78 research outputs found

    Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during Mitosis

    Get PDF
    The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2. During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and throughout mitosis

    Insight the C-Site Pocket Conformational Changes Responsible for Sirtuin 2 Activity Using Molecular Dynamics Simulations

    Get PDF
    Sirtuin belongs to a family of typical histone deacetylase which regulates the fundamental cellular biological processes including gene expression, genome stability, mitosis, nutrient metabolism, aging, mitochondrial function, and cell motility. Michael et. al. reported that B-site mutation (Q167A and H187A) decreased the SIRT2 activity but still the structural changes were not reported. Hence, we performed 5 ns molecular dynamics (MD) simulation on SIRT2 Apo-form and complexes with substrate/NAD+ and inhibitor of wild type (WT), Q167A, and H187A. The results revealed that the assembly and disassembly of C-site induced by presence of substrate/NAD+ and inhibitor, respectively. This assembly and disassembly was mainly due to the interaction between the substrate/NAD+ and inhibitor and F96 and the distance between F96 and H187 which are present at the neck of the C-site. MD simulations suggest that the conformational change of L3 plays a major role in assembly and disassembly of C-site. Our current results strongly suggest that the distinct conformational change of L3 as well as the assembly and disassembly of C-site plays an important role in SIRT2 deacetylation function. Our study unveiled the structural changes of SIRT2 in presence of NAD+ and inhibitor which should be helpful to improve the inhibitory potency of SIRT2

    SIRT1 Promotes N-Myc Oncogenesis through a Positive Feedback Loop Involving the Effects of MKP3 and ERK on N-Myc Protein Stability

    Get PDF
    The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3), leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc–induced neuroblastoma

    Synergistic Interactions between HDAC and Sirtuin Inhibitors in Human Leukemia Cells

    Get PDF
    Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD+-independent HDACs are an established therapeutic target, the relevance of NAD+-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited

    Activating Transcription Factor 4 Confers a Multidrug Resistance Phenotype to Gastric Cancer Cells through Transactivation of SIRT1 Expression

    Get PDF
    BACKGROUND: Multidrug resistance (MDR) in gastric cancer remains a major challenge to clinical treatment. Activating transcription factor 4 (ATF4) is a stress response gene involved in homeostasis and cellular protection. However, the expression and function of ATF4 in gastric cancer MDR remains unknown. In this study, we investigate whether ATF4 play a role in gastric cancer MDR and its potential mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that ATF4 overexpression confered the MDR phenotype to gastric cancer cells, while knockdown of ATF4 in the MDR variants induced re-sensitization. In this study we also showed that the NAD(+)-dependent histone deacetylase SIRT1 was required for ATF4-induced MDR effect in gastric cancer cells. We demonstrated that ATF4 facilitated MDR in gastric cancer cells through direct binding to the SIRT1 promoter, resulting in SIRT1 up-regulation. Significantly, inhibition of SIRT1 by small interfering RNA (siRNA) or a specific inhibitor (EX-527) reintroduced therapeutic sensitivity. Also, an increased Bcl-2/Bax ratio and MDR1 expression level were found in ATF4-overexpressing cells. CONCLUSIONS/SIGNIFICANCE: We showed that ATF4 had a key role in the regulation of MDR in gastric cancer cells in response to chemotherapy and these findings suggest that targeting ATF4 could relieve therapeutic resistance in gastric cancer

    SirT1 modulates the estrogen–insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice

    Get PDF
    INTRODUCTION: Estrogen and insulin-like growth factor-1 (IGF-1) play important roles in mammary gland development and breast cancer. SirT1 is a highly conserved protein deacetylase that can regulate the insulin/IGF-1 signaling in lower organisms, as well as a growing number of transcription factors, including NF-κB, in mammalian cells. Whether SirT1 regulates the IGF-1 signaling for mammary gland development and function, however, is not clear. In the present study, this role of SirT1 was examined by studying SirT1-deficient mice. METHODS: SirT1-deficient (SirT1(ko/ko)) mice were generated by crossing a new strain of mice harboring a conditional targeted mutation in the SirT1 gene (SirT1(co/co)) with CMV-Cre transgenic mice. Whole mount and histology analyses, immunofluorescence staining, immunohistochemistry, and western blotting were used to characterize mammary gland development in virgin and pregnant mice. The effect of exogenous estrogen was also examined by subcutaneous implantation of a slow-releasing pellet in the subscapular region. RESULTS: Both male and female SirT1(ko/ko )mice can be fertile despite the growth retardation phenotype. Virgin SirT1(ko/ko )mice displayed impeded ductal morphogenesis, whereas pregnant SirT1(ko/ko )mice manifested lactation failure due to an underdeveloped lobuloalveolar network. Estrogen implantation was sufficient to rescue ductal morphogenesis. Exogenous estrogen reversed the increased basal level of IGF-1 binding protein-1 expression in SirT1(ko/ko )mammary tissues, but not that of IκBα expression, suggesting that increased levels of estrogen enhanced the production of local IGF-1 and rescued ductal morphogenesis. Additionally, TNFα treatment enhanced the level of the newly synthesized IκBα in SirT1(ko/ko )cells. SirT1 deficiency therefore affects the cellular response to multiple extrinsic signals. CONCLUSION: SirT1 modulates the IGF-1 signaling critical for both growth regulation and mammary gland development in mice. SirT1 deficiency deregulates the expression of IGF-1 binding protein-1 and attenuates the effect of IGF-1 signals, including estrogen-stimulated local IGF-1 signaling for the onset of ductal morphogenesis. These findings suggest that the enzymatic activity of SirT1 may influence both normal growth and malignant growth of mammary epithelial cells

    Histone deacetylase inhibitors: clinical implications for hematological malignancies

    Get PDF
    Histone modifications have widely been implicated in cancer development and progression and are potentially reversible by drug treatments. The N-terminal tails of each histone extend outward through the DNA strand containing amino acid residues modified by posttranslational acetylation, methylation, and phosphorylation. These modifications change the secondary structure of the histone protein tails in relation to the DNA strands, increasing the distance between DNA and histones, and thus allowing accessibility of transcription factors to gene promoter regions. A large number of HDAC inhibitors have been synthesized in the last few years, most being effective in vitro, inducing cancer cells differentiation or cell death. The majority of the inhibitors are in clinical trials, unlike the suberoylanilide hydroxamic acid, a pan-HDACi, and Romidepsin (FK 228), a class I-selective HDACi, which are only approved in the second line treatment of refractory, persistent or relapsed cutaneous T-cell lymphoma, and active in approximately 150 clinical trials, in monotherapy or in association. Preclinical studies investigated the use of these drugs in clinical practice, as single agents and in combination with chemotherapy, hypomethylating agents, proteasome inhibitors, and MTOR inhibitors, showing a significant effect mostly in hematological malignancies. The aim of this review is to focus on the biological features of these drugs, analyzing the possible mechanism(s) of action and outline an overview on the current use in the clinical practice

    Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy

    Get PDF
    Heritable changes in gene expression that are not based upon alterations in the DNA sequence are defined as epigenetics. The most common mechanisms of epigenetic regulation are the methylation of CpG islands within the DNA and the modification of amino acids in the N-terminal histone tails. In the last years, it became evident that the onset of cancer and its progression may not occur only due to genetic mutations but also because of changes in the patterns of epigenetic modifications. In contrast to genetic mutations, which are almost impossible to reverse, epigenetic changes are potentially reversible. This implies that they are amenable to pharmacological interventions. Therefore, a lot of work in recent years has focussed on the development of small molecule enzyme inhibitors like DNA-methyltransferase inhibitors or inhibitors of histone-modifying enzymes. These may reverse misregulated epigenetic states and be implemented in the treatment of cancer or other diseases, e.g., neurological disorders. Today, several epigenetic drugs are already approved by the FDA and the EMEA for cancer treatment and around ten histone deacetylase (HDAC) inhibitors are in clinical development. This review will give an update on recent clinical trials of the HDAC inhibitors used systemically that were reported in 2009 and 2010 and will present an overview of different biomarkers to monitor the biological effects
    • …
    corecore