37 research outputs found

    How the Selection of Training Data and Modeling Approach Affects the Estimation of Ammonia Emissions from a Naturally Ventilated Dairy Barn-Classical Statistics versus Machine Learning

    Get PDF
    Environmental protection efforts can only be effective in the long term with a reliable quantification of pollutant gas emissions as a first step to mitigation. Measurement and analysis strategies must permit the accurate extrapolation of emission values. We systematically analyzed the added value of applying modern machine learning methods in the process of monitoring emissions from naturally ventilated livestock buildings to the atmosphere. We considered almost 40 weeks of hourly emission values from a naturally ventilated dairy cattle barn in Northern Germany. We compared model predictions using 27 different scenarios of temporal sampling, multiple measures of model accuracy, and eight different regression approaches. The error of the predicted emission values with the tested measurement protocols was, on average, well below 20%. The sensitivity of the prediction to the selected training dataset was worse for the ordinary multilinear regression. Gradient boosting and random forests provided the most accurate and robust emission value predictions, accompanied by the second-smallest model errors. Most of the highly ranked scenarios involved six measurement periods, while the scenario with the best overall performance was: One measurement period in summer and three in the transition periods, each lasting for 14 days

    CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters

    Get PDF
    The airflow in dairy barns is affected by many factors, such as the barn's geometry, weather conditions, configurations of the openings, cows acting as heat sources, flow obstacles, etc. Computational fluids dynamics (CFD) has the advantages of providing detailed airflow information and allowing fully-controlled boundary conditions, and therefore is widely used in livestock building research. However, due to the limited computing power, numerous animals are difficult to be designed in detail. Consequently, there is the need to develop and use smart numerical models in order to reduce the computing power needed while at the same time keeping a comparable level of accuracy. In this work the porous medium modeling is considered to solve this problem using Ansys Fluent. A comparison between an animal occupied zone (AOZ) filled with randomly arranged 22 simplified cows' geometry model (CM) and the porous medium model (PMM) of it, was made. Anisotropic behavior of the PMM was implemented in the porous modeling to account for turbulence influences. The velocity at the inlet of the domain has been varied from 0.1 m s(-1) to 3 in s(-1) and the temperature difference between the animals and the incoming air was set at 20 K. Leading to Richardson numbers Ri corresponding to the three types of heat transfer convection, i.e. natural, mixed and forced convection. It has been found that the difference between two models (the cow geometry model and the PMM) was around 2% for the pressure drop and less than 6% for the convective heat transfer. Further the usefulness of parametrized PMM with a velocity adaptive pressure drop and heat transfer coefficient is shown by velocity field validation of an on-farm measurement

    Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn

    Get PDF
    Ammonia (NH3) and methane (CH4) emissions from naturally ventilated dairy barns affect the environment and the wellbeing of humans and animals. Our study improves the understanding of the dependency of emission rates on climatic conditions with a particular focus on temperature. Previous investigations of the relation between gas emission and temperature mainly rely on linear regression or correlation analysis. We take up a preceding study presenting a multilinear regressionmodel based onNH3 and CH4 concentration and temperaturemeasurements between 2010 and 2012 in a dairy barn for 360 cows inNorthern Germany.We study scatter plots and non-linear regressionmodels for a subset of these data and show that the linear approximation comes to its limits when large temperature ranges are considered. The functional dependency of the emission rates on temperature differs among the gases. For NH3, the exponential dependency assumed in previous studies was proven. For methane, a parabolic relation was found. The emissions show large daily and annual variations and environmental impact factors like wind and humidity superimpose the temperature dependency but the functional shape in general persists. Complementary to the former insight that high temperature increases emissions, we found that in the case of CH4, also temperatures below 10 C lead to an increase in emissions from ruminal fermentation which is likely to be due to a change in animal activity. The improved prediction of emissions by the novel non-linear model may support more accurate economic and ecological assessments of smart barn concepts

    Comparison of Methane Emission Patterns from Dairy Housings with Solid and Slatted Floors at Two Locations

    Get PDF
    Methane (CH4) emissions from dairy husbandry are a hot topic in the context of active climate protection, where housing systems with slatted floors and slurry storage inside are in general expected to emit more than systems with solid floors. There are multiple factors, including climate conditions, that modulate the emission pattern. In this study, we investigated interrelations between CH4 emission patterns and climate conditions as well as differences between farm locations versus floor effects. We considered three data sets with 265, 264 and 275 hourly emission values from two housing systems (one slatted, one solid floor) in Switzerland and one system with solid floors in Germany. Each data set incorporated measurements in summer, winter and a transition season. The average CH4 emission was highest for the slatted floor system. For the solid floor systems, CH4 emissions at the Swiss location were around 30% higher compared to the German location. The shape of the distributions for the two solid floor systems was rather similar but very different from the distribution for the slatted floor system, which showed higher prevalence for extreme emissions. Rank correlations, which measure the degree of similarity between two rankings in terms of linear relation, were not able to detect dependencies at the selected significance level. In contrast, mutual information, which measures more general statistical dependencies in terms of shared information, revealed highly significant dependencies for almost all variable pairs. The weakest statistical relation was found between winds speed and CH4 emission, but the convection regime was found to play a key role. Clustering was consistent among the three data sets with five typical clusters related to high/low temperature and wind speed, respectively, as well as in some cases to morning and evening hours. Our analysis showed that despite the disparate and often insignificant correlation between environmental variables and CH4 emission, there is a strong relation between both, which shapes the emission pattern in many aspects much more in addition to differences in the floor type. Although a clear distinction of high and low emission condition clusters based on the selected environmental variables was not possible, trends were clearly visible. Further research with larger data sets is advisable to verify the detected trends and enable prognoses for husbandry systems under different climate conditions

    Ammonia emission prediction for dairy cattle housing from reaction kinetic modeling to the barn scale

    Get PDF
    One way to estimate ammonia emission rates from naturally ventilated housing systems is to scale-up mechanistic modeling results. However, obtaining the relevant data to set initial and boundary conditions adequately is usually very challenging and for a whole barn barely possible. This study has investigated the potential of coupling different mechanistic modeling approaches towards an overarching barn scale ammonia emission model, which might permit ammonia emission projections for naturally ventilated housing systems with minimal measurement efforts. To this end, we combined an ammonia volatilization model for shallow urine or slurry puddles with a dynamic mechanistic model of digestion and excretion of nitrogen, an empirical model to estimate urination volumes, semi-empirical models for pH and temperature dynamics of the puddles and a mechanistic air flow model. The ammonia volatilization model was integrated with a time step of one second over a period of twenty-four hours, while the relevant boundary conditions were updated on an hourly base (determined by the other mentioned submodels). Projections and uncertainties of the approach were investigated for a farm case with about ten months of on-farm measurements in a naturally ventilated dairy cattle building with scraped solid floor in Northern Germany. The results showed that the nested model was in general capable to reproduce the long-term emission trend and variability, while the short-term variability was damped compared with the emission measurements. A sensitivity study indicated that particularly a refinement of the submodules for urine puddle alkalizing, urination volume and urea concentration distributions as well as for local near-surface wind speeds have a great potential to further improve the overall model accuracy. The cleaning efficiency of the scraper has turned out to be a crucial and sensitive parameter in the modeling, which so far has been described insufficiently by measurements or modeling approaches
    corecore