30 research outputs found

    Topological mechanochemistry of graphene

    Full text link
    In view of a formal topology, two common terms, namely, connectivity and adjacency, determine the quality of C-C bonds of sp2 nanocarbons. The feature is the most sensitive point of the inherent topology of the species so that such external action as mechanical deformation should obviously change it and result in particular topological effects. The current paper describes the effects caused by uniaxial tension of a graphene molecule in due course of a mechanochemical reaction. Basing on the molecular theory of graphene, the effects are attributed to both mechanical loading and chemical modification of edge atoms of the molecule. The mechanical behavior is shown to be not only highly anisotropic with respect to the direction of the load application, but greatly dependent on the chemical modification of the molecule edge atoms thus revealing topological character of the graphene deformation.Comment: 9 pages, 10 figures, 1 table. arXiv admin note: text overlap with arXiv:1301.094

    Structure-Sensitive Mechanism of Nanographene Failure

    Full text link
    The response of a nanographene sheet to external stresses is considered in terms of a mechanochemical reaction. The quantum chemical realization of the approach is based on a coordinate-of-reaction concept for the purpose of introducing a mechanochemical internal coordinate (MIC) that specifies a deformational mode. The related force of response is calculated as the energy gradient along the MIC, while the atomic configuration is optimized over all of the other coordinates under the MIC constant-pitch elongation. The approach is applied to the benzene molecule and (5, 5) nanographene. A drastic anisotropy in the microscopic behavior of both objects under elongation along a MIC has been observed when the MIC is oriented either along or normally to the C-C bonds chain. Both the anisotropy and high stiffness of the nanographene originate at the response of the benzenoid unit to stress.Comment: 19 pages, 7 figures 1 tabl

    Frequency-modulated atomic force microscopy localises viscoelastic remodelling in the ageing sheep aorta

    Get PDF
    We gratefully acknowledge funding from the Royal Society for the provision of an International Travel Grant for Collaboration (R112205) to RA, and Wellcome Trust Value in People Award to RA and MJS. MJS and BD gratefully acknowledge the support of the Medical Research Council (www.mrc.ac.uk: grant reference G1001398)

    IMECE2008-67227 \ A FINITE ELEMENT MODEL FOR BENDING BUCKLING OF SINGLE WALL CARBON NANO-TUBES AND INVESTIGATION OF GEOMETRICAL PARAMETERS ON IT

    No full text
    ABSTRACT Bending buckling behavior of single-walled carbon nanotubes (SWCNTs) is modeled by means of finite element method (FEM) and the relations between critical bending buckling curvature and geometrical parameters of nanotubes are determined. Elastic modulus and wall thickness of nanotubes are chosen in a way that elastic shell theory is capable of predicting mechanical properties of nanotubes. The effect of initial internal stress state through the shell thickness is investigated. Computed results are very close to the results of molecular dynamics simulation

    Correlations between transmural mechanical and morphological properties in porcine thoracic descending aorta

    No full text
    Determination of correlations between transmural mechanical and morphological properties of aorta would provide a quantitative baseline for assessment of preventive and therapeutic strategies for aortic injuries and diseases. A multimodal and multidisciplinary approach was adopted to characterize the transmural morphological properties of descending porcine aorta. Histology and multi-photon microscopy were used for describing the media layer micro-architecture in the circumferential-radial plane, and Fourier Transform infrared imaging spectroscopy was utilized for determining structural protein, and total protein content. The distributions of these quantified properties across the media thickness were characterized and their relationship with the mechanical properties from a previous study was determined. Our findings indicate that there is an increasing trend in the instantaneous Young[U+05F3]s modulus (E), elastic lamella density (ELD), structural protein (SPR), total protein (TPR), and elastin and collagen circumferential percentage (ECP and CCP) from the inner towards the outer layers. Two regions with equal thickness (inner and outer halves) were determined with significantly different morphological and material properties. The results of this study represent a substantial step toward anatomical characterization of the aortic wall building blocks and establishment of a foundation for quantifying the role of microstructural components on the functionality of aorta
    corecore