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Abstract: A reliable quantification of greenhouse gas emissions is a basis for the development of
adequate mitigation measures. Protocols for emission measurements and data analysis approaches
to extrapolate to accurate annual emission values are a substantial prerequisite in this context.
We systematically analyzed the benefit of supervised machine learning methods to project methane
emissions from a naturally ventilated cattle building with a concrete solid floor and manure scraper
located in Northern Germany. We took into account approximately 40 weeks of hourly emission
measurements and compared model predictions using eight regression approaches, 27 different
sampling scenarios and four measures of model accuracy. Data normalization was applied based
on median and quartile range. A correlation analysis was performed to evaluate the influence of
individual features. This indicated only a very weak linear relation between the methane emission
and features that are typically used to predict methane emission values of naturally ventilated barns.
It further highlighted the added value of including day-time and squared ambient temperature
as features. The error of the predicted emission values was in general below 10%. The results
from Gaussian processes, ordinary multilinear regression and neural networks were least robust.
More robust results were obtained with multilinear regression with regularization, support vector
machines and particularly the ensemble methods gradient boosting and random forest. The latter
had the added value to be rather insensitive against the normalization procedure. In the case of
multilinear regression, also the removal of not significantly linearly related variables (i.e., keeping only
the day-time component) led to robust modeling results. We concluded that measurement protocols
with 7 days and six measurement periods can be considered sufficient to model methane emissions
from the dairy barn with solid floor with manure scraper, particularly when periods are distributed
over the year with a preference for transition periods. Features should be normalized according to
median and quartile range and must be carefully selected depending on the modeling approach.
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1. Introduction

Climate change is one of the great challenges of our century. In order to develop adequate
mitigation measures, greenhouse gas emissions in all economic sectors, including agriculture, need to
be soundly quantified [1–3]. In the context of livestock husbandry, methane is a substance of
particular importance [4–7]. It emerges during decomposition processes in manure and during
ruminants digestion and makes up about 44% of the sector’s greenhouse gas emissions [8]. The Food
and Agricultural Organization (FAO) of the United Nations estimated that dairy cattle husbandry
contributes 20% of the total greenhouse gas emissions from the livestock sector. One important issue
in this context is that the emission dynamics from the digestive system of the ruminants and from
the manure are different. Emissions from manure are expected to increase exponentially when the
ambient temperature is above approximately 15 ◦C, while emissions from the digestive system follow
rather a parabolic curve in dependence on the temperature with minimal emissions from lactating
dairy cattle at ambient temperatures around 10 ◦C [9,10]. Particularly when housed in barns with solid
floor and manure scraper (i.e., no significant manure storage inside the building), a substantial part of
the methane emissions from dairy cattle husbandry is associated with the fermentation activity in the
rumen, where approximately 92% of the gas leaves the body via eructation and breath [11].

Although there are mechanistic models that predict the emission of individual cattle,
the evaluation of methane emissions on the housing level is challenging [12–15]. Besides temperature,
animal and farm-specific parameters (e.g., feed composition and feeding time) as well as local
air flows affect the overall emissions. The latter is particularly challenging as dairy cattle (if not
on pastures) are commonly kept in naturally ventilated buildings where indoor air flow is governed
by constantly changing inflow conditions. A continuous measurement of the methane emissions from
such buildings is, however, barely possible since the area of inlets and outlets is large and the openings
are dynamically changing their role as inlet or outlet in response to the varying ambient conditions.
This, besides technical challenges, results in high expense for monitoring the inlet and outlet openings
and a preference for intermittent measurement strategies [16].

In many studies, air exchange rates and gaseous emissions are estimated by balancing gas
(particularly CO2) inside and outside the building on a few days distributed over the year. It is
recommended to include hot, cold, and moderate days [17]. Annual emission values are derived from
those measurements by using weighted averages or regression equations based on easy accessible
explanatory variables (e.g., ambient temperature, inflow wind speed, herd composition, floor type,
etc.). In the past, this procedure was frequently applied to model ammonia emissions and extrapolate
to annual ammonia emission factors, where in most cases a multilinear model was fitted to the
logarithmized emission values [18,19].

With more and more data being compiled the interest in testing machine learning approaches
in the context of emission modeling continues to increase with first promising results [20,21]. It has
been recently observed for ammonia emissions from a naturally ventilated barn that the procedure of
fitting multilinear models is rather sensitive to outliers in the measurements while the robustness of
the prediction can be improved by applying advanced data science approaches (particularly ensemble
methods) [21]. Uncertainties of around 20% have been found with current sampling strategies even
with machine learning in that study. The additional level of complexity due to the two different indoor
sources of methane and the non-monotonic influence of temperature may even further decrease the
accuracy of empirical modeling of methane emissions from barns with ruminants when applying
standard multilinear models.

Here, we investigated the following two hypotheses related to the estimation of methane
emission factors from cattle barns with solid floor with manure scraper: (1) The accuracy of the
model prediction can be improved if the squared temperature value is included as an additional
feature in the modeling process, while considering a logarithmic function as in the case of ammonia
is not useful, because preceding studies have indicated that emissions from the digestive system
show rather a parabolic dependence on the temperature. (2) Empirical modeling with multilinear
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approaches is less robust (i.e., less reliable in making correct predictions under small perturbations
in the training data) than machine learning approaches to predict aggregated emission values,
where ensemble methods are the most robust and time efficient machine learning approaches to
model methane emissions.

Therefore, our study compares and evaluates the accuracy and robustness of different machine
learning approaches when projecting emission values of a dairy cattle barn using different training
datasets that reflect commonly applied sampling strategies in the course of a year and include
standard features (i.e., easily measurable on-farm). By that we want to provide a guideline for
the selection of temporal sampling strategy and empirical modeling approach for future studies to
derive methane emission factors.

2. Materials and Methods

2.1. Data Collection

In the following subsections, we describe where, when and how the dataset from a naturally
ventilated dairy barn, as used in this study, was collected.

2.1.1. Measurement Site

We considered a dairy cattle building in Mecklenburg-Western Pomerania, Germany, close to
the Baltic Sea [21]. The naturally ventilated building had dimensions 96.15 m × 34.20 m × 10.7 m
(length × width × gable height). One of its 4.2 m high, open side walls faced the prevailing
wind direction. Each gable wall had four doors and one gate with adjustable curtains. There was a
0.5 m gap in the roof.

Within the measurement period, there were four climate-controlled ceiling fans and two
automatic scrapers to clean the solid concrete floor every 90 min. On average 355 dairy cattle with
682 kg body mass and 39 kg milk yield per day were kept in loose housing with cubicles with
a 0.2 m deep straw and chalk bedding. Cows went out for milking in four groups three times
a day for approximately 45 min (starting approximately at 06:00 a.m., 02:00 p.m. and 10:00 p.m.).
Around 06:45 a.m. and 10:30 a.m., a total mixed ration consisting of soy (24%), oil-seed rape (19%),
maize (24%), rye (23%), and lupins (10%) was provided.

2.1.2. Measurement Setup

Gas samples were collected with 10 Teflon sampling lines with an inner diameter of 6 mm and an
orifice every 8–10 m. One line was below the ridge, the rest at a height of around 3.2 m. Four lines were
outside, the other lines inside the building, all with a distance of at least 4 m to the walls [22]. Lines were
sampled one by one for 10 min each with one of two high resolution Fourier Transform Infrared (FTIR)
spectrometer (Gasmet CX4000, Gasmet Technologies Inc., Karlsruhe, Germany) monitoring carbon
dioxide and methane concentrations from 1 November 2016 until 30 August 2017. In consequence,
per sample line 7276 hourly values (approximately 10 months) of gas concentrations were available.
We obtained the values of ambient air temperature at a distance of 5 m from the building and estimated
average flow conditions (wind speed and direction) from the values measured with an anemometer
at the roof of the building. Amount, mass and yield of the dairy cattle were obtained as daily herd
averages from the farm administration.
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We estimated indoor methane (CH4) and carbon dioxide (CO2) concentrations by averaging all
indoor sample lines for each hour. The outdoor sample line with the lowest CO2 concentration at each
hour was used to obtain CO2 and CH4 concentrations in the incoming air. We applied the CO2 mass
balancing method (Equation (1)) to calculate ventilation rates.

Q =
N · PCO2

[CO2]inside − [CO2]outside
(1)

Here Q is the ventilation rate, i.e., the volume flow, in [m3 h−1], N is the amount of cows and
[CO2]inside − [CO2]outside is the difference of the carbon dioxide concentration of the air indoor and
outdoor in [g m−3]. CO2 production per cow (PCO2 in [g h−1]) was derived from cow mass, milk yield,
days in milk and ambient air temperature [23]. Outdoor air temperature was used as a proxy for
the indoor temperature, since the offset between both is usually small and temperature sensitivity of
the CO2 production model is also low [24]. The indoor–outdoor methane concentration difference
[CH4]inside − [CH4]outside in [g m−3] was multiplied with the ventilation rate Q and scaled with the
cow mass to calculate normalized methane emissions En [g h−1 LU−1] as illustrated in Equation (2).

En =
Q · ([CH4]inside − [CH4]outside) · LU

N · m
(2)

Here one LU is the body mass equivalent of 500 kg, N is the amount of cows in the building and
m is their average mass in kg.

2.2. Regression Analysis

We tested several regression approaches to extrapolate the dynamics of methane emissions
over the seasons. A Pearson correlation analysis was performed to assess the linear relation of
standard features (i.e., the explanatory variables) with the observed methane emission. From the
regression we obtained the hourly emission values, i.e., the response variables, as functions of the
explanatory variables time, temperature, squared temperature, wind speed and direction, where time
and wind direction were treated as cyclic variables (resulting in a total of nine features). The time was
encoded by sine and cosine transformed features with periods of 24 h respectively 365 days. That way,
the day-time (hour of the day) and the year-time (day of the year) components were decoupled.
The wind direction was sine and cosine encoded with a period of 360◦. We further considered
a model using only the sine and cosine transformed feature of day-time as explanatory variables.
Predicted emissions were evaluated against the observed emissions averaged over the entire 10 months
measuring period.

2.2.1. Machine Learning Methods

We applied gradient boosting (GradBoost) and random forests (RandFor), both ensemble methods;
ordinary (multi-) linear regression (LinReg) and linear regression with regularization, known as ridge
regression (Ridge); a shallow neural network with one hidden layer (fixAnn) and more advanced
neural network architectures, where the number of hidden layers and nodes per layer are optimized
(ANN); support vector machines (SVM) and Gaussian processes (GausProc), implemented in Python 3
using the library Scikit-learn 0.22.1 [25].

The ensemble methods we used are based on decision trees [26] and in contrast to many other
machine learning approaches, they do not require hyperparameter tuning. While random forests
average over the predictions of a set of trees that are based on different subsets of features [27],
gradient boosting improves an initial regression tree sequentially, following a gradient descent
approach [28,29].
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The (multi-) linear regression and the ridge regression we used, both minimize the least
square function. The difference between these methods is an additional regularization term in the ridge
regression case [30], which leads to a tunable hyperparameter. This so-called regularization strength
was tuned by a randomized search using the function RandomizedSearchCV of Scikit-learn [25].

Artificial neural networks [31–34] consisting of one input layer and one, two, four or eight
fully connected hidden layers, as well as a single output layer, that is a single real value in
the case of regression, were considered here. The number of nodes varied between 8, 16,
32 and 64, but was the same within each hidden layer. Hyperparameters (i.e., number of hidden
layers and number of nodes per layer) were tuned using GridSearchCV of Scikit-learn [25].
As activation function a rectified linear unit (ReLU) was employed [35]. Weights were tuned
by backpropagation of the loss function, while the model was trained with the Adam optimizer
(adaptive moment estimation) [36]. We used the MLPRegressor-function (multi-layer perceptron
regression) from scikit-learn [25]. Furthermore, we studied the shallow neural network architecture
(one hidden layer with four nodes) suggested by Wang et al. for modeling ammonia emissions of cattle
barns with natural ventilation [20].

The principle of support vector machines, initially designed for classification problems [37],
was transferred to regression tasks [38] in the implementation of support vector regression in
scikit-learn [25]. We used the RBF kernel (radial basis function) and tuned the hyperparameters
C (regularization parameter) and γ (kernel coefficient) with RandomizedSearchCV [25].

Finally, we examined Bayesian function approximation methods (Gaussian Processes) [39],
using the GaussianProcessRegressor of scikit-learn [25]. We deployed a Matern kernel function,
which generates nonlinear function approximations [39]. During model training, the hyperparameters
(kernel parameters and observation noise) were automatically tuned on a log-marginal-likelihood basis.

Further details on the mentioned methods can be found in the preceding study by Hempel et al.
on ammonia emission modeling with machine learning [21].

Feature normalization is advisable before applying any machine learning procedure if the
magnitude of the values is expected to be considerably different (e.g., when as in our case temperature
and squared temperature are considered as features). The performance of some machine learning
approaches, particularly ANNs, can be considerably affected by the feature normalization where
normalization based on the median is considered superior over a standard z-score normalization [40].
Here we used the RobustScaler from sklearn [25] which removes the median and scales the data
according to the quantile range.

2.2.2. Sampling of Training Data and Cross-Validation

Under practical considerations, up to six measurement periods with not more than 14 days
are realistic to estimate annual emission values, since due to the high investment costs of suitable
measurement devices repeated short-term measurements are preferred over continuous measurements.

We randomly picked three, four, and six periods (each with a length of 1, 7 and 14 days) out of our
approximately 10 months of hourly data, in order to investigate the effect of different measurement
scenarios (i.e., frequency, length and timing of measurements in the course of a year) on the model
predictions (compare the procedure in [21]). The intervals were selected under the constraint of
including predetermined seasons, namely summer (June to August, with night temperature around
11 ◦C and day temperature around 21 ◦C), winter (January and February, with night temperature
around −2 ◦C and day temperature around 3 ◦C) and transition (March to May and September to
December, with night temperature around 3 ◦C and day temperature around 10 ◦C). An overview of
the 27 measurement scenarios is given in Figure 1. For each of the scenarios 30 random realizations
were considered.
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Figure 1. Sketch of the 27 survey schemes, studied in the evaluation of the regression models in a
nested cross-validation setup for hyperparameter optimization and error estimation. Indices refer
to the 27 scenarios with associated lengths Ndays of the measurement periods. The allocation of the
selected measurement periods to the individual seasons (transition, summer and winter) is marked
in the figure, where the distribution within the seasons is random (with 30 realizations per scenario).
The cross-validation scheme is sketched exemplary for three measurement periods. Confer also [21].

This subset of data was used to train and evaluate the model in a nested cross-validation
setup, where we estimated the extrapolation error in an outer K-folds cross-validation loop and,
if needed, optimized hyperparameters in an inner L-folds cross-validation loop. The splitting into
“Test” (i.e., validation data in outer loop), “Eval” (i.e., validation data in inner loop) and “Train” set
(i.e., training data in inner loop) was done using GroupShuffleSplit from scikit-learn [25]. The best
hyperparameter configuration found in the inner validation loop was used to re-train the model in
the outer training set. Finally, since we had approximately 40 weeks of continuous measurement
data available, we also evaluated the model on all of the data not included in the train and test sets of
the outer cross validation to obtain the extrapolation error.

In each scenario, one measurement period was used as evaluation dataset and one measurement
period was used as test dataset. Since the number and length of measurement periods varied from
scenario to scenario, the proportion of training, validation and test cases also varied. For each
realization and each iteration of the cross-validation loop, 0.3% to 5% of the whole dataset was
used for learning hyperparmeters and another 0.3% to 5% for validating the hyperparmeter choice.
Approximately 0.7% to 25% of the whole dataset was used for re-training in the outer validation loop
each time (i.e., to calculate the training error), while 0.3% to 5% were used for testing in the outer loop
(i.e., to calculate the test error). The remaining 99% to 70% of the data were used to estimate the
extrapolation error.

2.2.3. Evaluation Measures

The ranking of different modeling approaches can not be expected to be the same when different
sets of training data and different evaluation criteria are used [21]. In order to investigate if the same
trends as in the case of ammonia modeling can be observed when modeling methane emissions with
machine learning, we considered the same scenarios for temporal sampling (Figure 1).

For each scenario, we calculated the mean and the standard deviation of the projected
emission values, when using 30 random combinations of measurement periods for model training
(whilst taking into account the scenario constraints). In addition, we calculated the quartiles and
interquartile ranges for each scenario based on these 30 realizations. The R2 value (coefficient of
determination) as well as the root mean squared error (RMSE) and the mean absolute error (MAE) of the
projected emissions relative to the observed hourly emission values were compared. Those measures
evaluate how well the emission dynamics are reproduced by the models. In addition, we present the
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total absolute error (TAE; i.e., the absolute difference between the average 10-month emission value in
the observations and the model predictions).

2.2.4. Graphical Representations

Using Matplotlib, version 3.1.3 [41] we created confidence and box plots to visualize the results.
In the confidence plots the one sigma interval, i.e., µ ± σ (where µ is the mean value and σ is the
standard deviation), is shown. In the box plots the interquartile ranges ∆Q = Q3 − Q1 were considered,
where Q3 is the upper quartile limit and Q1 is the lower quartile limit. The upper whisker in the box
plot extend to the last value less than Q3 + w · ∆Q and the lower extend to the first value larger than
Q1 − w · ∆Q, where w = 1.5. The horizontal orange line inside the boxes hightlights the median,
whereas outliers (i.e., data beyond the whiskers) were plotted as circles.

3. Results

We calculated the mean observed emission Ēn = 11.6 g h−1 LU−1 by averaging over the monitored
10 months.

3.1. Feature Selection

By comparing the Pearson correlation coefficients of the different features with the target
emission values and the logarithm of the emissions we found that considering the logarithm of
the emissions (as it is the common procedure for example in the case of ammonia) did not considerably
improve predictions when modeling methane emissions. From Table 1 it can be seen that the
correlation in most cases was very low and even decreased when considering the logarithm. On the
other hand, we found that using the T2 feature instead of T considerably increased the obtained
correlation coefficient. The highest absolute value of the correlation coefficient, i.e., the highest
expected predictive performance of individual features, was obtained from the day-time components
followed by the squared temperature. The obtained correlation coefficients highlighted that for
the studied phenomena there was only very little linear relationship. The existence of a non-linear
relationship in the case of day-time and temperature can be seen from the scatter plots in Figure 2.

Table 1. Pearson correlation coefficients between all features and the methane emission En, respectively
the logarithm of the emission ln(En), as target. Here, T refers to the ambient air temperature close to
the building. Wind speed and wind direction were monitored by an anemometer on the roof.

En ln(En)

T 0.082 0.074
T2 0.197 0.183

wind speed 0.071 0.068
wind direction (sin) 0.037 0.022
wind direction (cos) 0.045 0.042

day-time component (sin) −0.600 −0.577
day-time component (cos) −0.496 −0.475

year time component (sin) 0.023 0.029
year time component (cos) 0.001 0.002
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Figure 2. Scatter plots between the target size (emission) and the input features (year-time, day-time,
temperature, squared temperature, wind speed and wind direction).

3.2. Prediction Accuracy

In general, it is advisable in regression analysis to focus on those input variable that are highly
linearly correlated with the output variable. As shown before, in the case of methane emissions from
our naturally ventilated cattle building under consideration, none of the routinely monitored features
fulfilled this criterion. Nevertheless, there are apparently non-linear relations that justify the use of
those features in the modeling process. We considered the predictions of the average emission values
obtained by multiple models.

In row 1 of Figure 3, we present the results obtained by gradient boosting and random
forest. The two ensemble methods produced very similar results with a very accurate and robust
prediction of the 10-month average emission value. Less than 10% relative error were obtained
even for scenarios where only three times 24 h were used for model training. Linear regression
with regularization (Ridge, 2nd row left) and without regularization (LinReg, 2nd row right)
with scenarios with three to four measurement periods resulted in very different emission values.
Linear regression without regularization exhibited larger deviations from the actually measured
value and particularly a larger variability (partly with relative errors around 25%). The results
with scenarios with six measurement periods, were more comparable to the outcome of the
ensemble methods. The projected emission values obtained with an artificial neural network with
hyperparameter tuning (ANN, left) and a simple neural network with one hidden layer and four nodes
(fixAnn, right) are depicted in the third row. The more complex network resulted in general in
projections that were closer to the experimental value. In addition, the variance was smaller than
obtained from fixANN. However, the complex ANN generally tended to slightly overestimate the
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emission values. The deviations from the actually measured mean were typically larger than observed
with the machine learning methods in row 1 and 2. The results of the Gaussian process model
(GaussProc, right) and the support vector machine (SVM, left) are compared in the last row. The SVM
predictions were similar to the results with Ridge. With the Gaussian process the variability was larger
and almost all mean values were below the experimental value.

Figure 3. Predictions of methane emissions [g h−1 LU−1] averaged over the 10 month measuring
period with eight regression methods. The mean over the predictions, based on 30 random realizations
of each of the 27 scenarios (as depicted in Figure 1), is highlighted in blue. The associated
one-sigma intervals are indicated by the light blue dashed lines. Here, all methods used the
features: T (i.e., outdoor temperature), T2, wind speed, wind direction, time and day-time, scaled
with the RobustScaler from Scikit-learn [25]. For comparison, red horizontal lines highlight the mean
observed emission (Ēn = 11.6 g h−1 LU−1).
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Next, we compared the model projections when considering all features versus using only a
selection of features for modeling, since the correlation analysis indicated that the linear relation
between the methane emission and the considered features is usually very week. In consequence,
taking into account all features might reduce the predictive accuracy, particularly in the case
of multilinear regression. The results of this empirical study are summarized examplarily for
GradBoost, LinReg and Rigde in Table 2. We observed that in the case of multilinear regression
(i.e., LinReg and Ridge) neglecting all but the sine and cosine of the day-time indeed improved the
prediction accuracy. A similar behavior as with the linear regression was observed using the ANN
approach (results not shown). The predictions of the methane emissions for the different scenarios that
were obtained with the multilinear regression in that reduced model setup can be seen in Figure 4.
For other methods, such as GradBoost, including all features usually produced slighly better results.

In summary, the worst results were obtained with fixAnn followed by GausProc. LinReg and ANN
performed better for scenarios with six measurement periods, but variability for scenarios with fewer
measurement periods was also high, if all features were taken into account for modeling. Including
only the sine and cosine transformed day-time feature, the prediction accuracy of LinReg considerably
increased for scenarios with fewer measurement periods. The results from Ridge and SVM were
comparable to LinReg and ANN for six measurement periods and all features included. The variability
for scenarios with fewer measurement periods was lower in this setup. The variability of the Ridge
results could be further decreased by neglecting less linearly correlated features. GradBoost and
RandFor achieved the least variable results in the setup with all features combined with on average
small deviations from the actual value. The results of the ensemble methods were comparable to those
of LinReg and Ridge with reduced number of input features, but more robust against the selection
of features.

Table 2. Averaged emission (Emiss.), mean absolute extrapolation error (MAE), total absolute
error (TAE), and mean absolute test error (test err.) averaged over all scenarios. Emission, MAE,
TAE and test error are provided in g h−1 LU−1. Note: The averaged experimental emission was
11.596 g h−1 LU−1. The smallest errors are highlighted in red.

Method Features Emiss. MAE TAE Test Err.

GradBoost

all 11.583 1.372 0.118 1.460
all but T, T2 11.604 1.466 0.099 1.514

day-time (sin, cos) 11.612 1.434 0.083 1.466
day-time (sin) 11.532 1.888 0.091 1.945

LinReg

all 11.627 1.666 0.188 7.567
all but T, T2 11.645 1.829 0.257 7.244

day-time (sin, cos) 11.613 1.406 0.074 1.426
day-time (sin) 11.691 1.882 0.116 1.939

Ridge

all 11.627 1.691 0.159 1.974
all but T, T2 11.645 1.717 0.154 1.904

day-time (sin, cos) 11.613 1.544 0.132 1.588
day-time (sin) 11.691 1.940 0.134 1.991
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Figure 4. Predictions of methane emissions averaged over the 10 month measuring period with two
regression methods and only the sine and cosine transformed day-time as input features. The mean
over the predictions based on 30 random realizations of each of the 27 scenarios (as depicted in Figure 1)
is marked in blue. The associated one-sigma intervals are indicated by the light blue dashed lines.
The red horizontal lines highlight the mean observed emission (Ēn = 11.6 g h−1 LU−1).

3.3. Evaluation Criterion and Temporal Sampling

Next we compare a selection of the presented methods in more detail. The selection was mainly
based on the performance of the methods summarized in Figures 3 and 4, where GradBoost, LinReg
(day-time) and SVM were among the best performing methods. With RandFor and Ridge (day-time) we
also obtained very good results for the predicted 10-months average emission value, but results were
almost identical to GradBoost and LinReg (day-time), while the latter were faster. Thus, we selected
only GradBoost and LinReg (day-time) for the detailed investigation. As a forth method we considered
ANN in the detailed investigation since this method is a frequently used modern machine learning
technique in the context of emission modeling in contemporary literature [20,42–45]. The comparison
of the mentioned four methods in terms of train, test and extrapolation error confirmed the ranking of
these methods found before (see Figures 5 and 6). GradBoost and LinReg (day-time) achieved in general
the lowest error values. SVM performed slightly worse in terms of the test and extrapolation error,
particularly in scenarios with three and four measurement periods. The train error was comparable
amongst GradBoost and SVM, but larger with LinReg (day-time). ANN resulted in the largest errors
amongst the four methods. In general, the results for the test error deviated more among the methods
than for the train and extrapolation error. For larger training sets the different types of errors were
more similar than for smaller training sets.

The box plots for the same selection of methods indicate that the variability of the projected values
in general decreased if larger training datasets were used, while the trend with regard to the average
value was less pronounced (see Figure 6). However, in many cases, in scenarios with 7 and 14 days the
average value was closer to the actual 10-month average than in scenarios with only 1 day.

Furthermore, GradBoost exhibited clearly the least outliers among all realizations.
Therefore, GradBoost was selected to further evaluate the effect of sampling frequency and duration
on the model predictions on the basis of different accuracy measures. Figure 7 indicates that scenarios
resulting in very accurate average emission values did not necessarily result in low extrapolation errors.
Among the scenarios with reasonably low MAE and at the same time small deviation between the
projected and the measured average emission value were the scenarios 20, 21, 23, 24, 26 and 27.
All of those were scenarios with 6 time 7 days (in case of scenarios 20, 23 and 26) or 14 days
(in the other cases). Moreover, the mentioned scenarios had a strong focus on transition periods in the
training datasets.
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Figure 5. Mean absolute errors [g h−1 LU−1] for four distinct regression methods (where LinReg used
only the sine and cosine transformed day-time feature and the other three methods used all features).
In each case, the error was determined on three different datasets: The data that were used for learning
(train error depicted in orange), the data that were used for model testing in the cross-validation
(test error depicted in red) and the data that were not used in the cross-validation (extrapolation error
depicted in blue). All error values were averaged over 30 realizations of data selection, which fulfill the
scenario constraints. Please note that the y-axes in the subplots have different scaling.

Figure 6. Averaged emissions [g h−1 LU−1] predicted by gradient boosting, multilinear regression
with reduced number of input features, a hyperparameter-tuned artificial neural network and support
vector regression. The box plots show the mean values and the variabilities based on 30 random
realizations of each scenario, where the associated length of the measurement period in the scenario
is indicated by the colors cyan (1 day), blue (7 days) and black (14 days). For comparison the mean
observed emission value (11.6 g h−1 LU−1, calculated from the full experimental dataset) is indicated
by a red line. Please note that the y-axes have different scaling.
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Figure 7. Ranking of the explored scenarios: In the upper diagram, scenario indices are sorted
based on the mean predicted emission values, starting with the largest value. In the lower diagram,
scenario indices are sorted based on the mean absolute extrapolation errors (MAE), starting with the
smallest error. All means were calculated over 30 realizations per scenario and are represented by the
border between brown and orange bars. The width of the one-sigma interval is indicated by the orange
and brown bars. The red line in the upper panel corresponds to experimental emissions averaged over
the 10 month measuring period (11.6 g h−1 LU−1).

This can be also seen in Table 3. The three best performing models in terms of MAE,
RMSE and R2 were all scenarios with six times 14 days. The lowest TAE (i.e., the best prediction
of the 10-month average emission value), on the other hand, was obtained in a scenario with six
times 7 days, followed by scenarios with four times 14 days and four times 7 days. Most of the best
performing methods focused on data from transition periods. Particularly, winter measurements were
under-represented in the best performing scenarios.
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Table 3. Mean absolute error (MAE in g h−1 LU−1), root mean squared error (RMSE in g h−1 LU−1),
coefficient of determination (R2, dimensionless) and total absolute error (TAE in g h−1 LU−1),
calculated for gradient boosting on data disjoint from train and test sets. In addition, the total average
error relative to the average observed emission value (%TAE in%) is provided. Red color highlights the
best three results and bold face the worst results. The three lowest error values of MAE, RMSE and R2

resulted from the scenarios 15, 21 and 27, while scenarios 8, 9 and 20 produced the lowest TAE.

Scenario MAE RMSE R2 TAE TAE
Unit g h−1 LU−1 g h−1 LU−1 %

1 1.692 2.223 0.394 0.040 0.344
2 1.394 1.898 0.559 0.053 0.459
3 1.352 1.843 0.584 0.227 1.961

4 1.607 2.130 0.444 0.128 1.104
5 1.324 1.812 0.597 0.057 0.488
6 1.288 1.772 0.614 0.176 1.521

7 1.618 2.151 0.433 0.222 1.916
8 1.328 1.807 0.600 0.016 0.136
9 1.306 1.786 0.606 0.033 0.286

10 1.640 2.177 0.419 0.368 3.173
11 1.347 1.838 0.587 0.053 0.460
12 1.302 1.775 0.611 0.126 1.091

13 1.384 1.868 0.572 0.059 0.509
14 1.239 1.701 0.644 0.132 1.142
15 1.198 1.655 0.659 0.093 0.799

16 1.506 2.009 0.505 0.133 1.145
17 1.262 1.739 0.629 0.119 1.024
18 1.276 1.759 0.617 0.198 1.707

19 1.507 2.022 0.499 0.166 1.429
20 1.247 1.718 0.640 0.005 0.043
21 1.204 1.660 0.664 0.069 0.592

22 1.511 2.028 0.496 0.141 1.213
23 1.270 1.745 0.630 0.033 0.287
24 1.231 1.691 0.649 0.047 0.409

25 1.556 2.091 0.465 0.371 3.202
26 1.248 1.707 0.646 0.067 0.579
27 1.217 1.667 0.660 0.067 0.579

4. Discussion

In the following, we discuss the role of the individual features, the temporal sampling and the
evaluation criterion in the process of empirical modeling of methane emissions as well as the potential
added value and ranking of the different common machine learning approaches.

4.1. Role of Individual Features

Our correlation analysis indicated that particularly the day-time components can explain a
substantial part of the variability in the emission of methane from the naturally ventilated barn with
concrete floor considered in this study. The key role of the day-time components is likely closely related
to the fact that methane emissions are essentially determined by the feed intake [4]. In consequence,
the timing of feed supply and milking is a central clock for the circadian rhythm of methane emissions.
In husbandry systems with feed supply in the early morning, at midday and in the afternoon three
peaks were reported in literature [46]. For feeding systems with feed supply in the morning and
the afternoon a bimodal distribution of methane over the day has been reported [4]. In contrast,
for systems with feed supply in the early and the late morning, as on the farm in our study, there is
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typically one pronounced maximum of methane emission over the day [10,47]. These diurnal rhythms
that are discussed in the literature do not only explain the high absolute value of the correlation
coefficient between the day-time components and the methane emission, but also why the correlation
in our case is negative. With feed supply on the farm in our study in the early and late morning the
emission maximum is observed in the late afternoon [10]. This timing of the maximum coincides
neither with the maximum of the sine nor the maximum of the cosine, but is phase shifted relative to
the trigonometric functions. In consequence, negative correlation coefficients were obtained.

The observed diurnal rhythms in methane emissions can, however, not only be explained by
feed supply as even on pasture, where feed is continuously available, diurnal patterns of the methane
emission have been found [48]. Other possibly influencing variables besides feed supply are the change
between light and darkness and the ambient temperature, both affecting the general activity level of the
animals. Preceeding studies have indicated, that methane emissions notably depend on the ambient
temperature. Considering large temperature intervals, an increase of the methane emission towards
both edges of the thermoneutral zone (i.e., the temperature interval where most of the metabolizable
energy can be used for production) was reported in literature [10]. This immediately suggests that
a consideration of the ambient temperature as a linear variable alone is not enough, which is also
indicated by the low correlation coefficient in our analysis. In consequence, the consideration of the
squared temperature as a feature is valuable for the modeling of the emissions, which is indicated
by the correlation coefficient that is almost twice as high for squared temperature compared to the
temperature itself. It has also been found that, after an increase of the methane emissions under mild
to moderate heat stress conditions, under severe heat stress methane emissions go down again [49].
However, under the typical climatical conditions in our study region squared temperature can be
expected to be sufficient to model the influence of ambient temperature on the methane emission.

High wind speed can reduce heat load and thus modulate the emission pattern induced by the
ambient temperature [50]. Moreover, high wind speed is associated with a larger volume flow from the
naturally ventilated building and can thus result in higher emissions in general as less of the produced
gas is trapped inside the building. Our correlation analysis, however, indicated that these effects play
a minor role. An even lower correlation was found between methane emissions and wind direction.
This can be explained by the fact that the latter basically effects the local wind speed and local air
exchange inside the building [51].

The low correlations of the methane emissions with the year time components can be
explained by the fact that the time of the year only indirectly affects the methane emissions
(e.g., by varying temperature, feed quality, milk yield or cow mass) [4,10,52].

Finally, in contrast to other pollutant emissions (such as ammonia), the linkage to the logarithm
of the methane emission is lower than to the methane emission itself. This can be explained by the
fact that, while emissions from manure basically follow Arrhenius law (i.e., exponential increase
of the emissions with increasing temperature), direct emissions from the digestive system exhibit
different dynamics. In our study the barn was equipped with solid concrete floor that was scraped
every 90 min so that manure-borne methanogenic conversion processes were neglectable in the overall
emission process. In consequence, the monitored methane emissions must be governed by the digestive
processes which do not show an exponential increase with temperature [10].

4.2. Added Value and Ranking of Machine Learning Approaches

Our study indicated that with the mentioned selection of features, most modeling approaches,
even the simple multilinear regression, in general agree acceptably well with the aggregated
emission value. Although individual realizations of the scenarios (i.e., selections of training data)
led to over- and underestimation, in most cases the relative deviation from the actual mean emission
value was below 10%. This is considerably better than the ±20% range reported for ammonia emission
modeling in preceding studies [21,53]. Only with the simple neural network geometry (fixAnn),
the Gaussian Process (GausProc) and some scenarios with the standard multilinear regression (LinReg)



Appl. Sci. 2020, 10, 6938 16 of 21

a substantial variability of the estimated emission values among the realizations of the scenarios was
reported in the current study. This means that it was unlikely to select a suboptimal training period.
This is in contrast to the findings in a preceding study on ammonia emission with a similar
modeling setup [21]. The main differences between the preceding and the current study were
(i) the slightly different choice of features due to the different dependency of the emission dynamics of
the two gases on temperature (Section 4.1) and (ii) the data normalization approach. In contrast to
the preceding study, here we applied a normalization based on median and quantile range. The latter
can reduce the influence of outliers of individual features during the model training. Thus, it can
make model projection more robust, since many classifiers use Euclidean distance to evaluated the
suitability of selected parameter values. If one feature has a broader range of values, the final value of
the distance will be influenced more strongly by this particular feature. Tests of different normalization
approaches (results not shown), with the methane emission related dataset used in this study, indicated
that the effect of data normalization is particularly relevant for the neural network approaches ANN
and fixAnn as well as for GausProc. However, moderate effects were observed also for support
vector machines (SVM), and linear regession with and without regularization (Ridge and LinReg),
while the ensemble methods (GradBoost and RandFor) were almost insensitive to data normalization.
This represents a clear added value of the usage of ensemble methods for the empirical modeling of
methane emissions, which can be expected also for the modeling of other gaseous emissions.

In addition, as found also in the before mentioned study for ammonia, ensemble methods
provided one of the most robust projections of the methane emissions in our study (see Section 3.2).
We observed that GradBoost and RandFor with reduced measurement setups (scenarios 1–12)
achieved similar accuracy as LinReg with extended measurement setups (scenarios 13–27) with six
measurement periods, when all input features were used for modeling. In addition, with six
measurement periods the ensemble methods were even more reliable in terms of reduced variability
of the model projection among the 30 realizations. If only the strongest linearly correlated input
features were taken into account in the modeling, LinReg also achieved good results even with reduced
measurement setups. In consequence, particularly when only three or four measurement periods
are available, a very careful selection of input features or the use of ensemble methods for projecting
methane emission values is advisable.

4.3. Role of Temporal Sampling and Evaluation Criterion

In terms of TAE the scenario 20, a scenario using six measurement periods with 7 days was ranked
highest, followed by scenarios 8 and 9. The latter two were scenarios with only four measurement
periods, which, however, achieved only moderate model errors. Except for scenarios 1 and 13 which
were highly ranked in terms of TAE but not in terms of model error, there was no scenario with only
1 day of measurements per period among the best performing scenarios. This was similar to the
findings for the projection of ammonia emissions in the before mentioned study [21]. The ammonia
study reported acceptable results with scenarios 25 and 22 in terms of TAE but not in terms of model
error. In our current study on methane, however, these two scenarios were rather low ranked in terms
of TAE and model error. Moreover, while the study for ammonia reported no scenario with only
three measurement periods among the best ranked ones, here we found that scenario 1 and 2 reached
acceptable results in term of the TAE, but low quality in terms of model error. In the preceding study
on ammonia only the scenario 12 reached good performance in terms of both TAE and model error.
In the current study on methane this scenario, however, was ranked only on an intermediate place.

All of this indicates that while the recommendation of six times 7 days of measurements
seems to be rather general, in specific situations and setups also smaller training datasets can
achieve good modeling results for gaseous emissions from cattle barns with regularly scraped solid
concrete floor. The latter is in accordance with the recommendations of the VERA (i.e., Verification of
Environmental Technologies for Agricultural Production) protocol for housing systems which also
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recommends a minimum of six measurement periods distributed over the year with at least 1 day of
measurements [17].

Moreover, in accordance with the study on ammonia, we found that most of the best performing
methods focused on training data from transition periods and measurement periods with a duration
of at least 7 days. Among the best performing scenarios winter measurements were particularly
underrepresented while transition periods should be preferred. This is likely related to the fact that
the emission dynamics during transition times represent conditions close to the annual average while
during winter and summer more extreme emission value can be expected. Our results further support
the previous findings that scenarios with 7 days and 14 days result in a comparable model performance.
In consequence, measurement protocols with 7 days can be considered sufficient, particularly in setups
with six measurement periods distributed over the year with a preference for transition periods with
moderate temperatures.

5. Conclusions

Correlation analysis indicated that in the case of a naturally ventilated cattle building with
regularly scraped solid concrete floor particularly the day-time components, and to a minor degree the
squared ambient temperature and the ambient temperature, can explain the variability in the emission
of methane. In addition, wind speed, wind direction and the year time components modulated
the emission pattern. In contrast to other pollutant emissions, such as ammonia, the linkage to the
logarithm of the methane emission was lower than to the methane emission itself. Thus, the methane
emission value itself should be considered as output variable in the modeling process. It should be
noted that the relevant features might be different in husbandry systems where the manure is not
almost immediately removed.

Our initial assumption that the additional level of complexity due to the two different indoor
sources of methane and the non-monotonic influence of temperature may further decrease the accuracy
of empirical modeling of methane emissions compared to those of ammonia when applying standard
multilinear models could not be verified. With the above mentioned selection of features and a suitable
data normalization strategy, most modeling approaches, even the simple multilinear regression,
reached in general acceptable agreement with the aggregated emission value, where in most cases the
relative deviation was below 10% (confirming Hypothesis 1). In the case of multilinear regression,
the results were even better when only the day-time components were included as input features.
The simple neural network without hyperparameter tuning obtained the worst results followed by
the Gaussian processes. Multilinear regression and neural networks with hyperparameter tuning
performed better for scenarios with six measurement periods, but also exhibited high variability
for scenarios with fewer measurement periods when all features were included. The results from
multilinear regression with regularization (all features included) and from support vector machines
were comparable to the former mentioned in the case of six measurement periods, but showed less
variability for scenarios with fewer measurement periods. The ensemble methods gradient boosting
and random forest resulted in on average small deviations from the actual value combined with the
least variable results and can thus be considered very robust in terms of the selection of individual
training data within a temporal sampling scenario. Moreover, they had the added value to be rather
insensitive against the normalization procedure and the inclusion of nonlinearly related input features.

While a recommendation of six times 7 days of measurements seems to be rather general
applicable, in specific situations and setups also smaller training datasets were able to achieve
good modeling results for methane emissions. We observed that, when using all input features,
the ensemble methods with reduced measurement setups (three to four measurement periods)
achieved similar accuracy as the multilinear regression with extended measurement setups with six
measurement periods (confirming Hypothesis 2). We found that most of the best performing methods
focused on training data from transition periods. Our results further support previous findings that
scenarios with 7 and 14 days result in a comparable model performance. In consequence, measurement
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protocols with 7 days and six measurement periods can be considered sufficient, particularly when
periods were distributed over the year with a preference for transition periods and features were
normalized according to median and quartile range. Either gradient boosting should be used for
modeling or only input features that are strongly linearly related to the methane emission should be
used for modeling.

Nonetheless, with a coefficient of determination of about 66% even the best models in this study
could not explain about one third of the variability in the emission data. Considering interactions of
the features could be an option to slightly increase model accuracy. Predictions might be improved
further, if other input features that are more closely and directly related to the emission process
(e.g., exact timing, amount and composition of feed intake, bacterial composition and conditions
in the rumen, etc.) will be included. However, those features are usually barely measurable under
on-farm conditions.
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The following abbreviations were used in this manuscript:

PTFE polytetrafluoroethylene (i.e., teflon)
FTIR Fourier Transform Infrared
LU Livestock Unit (500 kg body mass equivalent)
GradBoost Gradient Boosting
RandForest Random Forest
Ridge Regularized Multilinear Regression
LinReg Ordinary Multilinear Regression
ANN Artificial Neural Network
fixAnn Artificial Neural Network with fixed number of hidden layers and nodes
GaussProc Gaussian Process
SVM Support Vector Machine
MAE Mean Absolute Error
RMSE Root Mean Square Error
TAE Total Absolute Error
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