24 research outputs found
Genetic analysis of patients with Fuchs endothelial corneal dystrophy in India
<p>Abstract</p> <p>Background</p> <p>Mutations in <it>COL8A2 </it>gene which encodes the collagen alpha-2 (VIII) chain have been identified in both familial and sporadic cases of Fuchs endothelial corneal dystrophy (FECD). Heterozygous mutations in the <it>SLC4A11 </it>gene are also known to cause late-onset FECD. Therefore we screened for <it>COL8A2</it>, <it>SLC4A11 </it>gene variants in Indian FECD patients.</p> <p>Methods</p> <p>Eighty patients with clinically diagnosed FECD and 100 age matched normal individuals were recruited. Genomic DNA was isolated from peripheral blood leukocytes. Mutations in <it>COL8A2</it>, <it>SLC4A11 </it>coding regions were screened using bi-directional sequencing. Fischer's exact test or Pearson's chi squared test were used to predict the statistical association of genotypes with the phenotype.</p> <p>Results</p> <p>Screening of <it>COL8A2 </it>gene revealed 2 novel c.1610G>A, c.1643A>G and 3 reported variations c.112G>A, c.464G>A and c.1485G>A. In <it>SLC4A11 </it>gene, novel c.1659C>T, c.1974C>T and reported c.405G>A, c.481A>C and c.639G>A variants were identified. However all the variations in both the genes were also present in unaffected controls.</p> <p>Conclusions</p> <p>This is the first study analysing <it>COL8A2 </it>gene in Indian patients with FECD. No pathogenic mutations were identified in <it>COL8A2</it>. Merely silent changes, which showed statistically insignificant association with FECD, were identified in the screening of <it>SLC4A11 </it>gene. These results suggest that <it>COL8A2</it>, <it>SLC4A11 </it>genes may not be responsible for FECD in patients examined in this study.</p
Replication of TCF4 through Association and Linkage Studies in Late-Onset Fuchs Endothelial Corneal Dystrophy
Fuchs endothelial corneal dystrophy (FECD) is a common, late-onset disorder of
the corneal endothelium. Although progress has been made in understanding the
genetic basis of FECD by studying large families in which the phenotype is
transmitted in an autosomal dominant fashion, a recently reported genome-wide
association study identified common alleles at a locus on chromosome 18 near
TCF4 which confer susceptibility to FECD. Here, we report
the findings of our independent validation study for TCF4 using
the largest FECD dataset to date (450 FECD cases and 340 normal controls).
Logistic regression with sex as a covariate was performed for three genetic
models: dominant (DOM), additive (ADD), and recessive (REC). We found
significant association with rs613872, the target marker reported by Baratz
et al.(2010), for all three genetic models (DOM:
P = 9.33×10−35;
ADD:
P = 7.48×10−30;
REC:
P = 5.27×10−6).
To strengthen the association study, we also conducted a genome-wide linkage
scan on 64 multiplex families, composed primarily of affected sibling pairs
(ASPs), using both parametric and non-parametric two-point and multipoint
analyses. The most significant linkage region localizes to chromosome 18 from
69.94cM to 85.29cM, with a peak multipoint
HLOD = 2.5 at rs1145315 (75.58cM) under the DOM
model, mapping 1.5 Mb proximal to rs613872. In summary, our study presents
evidence to support the role of the intronic TCF4 single
nucleotide polymorphism rs613872 in late-onset FECD through both association and
linkage studies
SYNTHESIS, CHARACTERIZATION, AND EVALUATION OF ANTIMICROBIAL ACTIVITY OF SILVER NANOPARTICLES USING AQUEOUS EXTRACT OF ASPARAGUS RACEMOSUS RHIZOME – AN IN VITRO APPROACH
Objective: The proposed study is carried out to synthesize and characterize silver nanoparticles (AgNPs) using rhizomes of Asparagus racemosus and to evaluate its antimicrobial activity in vitro.
Methods: Aqueous extract of A. racemosus rhizomes was prepared and subjected to preliminary phytochemical screening. AgNPs of A. racemosus rhizomes were prepared using standard procedure. The synthesized particles were characterized using ultraviolet-visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopic (SEM) analysis. Further, these nanoparticles were subjected to in vitro antimicrobial studies.
Results: Preliminary phytochemical analysis showed the presence of tannins, phlobatannins, saponins, flavonoids, terpenoids, triterpenoids, alkaloids, carbohydrates, proteins, anthraquinones, polyphenols, and glycosides. The study of synthesized AgNPs showed a sharp absorbance at 410 nm. The results of FTIR analysis confirmed the presence of phenol, alkanes, aliphatic amine, secondary alcohol, alkenes, and aromatic amines. SEM analysis of the AgNPs revealed higher density polydispersed AgNPs of various sizes. The AgNPs synthesized from rhizome extract showed higher toxicity toward tested microorganisms when compared to extract alone.
Conclusion: It has been concluded that silver nanoparticles of A. racemosus could be a good source of plant-derived antimicrobials
Absence of phenotype-genotype correlation of patients expressing mutations in the SLC4A11 gene
10.1097/ICO.0b013e3181ae9038Cornea293302-30
SLC4A11 Prevents Osmotic Imbalance Leading to Corneal Endothelial Dystrophy, Deafness, and Polyuria*
Maintenance of ion concentration gradients is essential for the function of many organs, including the kidney, the cornea, and the inner ear. Ion concentrations and fluid content in the cornea are regulated by endothelial cells that separate the collagenous avascular corneal stroma from the anterior eye chamber. Failure to maintain correct ion concentrations leads to swelling and destruction of the cornea. In the inner ear, the stria vascularis is responsible for generating proper ion concentrations in the endolymph, which is essential for hearing. Mutations of SLC4A11 in humans lead to syndromes associated with corneal dystrophy and perceptive deafness. The molecular mechanisms underlying these symptoms are poorly understood, impeding therapeutic interventions. The ion transporter SLC4A11 mediates sodium-dependent transport of borate as well as flux of sodium and hydroxyl ions in vitro. Here, we show that SLC4A11 is expressed in the endothelial cells of the cornea where it prevents severe morphological changes of the cornea caused by increased sodium chloride concentrations in the stroma. In the inner ear, SLC4A11 is located in fibrocytes underlying the stria vascularis. Loss of SLC4A11 leads to morphological changes in the fibrocytes and deafness. We demonstrate that SLC4A11 is essential for the generation of the endocochlear potential but not for regulation of potassium concentrations in the endolymph. In the kidney, SLC4A11 is expressed in the thin descending limb of Henle loop. SLC4A11 is essential for urinary concentration, suggesting that SLC4A11 participates in the countercurrent multiplication that concentrates urine in the kidney medulla