51 research outputs found

    Simulated moult reduces flight performance but overlap with breeding does not affect breeding success in a long-distance migrant

    Get PDF
    1.Long-distance migrants are time-constrained as they need to incorporate many annual cycle stages within a year. Migratory passerines moult in the short interval between breeding and migration. To widen this interval, moult may start while still breeding, but this results in flying with moulting wings when food provisioning.2.We experimentally simulated wing gaps in breeding male pied flycatchers by plucking two primary feathers from both wings. We quantified the nest visitations of both parents, proportion of high-quality food brought to the nestlings and adults and nestlings condition. Differences in oxidative damage caused by a possible reduction in flight efficiency were measured in amounts of ROMs and OXY in the blood. We also measured how flight performance was affected with recordings of the male`s escape flight using high-speed cameras. Finally, we collected data on adult survival, clutch size and laying date in the following year.3.“Plucked” males travelled a 5% shorter distance per wingbeat, showing that our treatment reduced flight performance. In line with this, “plucked” males visited their nests less often. Females of “plucked” males, however, visited the nest more often than controls, and fully compensated their partner's reduced visitation rate. As a result, there were no differences between treatments in food quality brought to the nest, adult or chick mass or number of successfully fledged chicks. Males did not differ in their oxidative damage or local survival to the following year. In contrast, females paired with plucked males tended to return less often to breed in the next year in comparison to controls, but this difference was not significant. For the birds that did return, there were no effects on breeding.4.Our results reveal that wing gaps in male pied flycatchers reduce their flight performance, but when it occurs during breeding they prioritise their future reproduction by reducing parental care. As a result, there is no apparent detriment to their condition during breeding. Because non-moulting females are able to compensate their partner's reduced care, there is also no immediate cost to the offspring, but females may pay the cost suffering from a reduced survival

    The flight feather moult pattern of the bearded vulture (Gypaetus barbatus).

    Get PDF
    Moult is an extremely time-consuming and energy-demanding task for large birds. In addition, there is a trade-off between the time devoted to moulting and that invested in other activities such as breeding and/or territory exploration. Moreover, it takes a long time to grow a long feather in large birds, and large birds that need to fly while moulting cannot tolerate large gaps in the wing, but only one or two simultaneously growing feathers. As a consequence, large birds take several years to complete a full moult cycle, and they resume the moult process during suboptimal conditions. A clear example of this pattern is the Bearded Vulture (Gypaetus barbatus), which needs 2-3 years for changing all flight feathers. Here we describe the sequence, extent, and timing of moult of 124 Bearded Vultures in detail for the first time. We found that extent and timing of flight feather moult was different between age classes. Subadults (from 3rd to 5th calendar year) started moult, on average, in early March, whereas adults only started moult, on average, in late April, possibly due to breeding requirements. Second calendar year individuals delayed onset of moult until the middle of May. In general, the moult lasted until November, and although adults started to moult later than subadults, they moulted more feathers. Subadults needed 3 years for moulting all flight feathers, whereas adults normally completed it in 2 years

    Clinical tests on impairment level related to low back pain: A study of test reliability

    No full text
    The objectives of the study were, in a working population, to standardize and evaluate a set of clinical tests on impairment level related to the low back with reference to intra- and inter-rater reliability. The study was undertaken in two steps. In step 1, 15 tests were examined for inter-rater reliability by three pairs of physiotherapists and for intra-rater reliability by one physiotherapist. Intra-rater reliability was acceptable (kappa > 0.40) for 14 of the 15 tests. Inter-rater reliability was acceptable for 7 of the 15 tests. In step 2, the tests, indicating a non-acceptable inter-rater reliability (kappa less than or equal to 0.40) were further standardized and re-tested by two of the physiotherapists. This further standardization procedure resulted in an acceptable interrater reliability for all of these tests. Clinical tests of a working population should preferably be performed by the same rater. However, when tests are performed by different raters, it is suggested that test procedures should be regularly standardized, and in pain provocation tests, the magnitude of the applied pressure should be checked regularly and compared with co-raters, in order to improve inter-rater reliability

    Geographical and within-population variation in the globeflower-globeflower fly interaction: the costs and benefits of rearing pollinator's larvae

    No full text
    International audienceInterspecific interactions can vary within and among populations and geographical locations, and this variation can influence the nature of the interaction (e.g. mutualistic versus antagonistic) and its evolutionary stability. Globeflowers are exclusively pollinated by flies whose larvae feed only on their seeds. Here we document geographical variability in costs and benefits in globeflowers in sustaining their pollinating flies throughout the range of this arctic-alpine European plant over several years. A total of 1,710 flower heads from 38 populations were analysed for their carpel, egg and seed contents. Individual and population analyses control for the confounding influences of variation in both: (1) population traits, such as fly density and egg distribution among flower heads; and (2) individuals traits, such as carpel and egg numbers per flower head. Despite considerable variation in ecological conditions and pollinator densities across populations, large proportions (range 33-58%) of seeds are released after predation, with a benefit-to-cost ratio of 3, indicating that the mutualism is stable over the whole globeflower geographical range. The stability of the mutualistic interaction relies on density-dependent competition among larvae co-developing in a flower head. This competition is revealed by a sharp decrease in the number of seeds eaten per larva with increasing larval number, and is intensified by non-uniform egg distribution among globeflowers within a population. Carpel number is highly variable across globeflowers (range 10-69), and flies lay more eggs in large flowers. Most plants within a population contribute to the rearing of pollinators, but some pay more than others. Large globeflowers lose more seed to pollinator larvae, but also release more seed than smaller plants. The apparent alignment of interests between fly and plant (positive relationship between numbers of seeds released and destroyed) is shown to hide a conflict of interest found when flower size is controlled for

    Geographic and within-population variation in the globeflower-globeflower fly interaction: the costs and benefits of rearing pollinators' larvae

    No full text
    International audienceInterspecific interactions can vary within and among populations and geographic locations, and this variation can influence the nature of the interaction (e.g. mutualistic vs. antagonistic) and its evolutionary stability. Globeflowers are exclusively pollinated by flies, whose larvae feed only on their seeds. Here we document geographic variability in costs and benefits in globeflowers in sustaining their pollinating flies throughout the range of this arctic-alpine European plant over several years. A total of 1,710 flower heads from 38 populations were analysed for their carpel, egg and seed contents. Individual and population analyses control for the confounding influences of variation in both: (1) population traits, such as fly density and egg distribution among flower heads; and (2) individuals traits, such as carpel and egg numbers per flower head. Despite considerable variation in ecological conditions and pollinator densities across populations, large proportions (range 33-58%) of seeds were released after predation, with a benefit-to-cost ratio of 3, indicating that the mutualism is stable over the whole globeflower geographical range. The stability of the mutualistic interaction relies on density-dependent competition among larvae co-developing in a flower head. This competition is revealed by a sharp decrease in the number of seeds eaten per larva with increasing larval number, and is intensified by non-uniform egg distribution among globeflowers within a population. Carpel number is highly variable across globeflowers (range 10-69), and flies lay more eggs in large flowers. Most plants within a population contribute to the rearing of pollinators, but the costs are greater for some than for others. Large globeflowers lose more seed to pollinator larvae, but also release more seed than smaller plants. The apparent alignment of interests between fly and plants (positive relationship between numbers of seed released and destroyed) is shown to hide a conflict of interest found when flower size is controlled for
    • 

    corecore