4 research outputs found

    Structural insights into the binding mode and conformational changes of BSA induced by bixin and crocin

    No full text
    <p>Bixin and crocin are natural apocarotenoids utilized as food colorants and additives in food industries worldwide. For safety assessment, it is necessary to understand the biological interaction of food colorants. In our present study, we report the interaction of two apocarotenoids with bovine serum albumin (BSA) at physiological pH using spectroscopic techniques and <i>in silico</i> tools. The binding constant and the mode of binding sites have been studied. The enthalpic and entropic contribution to the intermolecular binding event was analyzed and it was found that the contribution of hydrogen bonding and hydrophobic interactions was dominant. The adverse temperature dependence in the unusual static quenching is found to be a reasonable consequence of the large activation energy requirement in the binding process, which is required to overcome the fundamental block and is a direct result of the unique microstructure of the binding sites. To confirm the experimental analysis, we investigated the binding patterns using different <i>in silico</i> tools. A combination of molecular docking, molecular dynamics, and toxicity analysis was performed, and the obtained results revealed that both the apocarotenoids had high binding affinity with a binding energy of −5.44 and −5.93 kcal/mol for bixin and crocin, respectively, with no toxic effects and are in accordance with our experimental analysis. The results directly revealed the flexibility of the protein toward bixin and crocin which has a great impact on the interaction. Thus bixin and crocin can guardedly be used as food colorants in food industries.</p

    The amazing potential of fungi: 50 ways we can exploit fungi industrially

    No full text
    International audienceFungi are an understudied, biotechnologically valuable group of organisms. Due to the immense range of habitats thatfungi inhabit, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi havedeveloped numerous survival mechanisms. The unique attributes of fungi thus herald great promise for their application inbiotechnology and industry. Moreover, fungi can be grown with relative ease, making production at scale viable. Thesearch for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential inlocating organisms with novel industrial uses that will lead to novel products. This manuscript reviews fifty ways in whichfungi can potentially be utilized as biotechnology. We provide notes and examples for each potential exploitation and giveexamples from our own work and the work of other notable researchers. We also provide a flow chart that can be used toconvince funding bodies of the importance of fungi for biotechnological research and as potential products. Fungi haveprovided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untappedresource with enormous industrial potentia
    corecore