345 research outputs found

    How Colors Influence Numbers: Photon Statistics of Parametric Downconversion

    Full text link
    Parametric downconversion (PDC) is a technique of ubiquitous experimental significance in the production of non-classical, photon-number correlated twin beams. Standard theory of PDC as a two-mode squeezing process predicts and homodyne measurements observe a thermal photon number distribution per beam. Recent experiments have obtained conflicting distributions. In this paper, we explain the observation by an a-priori theoretical model solely based on directly accessible physical quantities. We compare our predictions with experimental data and find excellent agreement.Comment: 4 {pages, figures

    Optimised generation of heralded Fock states using parametric down conversion

    Full text link
    The generation of heralded pure Fock states via spontaneous parametric down conversion (PDC) relies on perfect photon-number correlations in the output modes. Correlations in any other degree of freedom, however, degrade the purity of the heralded state. In this paper, we investigate spectral entanglement between the two output modes of a periodically poled waveguide. With the intent of generating heralded 1- and 2-photon Fock states, we expand the output state of the PDC to second order in photon number. We explore the effects of spectral filtering and inefficient detection, of the heralding mode, on the count rate, g(2) and purity of the heralded state, as well as the fidelity between the resulting state and an ideal Fock state. We find that filtering can decrease spectral correlations, however, at the expense of the count rate and increased photon-number mixedness in the heralded output state. As a physical example, we model a type II PP-KTP waveguide pumped by lasers at wavelengths of 400 nm, 788 nm and 1930 nm. The latter two allow the fulfillment of extended phase matching conditions in an attempt to eliminate spectral correlations in the PDC output state without the use of filtering, however, we find that even in these cases, some filtering is needed to achieve states of very high purity.Comment: 28 pages, 25 figures, revised expressions for two-photon fidelit

    Mechanical Translation

    Get PDF
    Contains reports on twelve research projects.National Science Foundatio

    E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells

    Get PDF
    BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion

    Photocytotoxicity of mTHPC (Temoporfin) Loaded Polymeric Micelles Mediated by Lipase Catalyzed Degradation

    Get PDF
    Purpose. To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods. Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg ®). Results. Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30 % (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion. The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. KEY WORDS: drug release; enzymatic degradation; meta-tetra(hydroxyphenyl)chlorin (mTHPC); photodynamic therapy (PDT); polymeric micelles
    corecore