219 research outputs found

    An Individual-Oriented Model on the Emergence of Support in Fights, Its Reciprocation and Exchange

    Get PDF
    Complex social behaviour of primates has usually been attributed to the operation of complex cognition. Recently, models have shown that constraints imposed by the socio-spatial structuring of individuals in a group may result in an unexpectedly high number of patterns of complex social behaviour, resembling the dominance styles of egalitarian and despotic species of macaques and the differences between them. This includes affiliative patterns, such as reciprocation of grooming, grooming up the hierarchy, and reconciliation. In the present study, we show that the distribution of support in fights, which is the social behaviour that is potentially most sophisticated in terms of cognitive processes, may emerge in the same way. The model represents the spatial grouping of individuals and their social behaviour, such as their avoidance of risks during attacks, the self-reinforcing effects of winning and losing their fights, their tendency to join in fights of others that are close by (social facilitation), their tendency to groom when they are anxious, the reduction of their anxiety by grooming, and the increase of anxiety when involved in aggression. Further, we represent the difference in intensity of aggression apparent in egalitarian and despotic macaques. The model reproduces many aspects of support in fights, such as its different types, namely, conservative, bridging and revolutionary, patterns of choice of coalition partners attributed to triadic awareness, those of reciprocation of support and ‘spiteful acts’ and of exchange between support and grooming. This work is important because it suggests that behaviour that seems to result from sophisticated cognition may be a side-effect of spatial structure and dominance interactions and it shows that partial correlations fail to completely omit these effects of spatial structure. Further, the model is falsifiable, since it results in many patterns that can easily be tested in real primates by means of existing data

    Some Causes of the Variable Shape of Flocks of Birds

    Get PDF
    Flocks of birds are highly variable in shape in all contexts (while travelling, avoiding predation, wheeling above the roost). Particularly amazing in this respect are the aerial displays of huge flocks of starlings (Sturnus vulgaris) above the sleeping site at dawn. The causes of this variability are hardly known, however. Here we hypothesise that variability of shape increases when there are larger local differences in movement behaviour in the flock. We investigate this hypothesis with the help of a model of the self-organisation of travelling groups, called StarDisplay, since such a model has also increased our understanding of what causes the oblong shape of schools of fish. The flocking patterns in the model prove to resemble those of real birds, in particular of starlings and rock doves. As to shape, we measure the relative proportions of the flock in several ways, which either depend on the direction of movement or do not. We confirm that flock shape is usually more variable when local differences in movement in the flock are larger. This happens when a) flock size is larger, b) interacting partners are fewer, c) the flock turnings are stronger, and d) individuals roll into the turn. In contrast to our expectations, when variability of speed in the flock is higher, flock shape and the positions of members in the flock are more static. We explain this and indicate the adaptive value of low variability of speed and spatial restriction of interaction and develop testable hypotheses

    Fluctuation-Driven Flocking Movement in Three Dimensions and Scale-Free Correlation

    Get PDF
    Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible. The concepts of “topological distances” and “scale-free correlations” are important developments that have contributed to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical models. Previous work has assumed that individuals interact with neighbors within a certain radius (called the “metric distance”). However, other work has shown that, assuming topological interactions, starlings interact on average with the six or seven nearest neighbors within a flock. Accounting for this observation, we previously proposed a metric-topological interaction model in two dimensions. The goal of our model was to unite these two interaction components, the metric distance and the topological distance, into one rule. In our previous study, we demonstrated that the metric-topological interaction model could explain a real bird flocking phenomenon called scale-free correlation, which was first reported by Cavagna et al. In this study, we extended our model to three dimensions while also accounting for variations in speed. This three-dimensional metric-topological interaction model displayed scale-free correlation for velocity and orientation. Finally, we introduced an additional new feature of the model, namely, that a flock can store and release its fluctuations

    On the duality between interaction responses and mutual positions in flocking and schooling.

    Get PDF
    Recent research in animal behaviour has contributed to determine how alignment, turning responses, and changes of speed mediate flocking and schooling interactions in different animal species. Here, we propose a complementary approach to the analysis of flocking phenomena, based on the idea that animals occupy preferential, anysotropic positions with respect to their neighbours, and devote a large amount of their interaction responses to maintaining their mutual positions. We test our approach by deriving the apparent alignment and attraction responses from simulated trajectories of animals moving side by side, or one in front of the other. We show that the anisotropic positioning of individuals, in combination with noise, is sufficient to reproduce several aspects of the movement responses observed in real animal groups. This anisotropy at the level of interactions should be considered explicitly in future models of flocking and schooling. By making a distinction between interaction responses involved in maintaining a preferred flock configuration, and interaction responses directed at changing it, our work provides a frame to discriminate movement interactions that signal directional conflict from interactions underlying consensual group motion

    Quantifying the interplay between environmental and social effects on aggregated-fish dynamics

    Get PDF
    Demonstrating and quantifying the respective roles of social interactions and external stimuli governing fish dynamics is key to understanding fish spatial distribution. If seminal studies have contributed to our understanding of fish spatial organization in schools, little experimental information is available on fish in their natural environment, where aggregations often occur in the presence of spatial heterogeneities. Here, we applied novel modeling approaches coupled to accurate acoustic tracking for studying the dynamics of a group of gregarious fish in a heterogeneous environment. To this purpose, we acoustically tracked with submeter resolution the positions of twelve small pelagic fish (Selar crumenophthalmus) in the presence of an anchored floating object, constituting a point of attraction for several fish species. We constructed a field-based model for aggregated-fish dynamics, deriving effective interactions for both social and external stimuli from experiments. We tuned the model parameters that best fit the experimental data and quantified the importance of social interactions in the aggregation, providing an explanation for the spatial structure of fish aggregations found around floating objects. Our results can be generalized to other gregarious species and contexts as long as it is possible to observe the fine-scale movements of a subset of individuals.Comment: 10 pages, 5 figures and 4 supplementary figure

    Quantifying Social Asymmetric Structures

    Get PDF
    Many social phenomena involve a set of dyadic relations among agents whose actions may be dependent. Although individualistic approaches have frequently been applied to analyze social processes, these are not generally concerned with dyadic relations nor do they deal with dependency. This paper describes a mathematical procedure for analyzing dyadic interactions in a social system. The proposed method mainly consists of decomposing asymmetric data into their symmetrical and skew-symmetrical parts. A quantification of skew-symmetry for a social system can be obtained by dividing the norm of the skew-symmetrical matrix by the norm of the asymmetric matrix. This calculation makes available to researchers a quantity related to the amount of dyadic reciprocity. Regarding agents, the procedure enables researchers to identify those whose behavior is asymmetric with respect to all agents. It is also possible to derive symmetric measurements among agents and to use multivariate statistical techniques

    Cooperation, coalition and alliances

    Get PDF

    Cardiac output, cerebral blood flow and cognition in patients with severe aortic valve stenosis undergoing transcatheter aortic valve implantation:design and rationale of the CAPITA study

    Get PDF
    Background : Approximately one-third of patients with symptomatic severe aortic valve stenosis who are scheduled for transcatheter aortic valve implantation (TAVI) have some degree of cognitive impairment. TAVI may have negative cognitive effects due to periprocedural micro-emboli inducing cerebral infarction. On the contrary, TAVI may also have positive cognitive effects due to increases in cardiac output and cerebral blood flow (CBF). However, studies that systematically assess these effects are scarce. Therefore, the main aim of this study is to assess cerebral and cognitive outcomes in patients with severe aortic valve stenosis undergoing TAVI. Study design : In the prospective CAPITA (CArdiac OutPut, Cerebral Blood Flow and Cognition In Patients With Severe Aortic Valve Stenosis Undergoing Transcatheter Aortic Valve Implantation) study, cerebral and cognitive outcomes are assessed in patients undergoing TAVI. One day before and 3 months after TAVI, patients will undergo echocardiography (cardiac output, valve function), brain magnetic resonance imaging (CBF, structural lesions) and extensive neuropsychological assessment. To assess longer-term effects of TAVI, patients will again undergo echocardiography and neuropsychological assessment 1 year after the procedure. The co-primary outcome measures are change in CBF (in ml/100 g per min) and change in global cognitive functioning (Z-score) between baseline and 3‑month follow-up. Secondary objectives include change in cardiac output, white matter hyperintensities and other structural brain lesions. (ClinicalTrials.gov identifier NCT05481008) Conclusion : The CAPITA study is the first study designed to systematically assess positive and negative cerebral and cognitive outcomes after TAVI. We hypothesise that TAVI improves cardiac output, CBF and cognitive functioning.</p

    Music notation: a new method for visualizing social interaction in animals and humans

    Get PDF
    BACKGROUND: Researchers have developed a variety of techniques for the visual presentation of quantitative data. These techniques can help to reveal trends and regularities that would be difficult to see if the data were left in raw form. Such techniques can be of great help in exploratory data analysis, making apparent the organization of data sets, developing new hypotheses, and in selecting effects to be tested by statistical analysis. Researchers studying social interaction in groups of animals and humans, however, have few tools to present their raw data visually, and it can be especially difficult to perceive patterns in these data. In this paper I introduce a new graphical method for the visual display of interaction records in human and animal groups, and I illustrate this method using data taken on chickens forming dominance hierarchies. RESULTS: This new method presents data in a way that can help researchers immediately to see patterns and connections in long, detailed records of interaction. I show a variety of ways in which this new technique can be used: (1) to explore trends in the formation of both group social structures and individual relationships; (2) to compare interaction records across groups of real animals and between real animals and computer-simulated animal interactions; (3) to search for and discover new types of small-scale interaction sequences; and (4) to examine how interaction patterns in larger groups might emerge from those in component subgroups. In addition, I discuss how this method can be modified and extended for visualizing a variety of different kinds of social interaction in both humans and animals. CONCLUSION: This method can help researchers develop new insights into the structure and organization of social interaction. Such insights can make it easier for researchers to explain behavioural processes, to select aspects of data for statistical analysis, to design further studies, and to formulate appropriate mathematical models and computer simulations

    Exploring the components, asymmetry and distribution of relationship quality in wild Barbary macaques (Macaca sylvanus)

    Get PDF
    Social relationships between group members are a key feature of many animal societies. The quality of social relationships has been described by three main components: value, compatibility and security, based on the benefits, tenure and stability of social exchanges. We aimed to analyse whether this three component structure could be used to describe the quality of social relationships in wild Barbary macaques (Macaca sylvanus). Moreover, we examined whether relationship quality was affected by the sex, age and rank differences between social partners, and investigated the asymmetric nature of social relationships. We collected over 1,900 hours of focal data on seven behavioural variables measuring relationship quality, and used principal component analysis to investigate how these variables clustered together. We found that relationship quality in wild Barbary macaques can be described by a three component structure that represents the value, compatibility and security of a relationship. Female-female dyads had more valuable relationships and same-age dyads more compatible relationships than any other dyad. Rank difference had no effect on the quality of a social relationship. Finally, we found a high degree of asymmetry in how members of a dyad exchange social behaviour. We argue that the asymmetry of social relationships should be taken into account when exploring the pattern and function of social behaviour in animal societies
    corecore