423 research outputs found

    Walking Speed Differentially Alters Spinal Loads in Persons with Traumatic Lower Limb Amputation

    Get PDF
    Persons with lower limb amputation (LLA) perceive altered motions of the trunk/pelvis during activities of daily living as contributing factors for low back pain. When walking (at a singular speed), larger trunk motions among persons with vs. without LLA are associated with larger spinal loads; however, modulating walking speed is necessary in daily life and thus understanding the influences of walking speed on spinal loads in persons with LLA is of particular interest here. Three-dimensional trunk-pelvic kinematics, collected during level-ground walking at self-selected (SSW) and two controlled speeds (~1.0 and ~1.4 m/s), were obtained for seventy-eight participants: 26 with transfemoral and 26 with transtibial amputation, and 26 uninjured controls (CTR). Using a kinematics-driven, non-linear finite element model of the lower back, the resultant compressive and mediolateral/anteroposterior shear loads at the L5/S1 spinal level were estimated. Peak values were extracted and compiled. Despite walking slower at SSW speeds (~0.21 m/s), spinal loads were 8–14% larger among persons with transfemoral amputation vs. CTR. Across all participants, peak compressive, mediolateral, and anteroposterior shear loads increased with increasing walking speed. At the fastest (vs. slowest) controlled speed, these increases were respectively 24–84% and 29–77% larger among persons with LLA relative to CTR. Over time, repeated exposures to these increased spinal loads, particularly at faster walking speeds, may contribute to the elevated risk for low back pain among persons with LLA. Future work should more completely characterize relative risk in daily life between persons with vs. without LLA by analyzing additional activities and tissue-level responses

    Ohio Pastures for Profit Online

    Get PDF
    The Pastures for Profit program is an established course created through a collaboration between Ohio State University Extension, Central State University, USDA-Natural Resources Conservation Service, Ohio Federation of Soil and Water Conservation Districts, Ohio Department of Agriculture, and the Ohio Forage and Grasslands Council. In 2021, due to COVID-19, the Pastures for Profit curriculum was adapted to a virtual classroom setting and was offered again in 2022. The virtual experience consisted of three live webinars pairing with corresponding modules in Scarlet Canvas. Enrolled students were also mailed traditional course materials for personal use. Module content was newly developed and compiled to compliment the traditional materials and included videos, quizzes, additional presentations, and technical resources. The course materials were organized and taught by a team of over 50 collaborators. During the three live webinars, nearly 20 speakers presented on topics including the basics of grazing, plant and animal science, and grazing plans. A total of 168 people enrolled in Scarlet Canvas in the two-year time frame from over 15 states and included producers, educators, technical service providers, and government agency staff. Each live session was recorded and made available to the class for access at their convenience. Those who completed the course obtained a signed certificate of completion. This platform allowed for an expanded audience reach than in the past

    Forages for Horses Revamped

    Get PDF
    The Forages for Horses program began in Ohio in1998 as a collaboration between the Ohio Forages & Grasslands Council and Ohio State University Extension. Over time, additional collaborations with the Natural Resources Conservation Service, Ohio Department of Agriculture and local Soil and Water Conservation Districts expanded the program. At its inception, one to three educators would partner to provide eight hours of in-person lectures followed by a pasture walk to better the management practices of equine enthusiasts. From 2021 through 2022, the curriculum was adapted for a hybrid classroom and included three 90-minute live webinars featuring nine different presentations followed by online social events. The modifications to the curriculum were made to improve access to equine resources and grazing education across Ohio. The Forages for Horses resources were also updated as part of the process. Learning modules posted in Canvas (an online learning management system) provided additional information that expanded upon the original curriculum. In 2022, 41 students from Ohio and surrounding states registered for the online course and webinars. Participants were able to hear directly from educators - more than in past iterations of the program– to expand their depth of knowledge and increase opportunities for participation without the location of the class posing a barrier for attendance. This program will continue to be revised over the coming years to remain relevant and accessible to Ohioans

    Retargeted adenoviruses for radiation-guided gene delivery

    Get PDF
    The combination of radiation with radiosensitizing gene delivery or oncolytic viruses promises to provide an advantage that could improve the therapeutic results for glioblastoma. X-rays can induce significant molecular changes in cancer cells. We isolated the GIRLRG peptide that binds to radiation-inducible 78 kDa glucose-regulated protein (GRP78), which is overexpressed on the plasma membranes of irradiated cancer cells and tumor-associated microvascular endothelial cells. The goal of our study was to improve tumor-specific adenovirus-mediated gene delivery by selectively targeting the adenovirus binding to this radiation-inducible protein. We employed an adenoviral fiber replacement approach to conduct a study of the targeting utility of GRP78-binding peptide. We have developed fiber-modified adenoviruses encoding the GRP78-binding peptide inserted into the fiber-fibritin. We have evaluated the reporter gene expression of fiber-modified adenoviruses in vitro using a panel of glioma cells and a human D54MG tumor xenograft model. The obtained results demonstrated that employment of the GRP78-binding peptide resulted in increased gene expression in irradiated tumors following infection with fiber-modified adenoviruses, compared with untreated tumor cells. These studies demonstrate the feasibility of adenoviral retargeting using the GRP78-binding peptide that selectively recognizes tumor cells responding to radiation treatment

    Attainment rate as a surrogate indicator of the intervertebral neutral zone length in lateral bending: An in vitro proof of concept study

    Get PDF
    Background Lumbar segmental instability is often considered to be a cause of chronic low back pain. However, defining its measurement has been largely limited to laboratory studies. These have characterised segmental stability as the intrinsic resistance of spine specimens to initial bending moments by quantifying the dynamic neutral zone. However these measurements have been impossible to obtain in vivo without invasive procedures, preventing the assessment of intervertebral stability in patients. Quantitative fluoroscopy (QF), measures the initial velocity of the attainment of intervertebral rotational motion in patients, which may to some extent be representative of the dynamic neutral zone. This study sought to explore the possible relationship between the dynamic neutral zone and intervertebral rotational attainment rate as measured with (QF) in an in vitro preparation. The purpose was to find out if further work into this concept is worth pursuing. Method This study used passive recumbent QF in a multi-segmental porcine model. This assessed the intrinsic intervertebral responses to a minimal coronal plane bending moment as measured with a digital force guage. Bending moments about each intervertebral joint were calculated and correlated with the rate at which global motion was attained at each intervertebral segment in the first 10° of global motion where the intervertebral joint was rotating. Results Unlike previous studies of single segment specimens, a neutral zone was found to exist during lateral bending. The initial attainment rates for left and right lateral flexion were comparable to previously published in vivo values for healthy controls. Substantial and highly significant levels of correlation between initial attainment rate and neutral zone were found for left (Rho = 0.75, P = 0.0002) and combined left-right bending (Rho = 0.72, P = 0.0001) and moderate ones for right alone (Rho = 0.55, P = 0.0012). Conclusions This study found good correlation between the initial intervertebral attainment rate and the dynamic neutral zone, thereby opening the possibility to detect segmental instability from clinical studies. However the results must be treated with caution. Further studies with multiple specimens and adding sagittal plane motion are warranted

    The PhenX Toolkit: Get the Most From Your Measures

    Get PDF
    The potential for genome-wide association studies to relate phenotypes to specific genetic variation is greatly increased when data can be combined or compared across multiple studies. To facilitate replication and validation across studies, RTI International (Research Triangle Park, North Carolina) and the National Human Genome Research Institute (Bethesda, Maryland) are collaborating on the consensus measures for Phenotypes and eXposures (PhenX) project. The goal of PhenX is to identify 15 high-priority, well-established, and broadly applicable measures for each of 21 research domains. PhenX measures are selected by working groups of domain experts using a consensus process that includes input from the scientific community. The selected measures are then made freely available to the scientific community via the PhenX Toolkit. Thus, the PhenX Toolkit provides the research community with a core set of high-quality, well-established, low-burden measures intended for use in large-scale genomic studies. PhenX measures will have the most impact when included at the experimental design stage. The PhenX Toolkit also includes links to standards and resources in an effort to facilitate data harmonization to legacy data. Broad acceptance and use of PhenX measures will promote cross-study comparisons to increase statistical power for identifying and replicating variants associated with complex diseases and with gene-gene and gene-environment interactions

    Relapse prevention for addictive behaviors

    Get PDF
    The Relapse Prevention (RP) model has been a mainstay of addictions theory and treatment since its introduction three decades ago. This paper provides an overview and update of RP for addictive behaviors with a focus on developments over the last decade (2000-2010). Major treatment outcome studies and meta-analyses are summarized, as are selected empirical findings relevant to the tenets of the RP model. Notable advances in RP in the last decade include the introduction of a reformulated cognitive-behavioral model of relapse, the application of advanced statistical methods to model relapse in large randomized trials, and the development of mindfulness-based relapse prevention. We also review the emergent literature on genetic correlates of relapse following pharmacological and behavioral treatments. The continued influence of RP is evidenced by its integration in most cognitive-behavioral substance use interventions. However, the tendency to subsume RP within other treatment modalities has posed a barrier to systematic evaluation of the RP model. Overall, RP remains an influential cognitive-behavioral framework that can inform both theoretical and clinical approaches to understanding and facilitating behavior change

    Searching for DNA Lesions: Structural Evidence for Lower- and Higher-Affinity DNA Binding Conformations of Human Alkyladenine DNA Glycosylase

    Get PDF
    To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop.National Institutes of Health (U.S.) (grant no. P30-ES002109)National Institutes of Health (U.S.) (grant no. GM65337)National Institutes of Health (U.S.) (grant no. GM65337-03S2)National Institutes of Health (U.S.) (grant no. CA055042)National Institutes of Health (U.S.) (grant no. CA092584)Repligen Corporation (KIICR Graduate Fellowship
    corecore