detectors are delivered with only the DC quantum

efficiency specified. The actual AC quantum efficiency at the

signal IF frequency should be employed in the lidar equation.

15. Misalignment

Both the lidar equation and the TOF model should include

misalignment effects (but include each effect only once). Data
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should then be taken vs parameters of the lidar system such as

XMTR and BPLO radii and focal ranges, and detector (x,y,z)

position to confirm correct alignment. Maximizing the signal

from a hard target at some close range does not provide good

alignment.

16. A-Scope Capability

The researcher should be able to observe a pulse averaged

A-scope display to confirm lidar operation

17. Polarization of Light

The fact that _ is really a 4 x 4 Mueller matrix and that

each optical component affects the polarization of the laser

light should be accounted for (Kavaya, 1987; Anderson, 1989).

18. Neglected Processes

The usual lidar equation neglects multiple scattering,

Rayleigh scattering, fluorescence, resonant fluorescence, Raman

scattering, and any effect of the beam on the atmosphere itself.

19. Refractive Turbulence

Refractive turbulence effects may affect even CO2 lidar

systems when a long horizontal path is used for calibration. The

lidar equation should include these effects (Frehlich and Kavaya,

1990). For collimated beams, the importance of refractive

turbulence can be determined by measuring the scintillation of

the on-axis transmitted irradiance at the calibration target.

20. Secondary Calibration Technique

A secondary calibration technique, that is much easier to do

than the primary hard target technique, is desirable in order to

provide frequent checks on lidar gain stability.

21. Data Quality Monitor

A real-time data quality monitor would alert the lidar

operator of problems, and could save considerable amounts of
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time.

22. Signal Processing Hardware

Digital signal processing may provide more accuracy

flexibility than analog processing (e.g., a saw processor).

and

23. SNR or Power Calibration

Calibration using the aerosol and target SNR values removes

any gain drifts in the system provided that shot noise is

proportional to the system gain. Calibration using IF power

values will be more accurate if the system gain is constant since

estimation of only S - N is needed rather than (S - N)/N.

24. Choice of Signal Spectrum Location

The typical heterodyne coherent lidar system has a frequency

offset fo between the pulsed and LO lasers. The nominal IF

signal frequency from a nonmoving target is therefore fo" In

addition, the receiver bandwidth is designed to accept IF signals

over the span of fo • 2Vmax/l , where Vma x is the highest allowed

unidirectional radial wind velocity, which causes a Doppler shift

in the received optical frequency. There are three reasons to

choose a large value of fo" First, electronic components are

less expensive for smaller fractional bandwidths. In this case,

the fractional bandwidth would be (4 Vmax)/(lfo). Second, it is

easier to achieve a flat noise floor with smaller fractional

bandwidths. A flat noise floor is desirable for many signal

processing steps, such as noise subtraction. Third, the receiver

will experience direct detection current as the laser pulse

scatters during its transmission out of the lidar, and also when

large returns from hard targets are received. The spectrum of

the direct detection current will be approximately the spectrum

of the transmitted pulse profile, i.e., DC to some upper

frequency fu" It is important that the direct detection signals

do not saturate the receiver electronics, and therefore it is

recommended that fu << fo - 2 Vmax/l.
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