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A B S T R A C T   

One way to estimate ammonia emission rates from naturally ventilated housing systems is to scale-up mecha
nistic modeling results. However, obtaining the relevant data to set initial and boundary conditions adequately is 
usually very challenging and for a whole barn barely possible. This study has investigated the potential of 
coupling different mechanistic modeling approaches towards an overarching barn scale ammonia emission 
model, which might permit ammonia emission projections for naturally ventilated housing systems with minimal 
measurement efforts. To this end, we combined an ammonia volatilization model for shallow urine or slurry 
puddles with a dynamic mechanistic model of digestion and excretion of nitrogen, an empirical model to esti
mate urination volumes, semi-empirical models for pH and temperature dynamics of the puddles and a mech
anistic air flow model. The ammonia volatilization model was integrated with a time step of one second over a 
period of twenty-four hours, while the relevant boundary conditions were updated on an hourly base (deter
mined by the other mentioned submodels). Projections and uncertainties of the approach were investigated for a 
farm case with about ten months of on-farm measurements in a naturally ventilated dairy cattle building with 
scraped solid floor in Northern Germany. The results showed that the nested model was in general capable to 
reproduce the long-term emission trend and variability, while the short-term variability was damped compared 
with the emission measurements. A sensitivity study indicated that particularly a refinement of the submodules 
for urine puddle alkalizing, urination volume and urea concentration distributions as well as for local near- 
surface wind speeds have a great potential to further improve the overall model accuracy. The cleaning effi
ciency of the scraper has turned out to be a crucial and sensitive parameter in the modeling, which so far has 
been described insufficiently by measurements or modeling approaches.   

1. Introduction 

Emissions from agricultural production are a great concern in the 
context of environmental protection and climate change mitigation (Lal, 
2021; Amon et al., 2021). One of the most crucial substances in this 
context is ammonia (NH3), the emission of which is harmful for the near- 
by environment as it causes large nitrogen entries into soils, water and 
vegetation leading to eutrophication and acidification. The resulting 

modifications in the regional flora (e.g., plant coverage or algae bloom) 
affect the Earth’s surface albedo and thus indirectly the climate systems. 
The potential chemical reaction products of the short living NH3 affect 
the climate system and are also a threat to the health of animals and 
humans (Cheng et al., 2021; de Vries, 2021). In particular, NH3 is a 
significant source of indirect emissions of nitrous oxide (N2O), which is a 
potent greenhouse gas. Moreover, it is a source of the secondary inor
ganic aerosols (SIA) ammonium sulfate and ammonium nitrate which 
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occur as particulate matter in the atmosphere. 
With more than 90% the majority of NH3 emissions in Europe is 

attributed to agricultural production, with a tendency to further increase 
(Murawska and Prus, 2021). About half of those emissions is associated 
with livestock husbandry. The actual emission value of a husbandry 
system, however, depends on many factors, such as animal factors (e.g., 
species, production level/ yield), housing factors (e.g., floor and clean
ing system, barn openings and ventilation) and environmental factors (e. 
g., local air temperature, local air flow patterns). 

In consequence, in particular for naturally ventilated housing sys
tems, the detailed acquisition of emission data and the assessment of the 
complex emission processes require extensive resource usage for on- 
farm measurements which are metrological challenging but also with 
respect to staff and costs involved. Latest expert recommendations 
indicate that four barns per animal category and per floor type should be 
measured with high-end measurement equipment over at least six in
dependent measurement periods of at least 24h distributed though-out 
the year capturing warm, cold and transient weather conditions to 
obtain statistically representative (average) emission values (Interna
tional VERA Secretariat, 2018). However, often different temporal 
sampling strategies were and are used in studies (for example two farms 
with three times two to three weeks (Wu et al., 2012) in warm, cold and 
transition season, six farms with twice three days where each of the 
seasons occurred on two farms (Schrade et al., 2012), one farm for six 
month covering summer, winter and transition season (Schmithausen 
et al., 2018) or one farm twice for the duration of a week (D’Urso et al., 
2021)). The determination of the individual emission values is in most 
cases based on tracer gas methods, either using an artificial tracer or the 
carbon dioxide (CO2) produced by the housed animals and stored 
manure. Due to the imperfect mixing of used and fresh air there is an 
inherent, systematic uncertainty of about 20% in the tracer balance 
based emission estimates depending on the lateral and vertical distri
bution of sampling locations and the timing of the sampling (Janke et al., 
2020; Hempel et al., 2020; Doumbia et al., 2021).The characteristics of 
the uncertainty are not fixed but depend on the ever-changing boundary 
conditions (and often also on the farmer as air ventilation control is in 
many farms still manually depending on animal requirements). 

In order to overcome those problems and to avoid expensive, over
arching measurement campaigns, modeling approaches were developed 
over the last decades as an alternative way of NH3 emission prediction. 
Those approaches include, for example, balancing approaches based on 
nutrition and excretion modeling, reaction-kinetics models for individ
ual urine puddles and slurry storage tanks as well as gas dispersion 
modeling. All of those can mimic particular aspects of the emission 
process. But they rely themselves on either comprehensive measurement 
campaigns or the usage of default values, which limits their accuracy 
and transferability. 

The aim of this study was to investigate the potential of coupling 
different mechanistic modeling approaches towards an overarching 
barn scale model for NH3 emissions. Our process modeling was intended 
to study complex emission characteristics in livestock husbandry under 
practical conditions using mathematical and computational approaches. 
By that we wanted to contribute to a deeper understanding of the 
emission process and support the development of simplified monitoring 
systems. 

The study focused on the following approaches with our modeling: 
(1) Defining a monitoring framework for emission values of a defined 
husbandry system (i.e., in particular defining feeding, floor, cleaning 
and management strategies) that can be applied not only in research, but 
also in commercial farms. (2) Simplifying measurement strategies by 
identifying the most essential parameters and optimize the related 
temporal and spatial sampling strategies. (3) Estimating parameter 
ranges that are representative for a particular husbandry system and 
permit model validation. (4) Projecting the system behavior when 
applying particular emission mitigation measures in that system. 

The farm case used in this study was a loose-housing system for dairy 

cattle in a building with littered lying cubicles and regularly scraped 
solid floor walking aisles. The overall model performance in comparison 
to upscaling based on standard intermittent measurements, as well as 
existing gaps in the nested model, are discussed in this paper. 

Hypothesis and limitations. The leading hypothesis of our study was 
that it is possible to scale up the NH3 volatilization from individual urine 
puddles to the whole barn, while avoiding extensive, time-consuming 
sampling, if different modelling approaches are combined. 

The main limitations of our model are associated with the overall 
variability of the model projections (as described in detail in the dis
cussion section). The spatial and temporal variability of the input vari
ables used is limited to an hourly and group-wise consideration. Animal 
individual feeding, digestion and urination characteristics as well as 
variations in near-surface wind speeds within the group areas and in 
puddle depths are not captured. Moreover, the contribution of non-urea 
nitrogen to NH3 volatilization is not taken into account. The temporal 
dynamics of pH are addressed by empirical relations so far, neglecting 
the dynamic linking of the emission of NH3 (and carbon dioxide) with 
the pH value of the puddle. In consequence, our model must be expected 
to provide a spatially averaged and temporally smoothed emission 
pattern. 

2. Methods 

2.1. Test site 

As a test site for the evaluation of NH3 emission modeling approaches 
we considered a naturally ventilated dairy cattle barn with solid floor 
located in North-East Germany (see e.g. Hempel et al., 2020 or Janke 
et al., 2020 for further details). The building has a gable height of 
10.73m and a side wall height of 4.2m. The widely open long sidewalls 
are facing the main prevailing wind direction which is approximately 
South. The total floor area of the barn is 96.15m times 34.2m. The barn 
consists of four compartments which are separated by two walking al
leys. In the considered period (01–11-2016 until 27–08-2017), two 
compartments accommodated on average about 120 cows each and the 
other two on average about 70 cows each. The solid concrete alley floors 
were cleared by automatic scrapers every 1.5hours. Cows went out for 
milking group-wise for about 45–60minutes three times a day. Taking 
into consideration all four groups this resulted in a total length of each of 
the three milking cycles of about 3–4hours. Milking cycles started 
approximately at 06:00a.m., 02:00p.m. and 10:00p.m. Feed was pro
vided around 06:45a.m. and 10:30a.m. as a total mixed ration. Con
centrations of CO2 and NH3 were monitored inside and around the barn 
on a hourly basis using a tubing system and two high-resolution Fourier 
Transform Infrared (FTIR) spectrometers (Gasmet CX4000, Gasmet 
Technologies Inc., Karlsruhe, Germany). Ten sampling Teflon tubes with 
an inner diameter of 6mm and an orifice with a capillary trap every 
8–10m were placed 4m to 8m away from the walls. One of the lines was 
mounted below the roof in the middle of the barn. The other lines were 
mounted at approximately 3m height. Out of the four sample lines 
outside the building the line with the lowest CO2 value was selected to 
represent outdoor gas concentrations, i.e. the background concentration 
of the incoming air. In order to determine the concentration of the 
outgoing air we followed two different approaches (cf. Janke et al., 2020 
for details): (1) The averaging approach. This approach involved the 
mean of the six sample lines inside the building to represent indoor gas 
concentration. By definition, it tends to systematically underestimate 
indoor gas concentrations, but it is rather robust with regard to random 
errors induced by fluctuating wind directions. (2) The wind-driven 
approach. In this case, the gas concentration values of up to two of the 
indoor sample lines were considered dependent on the wind corridor 
associated with the inflow conditions at the respective hour of the gas 
measurements. The selected lines for the individual wind corridors are 
summarized in Table 1. This approach is in general very sensitive to 
changes in the wind direction that are faster than the gas sampling 
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frequency, but the systematic error associated with mixing of fresh and 
used air is considerably smaller than in the averaging approach. 

Simultaneously to the gas concentrations, air temperature was 
measured at a distance of 5m from the building with an EasyLog USB 2 
+ sensor (Lascar Electronics Inc., Whiteparish, UK) and inflow wind 
velocity was obtained from an anemometer (Windmaster Pro ultrasonic 
anemometer, Gill Instruments Limited, Lymington, Hampshire, UK) that 
was mounted on the roof of the building at a height of about 12m. 

Compartment-wise animal data was provided by the barn’s admin
istration. This data included number, average animal mass, milk yield 
and composition, dry matter intake (DMI) and feed chemical 
composition. 

In the case of gaps in the input data (i.e., air temperature, inflow 
wind speed, inflow direction, number of animals, average animal mass 
and average milk yield) a linear interpolation based on the preceding 
and subsequent value in the dataset was used. Moreover, for the com
parison between measured and modeled emissions, timestamps were 
omitted if no gas measurements were available or the gas concentration 
difference between indoor and outdoor air was negative. 

2.2. Physico-chemical barn scale model 

Our mechanistic barn scale NH3 emission model involves the 
following main elements: As a model core, differential equations 
describing the release of NH3 from individual urine puddles were taken 

from literature (cf. Section 2.2.1). This model core required an input of 
the initial total ammoniacal nitrogen (TAN) and urea concentration, pH 
and temperature of the emitting urine puddles and near-surface wind 
speed as well as effective emission active surface area. Submodels were 
used to estimate these relevant input parameter as illustrated in the 
scheme in Fig. 1. 

The first submodel was a pH model (cf. Section 2.2.2 for details). It 
determined the pH of the slurry puddle (i.e. a puddle of cattle urine 
mixed with feces) as a function of the initial urine pH value (either 
estimated based on the the dietary cation anion difference or from urine 
samples) and the rate of pH change over time. 

The second submodel was a dynamic and mechanistic model of 
rumen microbial fermentation processes, representing the processes of 
digestion in the gastrointestinal tract (cf. Section 2.2.3 for details). This 
submodel was used to estimate total nitrogen excretion, fecal nitrogen 
digestibility and the amount of nitrogen excreted in urine (often referred 
to as TAN), urine volume, and the initial value of TAN concentration. 

The third submodel was a volume urination model (cf. Section 2.2.4) 
for details). It estimated the urination volume in dependence of the time 
of the day, the DMI, fractions of Na and K in the diet and milk compo
sition. Together with the output of the dynamic mechanistic model of 
microbial fermentation processes, this permitted an estimation of the 
urea concentration in the urine at different hours of the day. Moreover, 
it provided an estimation of the initial emission active surface area in the 
course of the day. The effective surface area was then updated on an 
hourly basis in the model core taking into account the scraping fre
quency and efficiency. 

The forth submodel was a cooling model (cf. Section 2.2.5). It esti
mated the temperature of urine puddles at the emission active surface, 
starting from approximately body temperature of the cows and consid
ering the exponential decrease of the temperature difference between 
the puddle and the ambient air. 

The fifth submodel was a flow model (cf. Section 2.2.6). Simulations 
of a computational fluid dynamics model were used to translate inflow 
wind speed into average near-surface wind speed taking into account 
geometric boundary conditions, the dominating convection scheme and 
the wind’s angle of attack. 

Table 1 
Definition of wind corridors and associated selection of indoor gas sampling 
lines for the determination of the gas concentration in outgoing air.  

wind corridor considered sampling line(s) 

[0◦,25◦] ∪ [335◦,360◦] north 
(25◦,65◦) north and west 
[65◦,115◦] west 
(115◦,155◦) south and west 
[155◦,205◦] south 
(205◦,245◦) south and east 
[245◦,295◦] east 
(295◦,335◦) north and east  

Fig. 1. Scheme of the physico-chemical barn scale NH3 emission model with its multiple submodels and the required input parameters.  
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2.2.1. Ammonia volatilization model 
The reaction kinetics of NH3 volatilization from urine puddles were 

calculated based on differential equations given in Eq. 1 and Eq. 2 as 
well as the mass transfer coefficient (Eq. 3), the Henry constant (Eq. 4) 
and and the NH3 fraction (Eq. 5) proposed in literature (Elzing and 
Monteny, 1997; Monteny et al., 1998). This model core covered enzy
matic, dissociative and evaporative processes affecting the emission 
source strength. 

d Uc

dt
= − Sm⋅Uc⋅(Km + Uc)

− 1 (1)  

d TANc

dt
= − k⋅A⋅TANc⋅f ⋅(H⋅V)− 1

+ 2⋅Sm⋅Uc⋅(Km + Uc)
− 1 (2)  

k = 48.439⋅(v0.8)⋅(T − 1.4) (3)  

H = 1384⋅(1.053(293− T)) (4)  

f − 1 = 1+ [10− pH ⋅(0.81⋅10− 10⋅1.07T − 293)
− 1
] (5)  

The relevant variables and parameter in the equations are defined in 
Table 2. 

We considered hourly urination events leading to NH3 release from 
the barn floor. For each urination event, we performed the integration of 
the differential equations over a period of 24 h, with an integration step 
width of one second and an update of the input parameters urine puddle 
temperature and pH every hour. We derived the emission active surface 
area from the urination volume associated with the initial hour of 
integration following Eq. 6. 

A = Vurine⋅pd (6)  

with Vurine the estimated urination volume of all cows in the group in the 
respective hour given in m3 h− 1 group− 1 and an assumed average puddle 
depth pd given in m. We assumed here that all urine remained on the 
floor as long as there was no scraping activity. Moreover, during the 
integration procedure, we assumed that the emission active surface area 
was reduced by a factor c at each hour with scraper activity sh. In 
consequence, the hourly emission of a distinct hour was calculated as 
sum of emissions from all urination events within the last 24 h. (See 
Fig. 2) 

2.2.2. The pH model 
The logistic regression equation (Eq. 7 that calculates the initial pH 

value of urine) was derived from a publication of Oenema (2008) (that 
was itself based on a preceding study of Bannink and Vuuren (1998)) 
with R2 = 0.692 and SE  = 0.612 (Bannink and van Vuuren, 1998; 
Oenema et al., 2008). 

pHinitial = 5.72+ 2.57(1 + exp(− 0.015⋅ΔIon))
− 1 (7)  

where pHinitial is the pH of urine during an urination event and ΔIon is the 
dietary cation anion difference. For the estimation, we needed data on 
the Sodium (Na), Potassium (K), Chloride (Cl) and Sulfur (S) content in 
dietary dry matter (DM). The dietary cation anion difference was then 
calculated as (Na + K-Cl-2⋅S) in the unit of meq/kg feed DM. Here meq 
was the unit used by dividing the milligrams by the atom weight to 
derive moles of Na, K, Cl and S. Positive charges (Na and K) were 
weighted against the negative charges (Cl and S). So the gram of Na, K, 
Cl an S in dietary DM had to be divided by 23, 39, 35.5 and 80, 
respectively to obtain meq of Na, K, Cl and S. Only the S was multiplied 
by 2 because it is excreted in the form of SO4, which has is a double 
negative charge. The higher the dietary cation anion difference, the 
higher the urine pH. With a decrease of this difference to values beneath 
+ 100 meq/kg DM the urine pH starts to drop considerably. 

When detailed data on the dietary cation anion difference was 
missing, the initial pH value in the model was set to a default value 
(based on measurements at the test site barn). We further assumed an 
alkalizing of the slurry puddle in the course of time due to the emission 
of CO2 and NH3 as described in literature (Snoek et al., 2016). The pH 
increase was modeled by two exponential terms. The first term describes 
a fast increase at the beginning associated with the emission of CO2. The 
second term describes the slowing down of the alkalizing towards an 
asymptotic pH value, which has been associated in literature with the 
emission of NH3. 

pHt = pHmax − 0.45⋅d⋅exp( − k1pH ⋅t) − 0.55⋅d⋅exp( − k2pH⋅t) (8)  

where pHt is the pH value after time t, pHmax is the asymptotic pH value 
to be reached at t→∞, k1pH and k2pH are the alkalizing rates associated 
with the emission of CO2 and NH3, and d is the maximal change of the 
pH value (i.e., pHmax − pHinitial). Based on observations in literature 45% 
of the maximal change were attributed to the CO2 related term and 55% 
of the maximal change were attributed to the NH3 related term (Snoek 
et al., 2016). 

2.2.3. The dynamic mechanistic model of digestion and excretion of 
nitrogen 

The nitrogen excreta via urine and feces was calculated using an 
extent dynamic and mechanistic model of rumen fermentation and in
testinal digestion. The model provided outputs on organic matter (OM), 
C and N excreted in urine and feces as a function of diet composition and 
rumen intrinsic degradation characteristics. The model was expanded 
from Dijkstra (1992), and updated on N digestion by Bannink (2018) 
(Dijkstra et al., 1992; Bannink et al., 2018). In addition, Dijkstra (2018) 
introduced equations that represent the urine and fecal excretion and 
deliver quantitative data on excreta composition, including urine as well 
as feces (Dijkstra et al., 2018). The process-oriented model was based on 
a set of differential equations that describe the change in time of pools of 
substrate, micro-organisms and microbial end-product in the rumen and 
large intestine. When assuming a zero N retention in the body Eq. 9 
applies. 

Nfeed = Nurine +Nmilk +Nfaeces (9)  

The unit of Nfeed is gNd− 1. Milk nitrogen (Nmilk) in gNd− 1 was calculated 
from observed values of milk composition based on Eq. 10. 

NMilk = (MY⋅PC
/

100)⋅1000⋅6.38− 1 (10)  

with milk yield (MY) expressed in kgd− 1 cow− 1 and milk protein content 
(PC) in %, and with 6.3gN per g milk protein. 

Table 2 
Overview of parameter and constants involved in the NH3 volorization model. 
Units are provided in brackets.  

A = emitting surface area (m2) 

f = ammonia fraction (dimensionless); a function of T and 
pH 

k = mass transfer coefficient (m⋅s− 1); a function of T and v 
H = Henry’s constant (dimensionless); a function of T  

= equilibrium concentration ratio of NH3   

in liquid and gaseous phase 
TANc = sum of ammonia and ammonium concentration 

(mol⋅m− 3) 
&= TAN 

concentration   
= urine nitrogen per total nitrogen excretion 

E = ammonia emission (mol⋅s− 1) 
V = volume of manure layer (m3) 
v = air velocity (m⋅s− 1) 
T = air temperature (K) 
Uc = urea concentration (mol⋅m− 3) 
Sm = maximum conversion rate at high urea concentration   

(2.83 mol⋅m− 3⋅s− 1) 
Km = Michaelis constant (2000 mol⋅m− 3) 
t = time (s)  
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The urea concentration (Uc) in mol per m3 was estimated from the 
nitrogen excretion in urine based on Eq. 11. Note that non-urea com
pounds which are art of urine nitrogen were neglected here. 

Uc = 71.42857⋅Nurine.day⋅(24⋅Vurine)
− 1 (11)  

with Nurine.day being the average daily amount of urine N excreted by a 
cow of the considered herd/group. The unit of Nurine.day is 
gN ⋅cow− 1day− 1. The factor 24− 1 is a conversion factor to hourly values 
assuming that the N excretion is uniformly distributed over all hours of 
the day. The factor 71.42857 is a conversion factor from gN per liter 
towards mol N per m3, with 1m3 = 1000 l and a molar mass of nitrogen 
of 14gmol− 1. We estimated the daily average urination volume from the 
feed intake and distributed it over the hours of the day using the uri
nation submodel described in subSection 2.2.4. Moreover, the estimated 
nitrogen excretion via urine and feces permitted to approximate the TAN 
concentration (further denoted TANc) assuming that the amount of total 
nitrogen excreted by urination is a good approximation of TAN. The 
TAN concentration in the urine puddle was derived from the fraction of 
urine N in the total N excreted multiplied with the density of the fluid in 
the puddle following Eq. 12. 

TANc = N − 1
tot.day⋅Nurine.day⋅ρM− 1 (12)  

with Ntot.day the average total amount of excreted nitrogen per cow and 
day in gN ⋅cow− 1 day− 1 and Nurine.day the average amount of total ni
trogen excreted by urination per cow and day in gN ⋅cow− 1day− 1. The 
factor ρ⋅M− 1 = 71428.57mol m− 3 is a conversion factor from g urine N 
day− 1 per g total excreted N day− 1 towards mol N per m3 urine puddle, 
with M = 14gmol− 1 molar mass of nitrogen and the slurry density 
assumed to be approximately that of water (i.e., ρ ≈ 1000000 gm− 3). 

The assumption for the slurry density is a simplification, which we 
made here based on two pieces of information in the literature. First, 
manure density based on values for fresh feces and urine from dairy 
cattle are listed with 990 ± 63 kg/m3 in ASAE Standards 2003 (http:// 
large.stanford.edu/publications/power/references/docs/ASAES
tandard.pdf, last access 2022–04-13). Second, it was shown in literature 
that the density of manure increases approximately linearly with the 
total solids content, where a content of about 3% total solids is associ
ated with a density of 1000 kg/m3 (Wang et al., 2019). The puddles on 
the walking alleys of the investigated cattle barn were containing mainly 
urine and feces, but might be mixed with small amounts of bedding 
material from the cubicles. Hence, a low content of total solids could be 
expected. 

2.2.4. The urination model 
The average daily urination volume was predicted from DMI, dietary 

content of Potassium (K), Sodium (Na), and N, milk production, and 
milk protein content, using an empirical equation derived from Bannink 
(1999) (see Eq. 13) (Bannink et al., 1999). 

Vurine.day = 1.3441+(0.001⋅DMI)⋅Fcont − Milk⋅Milkcont (13)  

with DMI the dry matter intake in gday− 1. Milk is the uncorrected milk 
production in kgday− 1, Fcont is the feed composition which is defined 
here as the weighted sum of Na, K and N fractions in feed in gram per 
kilogram of dry matter (DM) (see Eq. 14), and Milkcont is a weighting 
factor that depends on the milk protein proportion (see Eq. 15). 

Fcont = (0.1079⋅frNa+ 0.0538⋅frK + 0.01266⋅fN) (14)  

with frNa, frK and frN being the sodium, potassium and nitrogen frac
tions in g per kg DM. When detailed data on Na and K was missing the 
default values are used, where default of frNa is 2.5gNa per kg DM, and 
of frK it is 30gK per kg DM. 

Milkcont = (0.1216+ 0.0275⋅frprot⋅100) (15)  

where frprot stands for the fraction of protein in milk. When data was 
missing a default value of 0.033 (i.e. 3.3%) is used. In order to model 
hourly urination the total daily urination volume was distributed over 
all hours of the day approximating the right-skewed distribution of 
urination volume per urination event reported in literature for grazing 
cattle (Betteridge et al., 2013; Misselbrook et al., 2016). In this context, 
we considered the individual urination events to be equally distributed 
over the day (Robichaud et al., 2011). Moreover, the model took into 
account an observation reported in literature that maximal volume per 
event was typically observed in the early morning hours (0–4h), while 
minimal urination volumes were found in the last evening (20–24h)) 
(Misselbrook et al., 2016). Hence, our urination submodel output 
involved 24 urination events, the volume of which followed the distri
bution shown in the upper panel of Fig. 3, where we allocated the largest 
event volume to 2 a.m. and then gradually decrease the volume over the 
day until 1 a.m. as shown in the lower panel of Fig. 3. 

For hours where cows were partly absent due to milking activities, 
the estimated urination volume was reduced by a factor which equals 
the percentage of the hour that cows were suspected to be outside the 
barn (e.g., 0.75 if cows are out for 45 min). 

2.2.5. The cooling model 
The slurry puddle temperature was supposed to have initially body 

temperature, where we considered a sinusoidal cycle of body tempera

Fig. 2. Scheme of the NH3 volatilization model with its main input parameters.  
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ture with minimum at 6 a.m., maximum at 6 p.m. and an average value 
of 38◦C (Piccione et al., 2003). The emission, which resulted from one 
urination event, was modeled considering 24 h of integration in the 
model core, over which the slurry temperature was gradually decreased 
towards air temperature. The air temperature close to the emission 
active surface was estimated from the outdoor air temperature using the 
transfer function in Eq. 15 

Tair = a1 + a2⋅Tair.out (16)  

where the parameter a1 and a2 were obtained barn-specifically from 
regression based on sample measurements. In the cooling submodel, we 
considered the comparably small volume of slurry as a body within a 
thermal energy reservoir represented by the air volume inside the barn. 
The cooling process thus could be described using the Newtonian law of 
cooling (see Eq. 17). 

Tslurry(i) = Tair(i)+ (Tslurry(i − 1) − Tair(i))⋅exp( − kT ⋅t) (17)  

Here, Tslurry(i) and Tair(i) are the slurry temperature and the air tem
perature for the next integration period in the core model, Tslurry(i − 1) is 
the slurry temperature in the previous period of integration, t is the time 
one period of integration lasts (in general we used 60min here) and kT is 
the cooling rate. The target air temperature Tair(i) within the barn 
changed during the integration due to the typical daily cycle of outdoor 
air temperature. In the modelling, we updated the target air temperature 
hourly during the integration using always the air temperature of the 
respective hour of the day, when the integration was initialized, as an 
approximation. In that way the model needed only the air temperature 
data from one measurement day as input. The cooling rate is a model 
parameter which needs to be determined for each barn system to be 
modeled. 

2.2.6. The flow model 
In order to translate the inflow wind conditions to the local wind 

speed over the emission active surface we used the results of a compu
tational fluid dynamics (CFD) model with four animal occupied zones 
modeled as anisotropic porous media (Doumbia et al., 2021). The 
length-to-width-ratio of the model building was two, which is a little less 
than the ratio for the actual test site which is about 2.8 (cf. Fig. 4(a)). As 
a further simplification, the geometry of the model building was fully 
symmetric and all animal occupied zones were of equal size so that a 
reduced set of incident inflow angles could be considered (e.g., the 
pattern for wind with 315◦ incident angle could be obtained from a 
simulation with 45◦ incident angle by performing a reflection with 
respect to the axis of symmetry, which was basically a renaming of the 
groups, see Fig. 4(b) for an illustration of this example). 

We simulated the flow for the incident wind angles 0◦, 45◦ and 90◦ as 
well as for three combinations of ambient temperature and inflow ve
locity which represented the possible convection regimes associated 
with typical indoor air flow patterns. The CFD simulations were based 
on the Reynolds-averaged Navier–Stokes (RANS) equations, i.e. a set of 
time-averaged equations of motion for the air flow. The turbulence 
properties were modeled using a k-omega turbulence model, which is a 
standard approach that adds two more transport equations to the RANS 
model in order to represent the turbulent properties of the flow which 
are not captured in the time-averaged equations. Further details on the 
CFD model can be found in Doumbia (2021) (Doumbia et al., 2021). 

With the mentioned CFD model the flow right above the floor could 
be captured. For each of the nine simulation cases, the average wind 
speed in each of the four animal occupied zones 5cm above the floor 
relative to the inflow wind speed was extracted as a scaling factor. The 
height of 5cm was determined by the resolution of the air flow model. 
This level was the lowest in the model except for the floor-air-boundary 
where the air velocity was per definition equal to zero. The measured 
ambient conditions were assigned to one of the nine simulation cases 
and the near-surface wind speed was then determined group-wise by 
multiplying the actual measured inflow wind speed with the respective 

Fig. 3. The upper panel shows the distribution of urination volume per event derived based on literature data from grazing cattle and the lower panel shows the 
associated distribution of urination volume per time interval. The solid line is average from 0–4, 4–8, 8–12, 12–16, 16–20 and 20–0, which corresponds to the 
measurement intervals in the literature. 
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correction factor for the group under the given ambient conditions in 
order to account for the spatial variability of the air flow. 

Moreover, based on simulations of Doumbia (2021) with the same 
CFD model, we derived potential retrieval factors for each of the nine 
simulation cases (Doumbia et al., 2021). These factors reflected the 
simulated deviation between the actual ratio of emitted NH3 and CO2 
and the ratio measured at the height of 3m given different flow patterns. 
The factors were 0.48 (forced convection), 0.38 (mixed convection) and 
0.55 (natural convection) for cross-flow conditions, 0.62 (forced con
vection), 0.65 (mixed convection) and 0.84 (natural convection) for 
inflow via one of the gable walls, and 0.71 (forced convection), 0.68 
(mixed convection) and 0.69 (natural convection) for diagonal inflow. 
This was an attempt to take into consideration the measurement un
certainty when validating the NH3 emission values simulated with our 
mechanistic barn scale NH3 emission model against emission values 
derived from CO2 balancing. 

2.2.7. Model parameter setting 
Emissions were estimated for the four performance groups in the 

barn separately, since the initial and boundary conditions for the four 
groups differed substantially (in particular with regard to the nitrogen 
excretion and air flow induced shifts in chemical balances). Subse
quently, the overall emission at each time step was provided as a 
weighted sum using the average number of cows per performance group 
over the simulation period as weighting factors. This way, the complex, 
nonlinear interaction of enzymatic, dissociative and evaporative pro
cesses and there dependency on the various input parameters could be 
reflected in more detail. The input parameters of the nested reaction 
kinetics barn scale model can be subdivided into four classes. 

The first class involved herd management data. This involved data 
on DMI, feed chemical composition as well as on milk yield and 
composition, all of which were obtained from the farm management 
records. For this class the submodels were driven on inputs related to 
nutrition, including daily DMI, the chemical composition of the diet, and 
intrinsic degradation characteristics of the starch, crude protein and cell 

Fig. 4. The subfigure (a) illustrates the simplification from the real barn’s floor plan, with length-to-width-ratio 2.8 and unequal group size towards a symmetric 
floor plan with length-to-width-ratio 2 and equal group sizes. The subfigure (b) illustrates how the symmetry is used to translate different inflow angles (here 315◦ in 
the upper case) into one of the simulated cases (here 45◦ in the lower case). 
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wall material (neutral detergent fibre/ structural carbohydrates). Be
sides, the model also required input on dietary content of sugars, crude 
fat, organic acids, ash and NH3. 

The second class included weather data monitored in the vicinity of 
the barn. Those were used as input to estimate the ambient conditions 
near the emission active surfaces. This class involved the ambient air 
temperature Tair which was measured in 5m distance from the barn as 
well as the inflow wind velocity V→ measured at the building’s roof at a 
height of 12m. 

The third class grouped estimated parameters, which were derived 
based on very few sample observations, and were given a fixed value. 
This class included the hours of scraping activity sh, the average puddle 
depth pd, parameters of the transfer function from outdoor air temper
ature to near-surface air temperature as well as for cooling and alkal
izing rates, and the initial and asymptotic pH values of the slurry 
puddles. 

The scraping activity sh was estimated based on the scraping fre
quency in the observation period, where cleaning was performed every 
90min. The initialization hour of the scraper was assumed to be around 
2pm based on sample observations of scraping activity within the 
observation period. This was, however, not constantly monitored and in 
reality may have varied over the observation period as the scraper was 
turned on at arbitrary time points after any failure or maintenance. 

The average puddle depth pd was assumed to be around 2mm (no 
measurements available, the assumption is based on observations of 
Snoek (2016) at different dairy cattle farms with concrete floor (Snoek 
et al., 2016)). 

The parameter a1 and a2 for the transfer function from outdoor air 
temperature to near-surface air temperature were obtained from 
regression over 3 h of measurements as a1 = 0.8369 and a2 = 0.9446. 

The parameter kT denotes the cooling rate of urine in contact with 
floor and ambient air. For the test case samples collected at 12 randomly 
distributed location at the floor of the test site in December 2018 were 
considered. At each sampling location air temperature and slurry tem
perature at the time of sample collection was monitored. For the esti
mation of the average cooling rate we assumed that the age of the slurry 
was between one minute and one hour. For each possible age a slurry 
temperature was estimated using Eq. 17 where kT was varied between 
0.01 and 0.05. For each of the twelve samples the combination of 
cooling rate and age that resulted in the smallest deviation from the 
measured slurry temperature was selected. The final kT for the simula
tion was then considered as the average over the estimated cooling rates 
for the twelve samples. 

For the initial pH value of urine we considered the lowest value 
observed in floor measurement during the measurement campaign in 
December 2018 at the test site barn, namely a pH value of 6.8. It has to 
be noted that the age of the individual measured urine or slurry puddles 
was unknown and the measured pH values differed considerably from 
each other with a mean of 7.68 and standard deviation of 0.52. Thus, the 
assumed initial pH value here was a rather arbitrary choice for a proof of 
concept.k1pH and k2pH are alkalizing rates of urine in contact with floor 
and ambient air. We estimated these values using the same set of sam
ples as for the cooling rate and the estimated age of the samples. A range 
of 0.5 to 7 and 0.1 to 2 was tested for k1pH and k2pH, respectively. The 
parameter combination which resulted, averaged over all twelve sam
ples, in the smallest deviation between measured and modeled pH was 
taken for the simulations. 

The value of the asymptotic pH value pHmax was estimated based on 
the observations of Snoek (2016), who found at different farms that after 
4 h pH of slurry did not considerably increase anymore and the increase 
of pH between the first 4 h had on average a slope of 0.15. Hence, we 
took as asymptotic value the largest observed pH value (which was 
assumed to correspond to the oldest measured puddle) plus 0.15⋅4. 

Finally, the forth class involved the remaining tuning parameters, 
which eventually included only one parameter, namely the cleaning 

efficiency c. This parameter describes the remaining proportion of 
effective emission active surface area after scraping. A range between 
0.2 and 0.8 was considered for the model tuning as no measurements 
were available. For the tuning of the model, we used the correlation with 
and relative deviation from the CO2 balance based estimation of emis
sions for five measurement days to select a suitable value of c. We 
repeated the procedure with five different five day periods associated 
with different seasons. From each five day period of input data we ob
tained modeled emissions over six days. The first and the last day were, 
however, excluded from the calculation of correlations and relative 
deviations as not the full set of inputs was available in those periods. 

3. Results 

3.1. Model tuning 

Since the remaining proportion of effective emission active surface 
area after scraping could not be derived from the available measure
ments we performed the sensitivity study described in Section 2.2.7 to 
identify suitable values of the parameter c. The five selected periods 
involved average air temperatures of 1.5 ◦C, 3.8 ◦C, 7.4 ◦C, 11.4 ◦C and 
19.0 ◦C. Average inflow wind speeds were around 0.8ms− 1, except for 
one period with an average inflow wind speed of 1.3ms− 1. First, we 
investigated the correlations between the simulated emissions and the 
emissions derived from gas measurements with the two different ap
proaches to derive the indoor air concentrations as described in Section 
2.1 (see Fig. 5 upper panels). The correlation was found to vary 
considerably depending on the considered period and the approach used 
to estimate the indoor concentrations from the gas concentration mea
surements. In several cases, we observed even a pronounced anti- 
correlation. The correlation was slightly improved when taking into 
account the suspected retrieval factor, but there was no clear trend. 
Moreover, it can be seen in Fig. 5 that in most cases the correlations were 
higher for lower values of c. The variations among the different cases 
were, however, much larger than the variation dependent on the value 
of c. 

Nevertheless, the c value had a strong influence on the projected 
average emission value and the average relative deviation from the 
measurements, as can be seen in the middle and lower panels of Fig. 5. 
Lowest relative deviations were typically observed for c values slightly 
above 0.4, where the derived optimum of c was 0.01 to 0.02 higher if the 
suspected retrieval factor was taken into account. For higher ambient air 
temperatures and higher wind speeds the c value tended to be slightly 
lower. But as this trend was not very pronounced for the further analysis 
a constant value of c was assumed. Moreover, as the value of the 
retrieval factor was associated with a high level of uncertainty, while 
there was no clear trend for improvement of the projection, a focus was 
laid on the unscaled model projections for the further analysis. For the 
subsequent simulations we considered two cases, namely c = 0.41 and 
c = 0.42, which were associated with reasonable values of c according 
to the pre-analysis in Fig. 5. 

3.2. Long-term simulation 

We simulated the NH3 emission dynamics of the test site over a 
period of 302 days using the input parameter settings described in the 
methods section and with the values c = 0.41 and c = 0.42 (cf. Section 
3.1). The resulting time series of hourly emission values are shown in 
Fig. 6 in comparison with the two versions of the CO2 balancing to 
derive indoor air concentrations. We observed that the general long- 
term trend was well reproduced by the simulations, with correlation 
of emissions estimated using the averaged indoor gas concentrations 
(ρavg = 0.62) being much better than the correlation of emissions esti
mated using the wind-dependent selection of sampling lines (ρwind =

0.35). It is noted here that the two measurement-based emission time 
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series, which resulted from the two approaches of CO2 balancing, 
showed a correlation of ρbal = 0.48, which is right in the middle of the 
before mentioned correlations of these two with the simulated emission 
data. Moreover, the average emission values, that were derived from the 
two measurement-based emission time series, differed by approximately 
27g per hour. 

Since the estimations based on the wind-dependent selection of 
sampling lines were in general larger than those based on the averaged 
indoor concentrations, the relative deviation of the simulations from the 
balancing results were lower in the case of the wind-dependent selection 
(while the absolute value of the relative deviation could be also higher as 
in the simulation with c = 0.41). The range of the average relative de
viations over all of the four combinations was close to the range of un
certainty of the measurements which is assumed to be around ±20% in 
literature (i.e., ±0.2 relative deviation between the supposed true value 
and the measured value). 

Moreover, Fig. 6 indicates that the projected emission dynamics 
showed much less fluctuations than the measurements. In consequence, 
the relative deviations per time point (shown in Fig. 7) were much 

higher than the average relative deviation. While the largest absolute 
deviations were predominantly negative (i.e. emission values obtained 
by CO2 balancing were much higher than the simulated emission 
values), the largest relative deviations were in general positive (i.e., here 
the model overestimated the emission value). This indicated that over
estimation can be observed rather in situations where the balancing 
based emission values are small. 

At the same time, we found that the relative deviations per time point 
were less extreme when the wind-dependent CO2 balancing approach 
was used for the evaluation, even though the correlation between 
balancing and simulation results was worse in this setting. In Fig. 8 we 
further investigated the boundary conditions under which larger rela
tive deviations between the model and the balance based emission es
timations occured. Here it was clearly visible that the very large relative 
deviations (i.e., much more than 100% in absolute values) were asso
ciated with situations where the measured gas concentration differences 
were particularly small. This means that the very large deviations were 
observed for times points where the uncertainty in the CO2 balancing 
approaches was particularly high. At the same time about half of the 

Fig. 5. Emission projection with the 
full model using input data for five 
times five days and varying the cleaning 
efficiency parameter c from 0.2 to 0.8. 
The upper panel shows the variation in 
resulting Pearson correlation ρ between 
the model projection and the estimation 
based on different CO2 balancing ap
proaches (solid lines  = with averaged 
indoor concentration, dashed lines  =
with wind dependent indoor sample 
lines). The middle panel shows the 
relative deviation Δ between the model 
projection and the estimation based on 
CO2 balancing using the average indoor 
concentrations. The lower panel is 
analog to the middle panel, but showing 
the absolute value of the relative devi
ation on a log scale. The left panels 
were calculated based on the actual 
model projections, while for the right 
panels the model projections were 

scaled with a retrieval factor derived from CFD simulations. This factor depended on the suspected convection regime and inflow wind angle (see Section 2.2.6). In all 
cases the different colors indicate the five differen.t trial periods.   

Fig. 6. Emission estimation based on 
CO2 balancing versus emission projec
tion with the barn scale model. The gray 
area indicates the range of emission 
values derived from the two approaches 
for the CO2 balancing (i.e. averaged in
door concentration versus wind- 
dependent selection of indoor sample 
lines). For periods without balancing 
data the values are linearly interpolated. 
The purple curve represents the emission 
projection using the value c = 0.42, 
while the red curve is associated with the 
simulation using the value c = 0.41. The 
blue area indicates the deviation be
tween the two simulation runs. In addi
tion, for the two simulation cases the 
correlation (ρ) with and the average 
relative deviation (Δ) from the emission 
values based on the two CO2 balancing 
approaches is shown. The first values 
always corresponds to the simulations 
with c = 0.41 and the second values to 

the simulations with c = 0.42. The indices ”avg” and ”wind” refer to the two balancing approaches to compare with.   
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Fig. 7. Distribution of the absolute deviations (in 
gramm of NH3 per hour) and relative deviations per 
time point for the two simulation runs (index ”1” for 
c = 0.41 and index ”2” for c = 0.42) in relation to 
the estimations based on the two CO2 balancing 
approaches (index ”avg” for the averaged indoor gas 
concentration and index ”wind” for the wind- 
dependent selection of the indoor sampling lines). 
Negative values indicate an underestimation by the 
simulation compared to the experimentally derived 
emission values. The blue lines in the bottom panel 
indicate the region of less than ±1, i.e. 100% de
viation. The red numbers indicate the respective 
quantiles (i.e., minimum | 25% | median | 75% |
maximum) for the different cases.   

Fig. 8. Spread of measured boundary conditions in 
dependence on the relative deviations per time 
point for the two simulation runs (index ”1” for c =

0.41 indicated by circles and index ”2” for c = 0.42 
indicated by triangles) relative to the estimations 
based on the two CO2 balancing approaches (index 
”avg” for the averaged indoor gas concentration 
indicated by red color and index ”wind” for the 
wind-dependent selection of the indoor sampling 
lines indicated by purple color). The upper row 
show the relation between the derived difference 
between outdoor and indoor NH3 concentration for 
the two CO2 balancing cases. The middle row dis
plays the relation similarly for the derived differ
ences between outdoor and indoor CO2 
concentration. Finally, the bottom row shows the 
relation to the measured ambient air temperature 
and the measured inflow wind speed. In all sub
panels the grey vertical lines indicate ±100% 
relative deviation.   
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measured concentration differences were in this rather low concentra
tion range as can been seen in Fig. 9. 

For the relation between the wind speed and the relative deviations 
between model simulations and CO2 balances we found no clear pattern 
in Fig. 8. Only for very high and very low wind speeds the observed 
relative deviations were in general less extreme. While these very high 
wind speeds were very rare in the dataset, the very low wind speeds 
were associated with about one third of the cases as indicated by the 
normalized cumulative frequency distribution in Fig. 9. 

Finally, we observed occurrence of higher differences between the 
model simulations and the CO2 balancing results for distinct tempera
ture ranges, namely around 5◦C, around 15◦C and around 25◦C (cf. 
Fig. 8). Nearly half of the observed temperature values were in the range 
between 0◦C and 10◦C and about one third in the range between 10◦C 
and 20◦C, where around 10◦C comparatively few data were present in 
the dataset. 

3.3. Sensitivity study 

In order to investigate the sensitivity of the simulation on the indi
vidual submodels we sequentially turned off individual submodels 
which were replaced by simplified parameters for the core model. All 
results were compared among each other and with the CO2 balancing 
based on the averaged indoor concentration. 

In the case of the pH we compared the option ”dependent” (i.e., with 
the alkalizing process as described in the methods section) with the 
option ”asymptotic” (i.e., the pH is set to the maximal value already in 
the first integration step), the option ”average” (i.e., the pH is fixed at 
the average value between initial and maximal value) and the option 
”initial” (i.e., the pH is fixed at the initial value). As shown in Fig. 10 
upper panel, the higher pH values resulted in general in higher emission 
values and in a better alignment with the measured emissions. Keeping 
the pH at the initial value or at the mean of initial and asymptotic pH 
value all the time resulted in an average emission value almost two 
orders of magnitude lower than in the CO2 balancing result. For very 
high pH values the average emission value was met quite well, but the 
correlation went down drastically as the simulated emission stayed low 
even for high ambient temperatures (cf. Fig. 10 and Table 3). Only the 
case with the changing pH value was capable to reproduce the long-term 
trend in the emission pattern (particularly the differences between 
summer and winter). This highlights that the interaction between pH 
and temperature in the model plays a key role in the modeling of the 
emission dynamics. At the same time, as shown in Table 3, setting the pH 
value already to the asymptotic value in the beginning of the integration 
resulted in a strong decrease of the correlation, while the other two 
tested options affected the correlation only marginally. 

The lower panel of Fig. 10 shows the sensitivity study of the slurry 
temperature modeling. We compared four options with each other, the 

”cooling”, ”ambient”, ”daymean” and ”average” options. The ”cooling” 
option refers to the full model described in the methods section. In the 
ambient option, the slurry temperature was set to ambient temperature 
already in the first integration step. With the ”daymean” option the 
slurry temperature was set equal to the ambient daily mean temperature 
associated with the excretion event in all integration steps. Finally, the 
”average” option refers to the slurry temperature fixed at the average 
value between body and ambient air temperature. It was noted that the 
options ”cooling”, ”ambient” and ”daytime” resulted in very similar 
emission patterns, which is also reflected in the corresponding correla
tion coefficients in Table 3. In the option ”average”, where the slurry 
temperature was kept constantly at (most of the time) unrealistic values, 
the simulated emission pattern was considerably different. Particularly, 
in periods with rather cold ambient conditions (i.e., first ca. 100 days), 
where the assumed temperature in this approach was most of the time 
too high, the emissions were considerably overestimated. On the other 
hand, in periods with rather warm ambient conditions (i.e., last ca. 100 
days), where the averaging approach implies that at the beginning of the 
emission process the assumed temperature was too low, the emissions 
were underestimated. This temperature dependent bias was also re
flected in the considerable anti-correlation indicated by the correlation 
coefficients for the option ”average” in Table 3. 

Next, we investigated the effect of the downscaling approach for the 
ambient wind speed on the overall model performance. In Fig. 11, we 
compared the option ”CFDgroups” (i.e., simulated emissions based on 
the full model) with the options ”CFDaverage” (i.e., one scaling factor 
averaged over the four groups to downscale the ambient wind speed), 
”logprofile” (i.e., downscaling assuming a logarithmic wind profile) and 
”inflow” (i.e., no downscaling). All options were in general capable to 
reproduce the long-term dynamics of the emissions (i.e., higher values in 
summer, lower in winter). The option ”inflow” resulted in general in the 
largest emission peaks, while ”logprofile” and ”CFDaverage” repre
sented more smoothed patterns. The correlation coefficients in Table 3 
highlighted that the downscaling approaches that were not spatially 
resolved, could improve the matching between simulated and experi
mentally derived emissions only marginally. In contrast, the group- 
specific downscaling of the wind speed increased the correlation 
considerably from 0.51 to 0.62. 

Finally, we investigated the effect of the urination distribution and 
found that the diurnal rhythm of the excreted urination volume can have 
a considerable influence on the emission dynamics. The lower panel of 
Fig. 11 shows the urination sensitivity study. The options ”grazing” (i.e., 
from the full model), ”exponential”, ”uniform” and ”triggered” were 
compared. The ”exponential” option refers to an exponential decay of 
urination volume from morning to night, which can be considered as a 
smoothed version of the ”grazing” case pattern. The ”uniform” points to 
an uniform distribution of the total urine volume over the day, which 
reflects observations on Holstein cows in a freestall barn showing a more 

Fig. 9. Normalized cumulative frequency 
distribution of the measured boundary con
ditions shown in Fig. 8. Here, ΔNH3avg and 
ΔCO2avg are the concentration differences of 
NH3 and CO2 as estimated using the aver
aging approach in the CO2 balancing as 
described in Section 2.1. Similarly, 
ΔNH3wind and ΔCO2wind are the concentra
tion differences of NH3 and CO2 as esti
mated using the wind-driven approach. 
Moreover, T refers to the air temperature 
measured near the building and WS refers to 
the speed of the approaching wind as 
measured at the top of the roof of the 
building. The scaling factors 10, 40 and 
1000 have been selected to map all of the 
mentioned variables to a comp.arable 
codomain.   
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uniform pattern of urination over the day (Robichaud et al., 2011). The 
”triggered” option concerns an almost uniform distribution of the total 
urine volume over the day where hours with feeding or milking activity 
were double-weight as literature suggests that urination is more likely in 
active phases than during resting periods (Aland et al., 2002; Robichaud 
et al., 2011). It can be seen that the ”grazing” and ”exponential decay” 
distributions resulted in higher emission values than the ”uniform” and 
the ”triggered” options. A urination distribution with exponential decay 
from morning to night (as a simplification of the full model) had only 
marginal effects on the correlation and the average emission values (cf. 
Fig. 11 lower panel and Table 3, the average emission value differed by 
about 1 g per hour among the simulated options). In contrast, distrib
uting the daily urination volume equally over the hours of the day 
actually improved the correlation with the balancing based emission 
estimation from 0.62 to 0.64. At the same time, the projected average 
emission value increased by about 5g per hour. A distribution of the 
total urination volume where the hours of the day with feeding and 
milking activities were weighted twice compared to other hours, resul
ted in comparable correlation values. The average emissions were about 
1 g per hour lower (probably because a larger portion of the urination 
happened outside the barn during milking under this assumption). 

4. Discussion 

4.1. General model performance 

The presented barn scale NH3 emission model including its sub
modules for animal excreta, pH, temperature and air flow, was in gen
eral capable to reproduce the long-term emission patterns based on 
input variables that can be easy and cost efficiently measured. With 
− 33% to 25% (depending on the selected value for the cleaning effi
ciency and the selected baseline experimental reference, namely the 
averaging or the wind-driven approach for CO2 balancing) the de
viations between the modeled and the measured long-term average 

emission value were in the same order of magnitude as the deviation 
between the emission values obtained by the two CO2 balancing ap
proaches. The uncertainty related to the latter is typically large. Up to 
20% difference in the estimated long-term emission value were reported 
in literature depending on which approach was used to determine gas 
concentrations in the incoming and outgoing air (Janke et al., 2020). In 
our dataset, the difference in the average emission values was even 21% 
or 27% (depending on which emission value was used as the baseline 
value). In general, we observed a smaller deviation between the simu
lated and the experimentally derived emission when using the CO2 
balancing approach based on the average indoor concentration. At the 
same time, the largest individual deviations between simulations and 
experimentally derived emissions were found when using this approach. 
This can be explained by the fact that the averaging approach is known 
to be particularly robust under fluctuating wind conditions, but it also 
tends to underestimate the gas concentration in the outgoing air (Janke 
et al., 2020). As can be seen in Fig. 8 the largest deviations between 
model and measurement based emission time series were observed in 
situation where the measured concentration differences were very low, 
which is more likely in the situation when using the average indoor 
concentration. In those cases, however, the experimentally derived 
emission values are also particularly uncertain. 

We noticed that the simulated emission time series correlated much 
better with the emission time series derived from the average indoor 
concentration than the time series of the two balancing approaches 
compared to each other. This indicates that the major emission relevant 
processes were well represented in the model. As shown in Fig. 7 the 
relative deviation between simulation and measurement was in most 
settings comparable to the typically reported uncertainty for projections 
based on intermittent emission measurement (Hempel et al., 2020). 
However, the time series shown in Fig. 6 also clearly indicates inter
mittent periods of anti-correlation between the model and the mea
surements. Similar pattern of deviation on the hourly basis were also 
reported in the study of Monteny (2015) who simulated NH3 emissions 

Fig. 10. Sensitivity of the simulated emission dy
namics to different pH and slurry temperature 
models. Comparison between the CO2 balance based 
emission estimation using averaged indoor gas 
concentrations (denoted ”ref”) and different simu
lation cases where c1 = 0.41 and c2 = 0.42 refer to 
the assumed value of scrapping efficiency. The full 
model includes the alkalizing of the slurry as a 
consequence of the emission processes, the cooling 
of the urine puddles from body to ambient temper
ature in the course of time, the downscaling of the 
wind speed from inflow reference to group specific 
near-surface wind speed and excretion behavior 
documented in literature for grazing cattle. In the 
case of the pH sensitivity study in the upper panel, 
we compared the option ”s1:dependent” (i.e., from 
the full model) with the options ”s2:asymptotic” (i. 
e., the pH is set to the maximal value already in the 
first integration step), ”s3:average” (i.e., the pH is 
fixed at the average value between initial and 
maximal value) and ”s4:initial” (i.e., the pH is fixed 
at the initial value). In the T sensitivity study in the 
lower panel, we compared the option ”s1:cooling” 
(i.e., from the full model) with the options ”s2: 
ambient” (i.e., slurry temperature is set to ambient 
temperature already in the first integration step), 
”s3:daymean” (i.e., slurry temperature is set equal to 
the ambient daily mean temperature associate with 
the excretion event) and ”s4:average” (i.e., slurry 
temperature is fixed at the average value between 
body and ambient air temperature).   

S. Hempel et al.                                                                                                                                                                                                                                 



Computers and Electronics in Agriculture 199 (2022) 107168

13

over two times four days for a slatted floor housing system (Monteny 
et al., 1998). This might be related to a spatial and temporal variability 
in the input variables that was not mimicked in the measured and 
modeled input data. 

Furthermore, it was highlighted in Section 3 that the projected 
emission dynamics showed much less fluctuations than the measure
ments. This result was likely caused by adopting less fluctuating inputs. 
For example, urination events and urea contents were modeled as av
erages over all cows within a group, while preceding experiments 
showed a large variability of the urea concentration in urine puddles in 
the barn under consideration with a range between 13 and 277 mol per 
m3. The inputs used in our model did not reflect the variability among 
cows, but only among the four performance groups in the barn. In our 
simulations, we used simulated total excreted nitrogen in urine as a 
proxy for the urea excretion, since about 70% to 75% of nitrogen 
excreted in urine of cattle is typically urea (Spek et al., 2013). In practice 
this will, however, strongly depend on the diet and the N utilization by 
the individual cows for milk protein synthesis. The fraction between 
urea and non-urea nitrogen is not constant and ranges between 60% to 
90%. Moreover, the ratio will change with the age of the urine puddle 
due to the activity of urease. In addition, also the urine nitrogen con
centration itself is varying largely among cows of the same herd and 
even between individual urination events (Misselbrook et al., 2016). All 
of this variation is not captured in the present model. Moreover, when 
modelling the emissions per group of animals we assumed spatially 
averaged meteorological conditions, while earlier studies as well as the 

above-mentioned preceding experiments indicate significant spatial 
variability (Hempel et al., 2018; Doumbia et al., 2021). The comparison 
of our simulation runs with group-wise downscaling of the wind speed 
versus barn average downscaling of the wind speed confirmed the 
relevance of this spatial variability of meteorological boundary condi
tions. Finally, in our model we assumed that fluctuations in the 
boundary conditions within one hour are neglectable. In consequence, 
the boundary conditions in the model were updated only on an hourly 
time scale, whereas the actual meteorological conditions may fluctuate 
much more on a shorter time scale. 

In consequence, our model is expected to provide a spatially aver
aged and temporally smoothed emission pattern. The predictions were 
consistent with the above-described systematic deviations on the shorter 
time scale and the pronounced long-term emission pattern fits well with 
the experimentally derived emission patterns. 

4.2. Uncertainty and sensitivity related to submodules 

Each of the submodules used in this study modeled the state of the 
input for the reaction kinetics model associated with a particular level of 
uncertainty which propagated into uncertainty of the predicted 
emissions. 

The pH model, which we used in our study to describe the alkalizing 
of the slurry puddle over time, was based on an empirical relation re
ported by Snoek (2016) (Snoek et al., 2016). In the study these authors 
found a good overall performance of the empirical model reflected in 
high coefficients of determination per puddle (R2=0.97±0.04 and 
ranging from R2 = 0.84 to R2 > 0.99). But they also reported a high 
variability in the estimated coefficients per individual puddle. Due to the 
limited number of available measurements in our study we assumed that 
the ratio of the factors related to NH3 and CO2 emissions in our model is 
equal to the average ratio in the mentioned literature and the asymptotic 
pH can be described by the regression equation from that publication, 
while we fitted the two alkalizing rates to the sample measurements in 
the present study. This was a strong simplification, whereas our sensi
tivity study indicated that the temporal changes in the alkalizing rates, 
are particularly relevant to reproduce the long-term emission pattern 
correctly. For example, even when the pH value was initially set to the 
asymptotic pH value, the high emission values in summer could not be 
reproduced. Moreover, this resulted in a strong decrease of the corre
lation, while the other tested pH input options affected the correlation 
only marginally. This indicated that pH is particularly important to 
simulate the first phase of the emission correctly. In consequence, we 
conclude that the correct determination of the initial pH value and the 
alkalizing rates are factors of utmost importance in the NH3 emission 
modeling. The rates, however, are likely also affected by the actual 
boundary conditions (i.e., the material of the floor, the ambient tem
perature, the near-surface wind speed or the relative humidity of the 
ambient air). For example, Hafner (2013) showed that, when NH3 and 
CO2 are simultaneously emitted, CO2 emission increases the NH3 emis
sion rates from thin layers due to an increase in the pH at the manure 
surface, where the magnitude of the effect depends among others on the 
manure composition, the temperature and the surface mass transfer 
coefficient (Hafner et al., 2013). This indicates that a further expansion 
of the pH submodule, to capture the interaction between the CO2 and the 
NH3 emissions in the course of the alkalizing process of urine, slurry 
puddles or liquid manure storage, would be valuable for the overall 
model prediction. Nevertheless, a sufficient description of the pH dy
namics on a particular flooring system could likely be estimated as well 
with measurement efforts, which are much less than efforts needed for 
representative concentration measurements in naturally ventilated 
barns. 

Reliable predictions of N excreted are needed for an integral 
assessment of the impact of feeding strategies on the losses of N in dairy 
cattle farms. Moreover, having overall estimates on urinary N and faecal 
N is important to calculate the ammoniacal availability, and predict the 

Table 3 
Correlations between the CO2 balance based emission estimation using averaged 
indoor gas concentrations and different simulation options. The full model in
cludes the alkalizing of the slurry as a consequence of the emission processes, the 
cooling of the urine puddles from body to ambient temperature in the course of 
time, the downscaling of the wind speed from inflow reference to group specific 
near-surface wind speed and excretion behavior documented in literature for 
grazing cattle. In the case of the pH sensitivity study, we compared the option 
”dependent” (i.e., from the full model) with the options ”asymptotic” (i.e., the 
pH is set to the maximal value already in the first integration step), ”average” (i. 
e., the pH is fixed at the average value between initial and maximal value) and 
”initial” (i.e., the pH is fixed at the initial value). In the T sensitivity study, we 
compared the option ”cooling” (i.e., from the full model) with the options 
”ambient” (i.e., slurry temperature is set to ambient temperature already in the 
first integration step), ”daymean” (i.e., slurry temperature is set equal to the 
ambient daily mean temperature associate with the excretion event) and 
”average” (i.e., slurry temperature is fixed at the average value between body 
and ambient air temperature). In the WS sensitivity study, we compared the 
option ”CFDgroups” (i.e., from the full model) with the options ”CFDaverage” (i. 
e., one scaling factor averaged over the four groups), ”logprofile” (i.e., down
scaling assuming on a logarithmic wind profile) and ”inflow” (i.e., no down
scaling). Finally in the Urine sensitivity study, we compared the option ”grazing” 
(i.e., from the full model) with the options ”exponential” (i.e., an exponential 
decay of urination volume from morning to night), ”uniform” (i.e., an uniform 
distribution of the total urine volume over the day) and ”triggered” (i.e., an 
almost uniform distribution of the total urine volume over the day where hours 
with feeding or milking activity were double-weighted).  

options c c 
simulated 0.41 0.42 

full model run 0.61 0.61 
pH sensitivity ”asymptotic” 0.24 0.21 
pH sensitivity ”average” 0.62 0.62 
pH sensitivity ”initial” 0.62 0.62 
T sensitivity ”ambient” 0.62 0.61 
T sensitivity ”daymean” 0.62 0.62 
T sensitivity ”average” − 0.65 − 0.65 
WS sensitivity ”CFDaverage” 0.52 0.52 
WS sensitivity ”logprofile” 0.53 0.53 
WS sensitivity ”inflow” 0.51 0.51 
Urine sensitivity ”exponential” 0.62 0.62 
Urine sensitivity ”uniform” 0.64 0.64 
Urine sensitivity ”triggered” 0.64 0.64  
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lost in the form of NH3 and nitrogenous greenhouse gases. This can be 
approximated by a simple empirical equation, but more mechanistic or 
process-oriented models simulate with higher accuracy the variation in 
N excreta depending on input parameters, such as feed quality, N intake 
and digestibility. Sufficient activity data should be obtainable to 
generate model inputs, however. For this, the dynamic mechanistic 
model that was used delivered outputs on total N which was partitioned 
between N in milk, and N in urine and faces. The model captured the 
variation between individual groups of cows within which cows have 
basically the same level of production and feed intake, by calculating an 
average diet for each category. Assuming that the differences between 
animals in the same group are not relevant was again a simplification, as 
in practice these differences may occur (e.g., in feed conversion ratio 
and in N digestibility) and impact the amount of N excreted in urine and 
feces. In this sense, using a multivariate Bayesian model Reed (2014) 
showed that the efficiency with which feed N is converted to milk N, was 
improved when diet metabolizable energy content was increased, and 
thus N losses were reduced, improving dairy production efficiency (Reed 
et al., 2014). In fact, adding metabolizable energy content, as a covariate 
with N intake improved the predictions of N excretion (Kebreab et al., 
2010). 

The empirical model used to predict urine volume was driven by 
DMI, level of milk production and observed or assumed fractions of 
minerals in dietary DM. This resulted in capturing differences in the 
amount of urine produced between different groups of animals. How
ever, it should be pointed out that this model applies in particular to 
conditions where drinking water is not restricted, and relatively high 
amounts of K and Na are ingested in DMI. Furthermore, timing/ distri
bution of urination volume over the day had considerable influence on 
the predicted emission dynamics. Our modeling based on observations 
published for grazing cattle was insufficient since conditions in the barn 
(feeding, milking) seems to modify the urination behavior considerably. 
Moreover, the published distribution of urine volumes per event and in 
the course of the day were measured under comparably warm conditions 

in the late summer/ early autumn where activity patterns might be 
shifted towards night or early morning which could have an effect also 
on the temporal urination pattern. Further studies relating the urination 
behavior of housed dairy cattle to activity patterns and ambient condi
tions could be beneficial to further refine our barn scale NH3 emission 
model. 

A further submodule, the cooling model, could in principle be refined 
by taking into account effects of radiation, convective heat transfer and 
fluctuating ambient air temperatures in general. This would result in a 
nonlinear response of the temperature that is not captured by the 
simplified assumptions in the Newton’s law of cooling adopted in the 
present study. However, the submodule had in general a rather small 
impact on the overall model accuracy in our sensitivity study as long as 
the cooling dynamics were roughly captured. This indicates that the 
determination of a sufficiently accurate cooling rate is more important 
than the determination of the actual ambient air conditions and their 
fluctuations. Also some influence of thermoconductivity of the floor on 
cooling rate must be expected, which may contribute to an explanation 
of emission differences for different floor materials and environmental 
conditions. As illustrated in literature, the urine temperature (or slurry 
temperature) drops fast and may end up even in negative differences 
between the ambient air temperature and the slurry temperature as air 
temperature is usually not measured directly at the floor (Snoek et al., 
2016). Further measurements are needed to investigate the relation 
between air temperature, floor temperature and slurry temperature for 
different floor types and materials in detail. The air temperature close to 
the emission active surface might be simulated using the computational 
fluid dynamics model, as our sensitivity analysis already showed the 
potential of including this submodule with regard to local near-surface 
wind speeds. Incorporating the wind speed variability throughout the 
barn by using approximated group-wise averaged near-surface wind 
speeds, already significantly improved the performance of our barn scale 
NH3 emission projections. In consequence, more barn-specific numerical 
simulations taking into account further combinations of boundary 

Fig. 11. Sensitivity of the simulated emission dy
namics to different wind and urination models 
models. Comparison between the CO2 balance based 
emission estimation using averaged indoor gas 
concentrations (denoted ”ref”) and different simu
lation options where c1 = 0.41 and c2 = 0.42 refer 
to the assumed value of scrapping efficiency. The 
full model includes the alkalizing of the slurry as a 
consequence of the emission processes, the cooling 
of the urine puddles from body to ambient temper
ature in the course of time, the downscaling of the 
wind speed from inflow reference to group specific 
near-surface wind speed and excretion behavior 
documented in literature for grazing cattle. In the 
WS sensitivity study in the upper panel, we 
compared the option ”s1:CFDgroups” (i.e., from the 
full model) with the options ”s2:CFDaverage” (i.e., 
one scaling factor averaged over the four groups), 
”s3:logprofile” (i.e., downscaling assuming on a 
logarithmic wind profile) and ”s4:inflow” (i.e., no 
downscaling). In the Urine sensitivity study in the 
lower panel, we compared the option ”s1:grazing” 
(i.e., from the full model) with the options ”s2: 
exponential” (i.e., an exponential decay of urination 
volume from morning to night), ”s3:uniform” (i.e., 
an uniform distribution of the total urine volume 
over the day) and ”s4:triggered” (i.e., an almost 
uniform distribution of the total urine volume over 
the day where hours with feeding or milking activity 
were double-weighted).   
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conditions can be expected to further improve the NH3 emission pre
dictions. In this sense, an online coupling of the NH3 release and the flow 
model is desirable. 

The main unsolved issue with our barn scale model is, however, its 
sensitivity on the effective emission active surface area. This is a rather 
crucial and sensitive model parameter strongly affecting the average 
amount of NH3 emission predicted by the model. So far its value has 
been determined only recursively. In consequence, in the current setting 
measurement efforts for a suitable estimation might be comparable to 
the efforts for concentration measurements. Hence, additional mea
surement setups (preferable at lab scale) are needed to derive the 
effective area reduction of a floor system/ material in sample mea
surements. Moreover, on-farm chamber measurements might be an 
option to collect further crucial insights on the effective cleaning 
efficiency. 

5. Conclusions 

Our study demonstrated the great potential of coupling different 
mechanistic modelling approaches to project NH3 emission dynamics 
from dairy housing at the barn scale using only input data that can be 
easily accessed and measured or monitored cost-efficiently. Our 
modular model was in general capable to reproduce the long-term 
emission patterns. The deviations between the modelled and the 
measured long-term average emission value were in the same order of 
magnitude as the deviation between the emission values obtained by the 
different approaches of CO2 balancing. Uncertainty of model predictions 
was comparable to the typical uncertainty of projections obtained from 
regressions based on intermittent measurements. The latter requires 
more elaborate measurement setups, however, in contrast to modeling 
with a selected set of inputs. In contrast to the well reproduced long- 
term dynamics, the predicted short-term emission dynamics showed 
discrepancies, which is likely related to spatial and temporal averaging 
of the input data. Further model refinement and/ or adding specific 
modules that mimic the spatial and temporal variability of those input 
data can be expected to further improve the overall model performance 
on the shorter time scales. Sensitivity analysis indicated that this needs 
to include particularly improved modeling of urination and wind speeds 
as well as the variability of the urea content and the temporal dynamics 
of the alkalizing in interaction with the emission of NH3 and CO2. 
Finally, we concluded that the cleaning efficiency of the floor scraping is 
a crucial and sensitive, but yet insufficiently experimentally determined 
model parameter. 

In consequence, we identified four crucial areas for future research. 
First, a detailed investigation of pH dynamics in urine and shallow 

slurry puddles is urgently needed. On the one hand, this involves the 
development of a standardized and refined procedure for the estimation 
of the initial pH value in the puddle, as the results of the two approaches 
described in this paper (i.e., sample measurements or the calculation 
from the dietary cation–anion difference) were found to be ambiguous. 
On the other hand, the empirically derived regression coefficients to 
describe the pH change over time due to the emission of NH3 and carbon 
dioxide are rather sensitive to the available dataset (as was already 
mentioned in literature before). Therefore, future work should focus on 
(partly) replacing those empirical relations also by a mechanistic pH 
model, which should also take into account potential interactions with 
the floor material. 

Second, a detailed investigation of the distribution of the urination 
volume among the individual cattle and in the course of the day should 
be performed under practical conditions inside a barn. In order to reach 
the goal of deriving an emission estimation tool that requires minimal 
measurement efforts, options to determine the timing and volume of 
urination noninvasive have to be considered. Attempts in this direction 
may include the application of machine learning approaches on camera 
and radar data. 

Third, in order to improve the representation of the scrapping 

procedure in the barn scale model, the influence of different factors (e.g., 
floor material and microclimatic conditions) on the actual scrapping 
efficiency has to be investigated in detail. In this context, measurements 
with static and/or dynamic flux hoods might provide new insights. 

Finally, the feasibility of an active coupling of the volatilization 
model with the air flow model (instead of the one-way-coupling in the 
presented approach) has to be investigated. In this context, research 
should also include the investigation of approaches to approximate 
spatially resolved near-surface air flow by means of machine learning in 
order to keep the overall computing times reasonable for practical 
applications. 
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