11 research outputs found

    Simultaneous identification of GSTP1 Ile105→Val105 and Ala114→Val114 substitutions using an amplification refractory mutation systempolymerase chain reactionassay: studies in patients with asthma

    Get PDF
    BACKGROUND: The glutathione S-transferase (GST) enzyme GSTP1 utilizes byproducts of oxidative stress. We previously showed that alleles of GSTP1 that encode the Ile105→Val105 substitution are associated with the asthma phenotypes of atopy and bronchial hyperresponsiveness (BHR). However, a further polymorphic site (Ala114→Val114) has been identified that results in the following alleles: GSTP1(*)A (wild-type Ile105→Ala114), GSTP1(*)B (Val105→Ala114), GSTP1(*)C (Val105→Val114) and GSTP1(*)D (Ile105→Val114). METHODS: Because full identification of GSTP1 alleles may identify stronger links with asthma phenotypes, we describe an amplification refractory mutation system (ARMS) assay that allows identification of all genotypes. We explored whether the GSTP1 substitutions influence susceptibility to asthma, atopy and BHR. RESULTS: Among 191 atopic nonasthmatic, atopic asthmatic and nonatopic nonasthmatic individuals, none had the BD, CD, or DD genotypes. GSTP1 BC was significantly associated with reduced risk for atopy (P = 0.031). Compared with AA, trend test analysis identified a significant decrease in the frequency of GSTP1 BC with increasing severity of BHR (P = 0.031). Similarly, the frequency of GSTP1 AA increased with increasing BHR. CONCLUSION: These data suggest that GSTP1(*)B and possibly GSTP1(*)C are protective against asthma and related phenotypes

    Gyrodactylus triglopsi n. sp. (Monogenea: Gyrodactylidae) from the Gills of Triglops nybelini Jensen, 1944 (Teleostei: Cottidae) in the Barents Sea

    Get PDF
    Introduction Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January–February 2016. Methods Morphological preparations of the parasites were examined and photographed under a microscope at magnifications of × 100–1000 and morphometric analyses were carried out on 22 specimens using ImageJ2 software. Eight of the specimens used for the morphological comparisons were also subjected to molecular analyses by sequencing a region of the ribosomal DNA spanning partial 18S, the internal transcribed spacers 1 and 2 (ITS1 and 2), 5.8S and partial 28S and comparing this with other species through a BlastN-search in GenBank and through phylogenetic analyses. Results The morphology of the species from T. nybelini was markedly different to that of any of other species of Gyrodactylus. It is characterized by having relatively long hamulus roots, a character that it shares with two other species described from marine sculpins (Cottidae); G. armatus and G. maculosi. It also has a narrow rectangular ventral bar membrane with a posterior notch which it shares with G. maculosi only. Compared with all the seven species from marine Cottidae described so far, it has the smallest opisthaptoral hard parts. A comparison of the internal transcribed spacer (ITS) rDNA sequence with available sequences in GenBank and a phylogenetic analyses also showed it to be highly divergent from other sequences. Therefore, a new species is proposed, Gyrodactylus triglopsi n. sp. Conclusion Both the morphological and molecular analyses support the status of G. triglopsi as a new species. This is to our knowledge the first species of Gyrodactylus described from Triglops nybelini and the description extends the list of Gyrodactylus species found on fish in the Barents Sea to 17.publishedVersio

    The expression and functional significance of glutiathione S-transferase P1 (GSTP1) polymorphism in the lung

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Gyrodactylus triglopsi n. sp. (Monogenea: Gyrodactylidae) from the Gills of Triglops nybelini Jensen, 1944 (Teleostei: Cottidae) in the Barents Sea

    No full text
    Introduction Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January–February 2016. Methods Morphological preparations of the parasites were examined and photographed under a microscope at magnifications of × 100–1000 and morphometric analyses were carried out on 22 specimens using ImageJ2 software. Eight of the specimens used for the morphological comparisons were also subjected to molecular analyses by sequencing a region of the ribosomal DNA spanning partial 18S, the internal transcribed spacers 1 and 2 (ITS1 and 2), 5.8S and partial 28S and comparing this with other species through a BlastN-search in GenBank and through phylogenetic analyses. Results The morphology of the species from T. nybelini was markedly different to that of any of other species of Gyrodactylus. It is characterized by having relatively long hamulus roots, a character that it shares with two other species described from marine sculpins (Cottidae); G. armatus and G. maculosi. It also has a narrow rectangular ventral bar membrane with a posterior notch which it shares with G. maculosi only. Compared with all the seven species from marine Cottidae described so far, it has the smallest opisthaptoral hard parts. A comparison of the internal transcribed spacer (ITS) rDNA sequence with available sequences in GenBank and a phylogenetic analyses also showed it to be highly divergent from other sequences. Therefore, a new species is proposed, Gyrodactylus triglopsi n. sp. Conclusion Both the morphological and molecular analyses support the status of G. triglopsi as a new species. This is to our knowledge the first species of Gyrodactylus described from Triglops nybelini and the description extends the list of Gyrodactylus species found on fish in the Barents Sea to 17

    Gyrodactylus triglopsi n. sp. (Monogenea: Gyrodactylidae) from the Gills of Triglops nybelini Jensen, 1944 (Teleostei: Cottidae) in the Barents Sea

    No full text
    Introduction Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January–February 2016. Methods Morphological preparations of the parasites were examined and photographed under a microscope at magnifications of × 100–1000 and morphometric analyses were carried out on 22 specimens using ImageJ2 software. Eight of the specimens used for the morphological comparisons were also subjected to molecular analyses by sequencing a region of the ribosomal DNA spanning partial 18S, the internal transcribed spacers 1 and 2 (ITS1 and 2), 5.8S and partial 28S and comparing this with other species through a BlastN-search in GenBank and through phylogenetic analyses. Results The morphology of the species from T. nybelini was markedly different to that of any of other species of Gyrodactylus. It is characterized by having relatively long hamulus roots, a character that it shares with two other species described from marine sculpins (Cottidae); G. armatus and G. maculosi. It also has a narrow rectangular ventral bar membrane with a posterior notch which it shares with G. maculosi only. Compared with all the seven species from marine Cottidae described so far, it has the smallest opisthaptoral hard parts. A comparison of the internal transcribed spacer (ITS) rDNA sequence with available sequences in GenBank and a phylogenetic analyses also showed it to be highly divergent from other sequences. Therefore, a new species is proposed, Gyrodactylus triglopsi n. sp. Conclusion Both the morphological and molecular analyses support the status of G. triglopsi as a new species. This is to our knowledge the first species of Gyrodactylus described from Triglops nybelini and the description extends the list of Gyrodactylus species found on fish in the Barents Sea to 17

    Gyrodactylus triglopsi n. sp. (Monogenea: Gyrodactylidae) from the Gills of Triglops nybelini Jensen, 1944 (Teleostei: Cottidae) in the Barents Sea

    No full text
    Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January–February 2016
    corecore