70 research outputs found

    Ticks infesting domestic dogs in the UK:a large-scale surveillance programme

    Get PDF
    Background: Recent changes in the distribution of tick vectors and the incidence of tick-borne disease, driven variously by factors such as climate change, habitat modification, increasing host abundance and the increased movement of people and animals, highlight the importance of ongoing, active surveillance. This paper documents the results of a large-scale survey of tick abundance on dogs presented to veterinary practices in the UK, using a participatory approach that allows relatively cost- and time-effective extensive data collection. Methods: Over a period of 16 weeks (April-July 2015), 1094 veterinary practices were recruited to monitor tick attachment to dogs and provided with a tick collection and submission protocol. Recruitment was encouraged through a national publicity and communication initiative. Participating practices were asked to select five dogs at random each week and undertake a thorough, standardized examination of each dog for ticks. The clinical history and any ticks were then sent to the investigators for identification. Results: A total of 12,000 and 96 dogs were examined and 6555 tick samples from infested dogs were received. Ixodes ricinus (Linnaeus) was identified on 5265 dogs (89 %), Ixodes hexagonus Leach on 577 (9.8 %) and Ixodes canisuga Johnston on 46 (0.8 %). Ten dogs had Dermacentor reticulatus (Fabricius), one had Dermacentor variabilis (Say), three had Haemaphysalis punctata Canesteini & Fanzago and 13 had Rhipicephalus sanguineus Latreille. 640 ticks were too damaged for identification. All the R. sanguineus and the single D. variabilis were on dogs with a recent history of travel outside the UK. The overall prevalence of tick attachment was 30 % (range 28-32 %). The relatively high prevalence recorded is likely to have been inflated by the method of participant recruitment. Conclusion: The data presented provide a comprehensive spatial understanding of tick distribution and species abundance in the UK against which future changes can be compared. Relative prevalence maps show the highest rates in Scotland and south west England providing a valuable guide to tick-bite risk in the UK

    Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis

    Get PDF
    Recent evidence suggests that a mutation in the spike protein gene of feline coronavirus (FCoV), which results in an amino acid change from methionine to leucine at position 1058, may be associated with feline infectious peritonitis (FIP). Tissue and faecal samples collected post mortem from cats diagnosed with or without FIP were subjected to RNA extraction and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect FCoV RNA. In cats with FIP, 95% of tissue, and 81% of faecal samples were PCR-positive, as opposed to 22% of tissue, and 60% of faecal samples in cats without FIP. Relative FCoV copy numbers were significantly higher in the cats with FIP, both in tissues (P < 0.001) and faeces (P = 0.02). PCR-positive samples underwent pyrosequencing encompassing position 1058 of the FCoV spike protein. This identified a methionine codon at position 1058, consistent with the shedding of an enteric form of FCoV, in 77% of the faecal samples from cats with FIP, and in 100% of the samples from cats without FIP. In contrast, 91% of the tissue samples from cats with FIP and 89% from cats without FIP had a leucine codon at position 1058, consistent with a systemic form of FCoV. These results suggest that the methionine to leucine substitution at position 1058 in the FCoV spike protein is indicative of systemic spread of FCoV from the intestine, rather than a virus with the potential to cause FIP

    Protective Immunity against Infection with <i>Mycoplasma haemofelis</i>

    Get PDF
    Hemoplasmas are potentially zoonotic mycoplasmal pathogens, which are not consistently cleared by antibiotic therapy. Mycoplasma haemofelis is the most pathogenic feline hemoplasma species. The aim of this study was to determine how cats previously infected with M. haemofelis that had recovered reacted when rechallenged with M. haemofelis and to characterize the immune response following de novo M. haemofelis infection and rechallenge. Five specific-pathogen-free (SPF)-derived naive cats (group A) and five cats that had recovered from M. haemofelis infection (group B) were inoculated subcutaneously with M. haemofelis. Blood M. haemofelis loads were measured by quantitative PCR (qPCR), antibody response to heat shock protein 70 (DnaK) by enzyme-linked immunosorbent assay (ELISA), blood lymphocyte cell subtypes by flow cytometry, and cytokine mRNA levels by quantitative reverse transcriptase PCR. Group A cats all became infected with high bacterial loads and seroconverted, while group B cats were protected from reinfection, thus providing the unique opportunity to study the immunological parameters associated with this protective immune response against M. haemofelis. First, a strong humoral response to DnaK was only observed in group A, demonstrating that an antibody response to DnaK is not important for protective immunity. Second, proinflammatory cytokine interleukin-6 (IL-6) mRNA levels appeared to increase rapidly postinoculation in group B, indicating a possible role in protective immunity. Third, an increase in IL-12p35 and -p40 mRNA and decrease in the Th2/Th1 ratio observed in group A suggest that a Th1-type response is important in primary infection. This is the first study to demonstrate protective immunity against M. haemofelis reinfection, and it provides important information for potential future hemoplasma vaccine design

    Aristaless-like homeobox protein 1 (ALX1) variant associated with craniofacial structure and frontonasal dysplasia in Burmese cats

    Get PDF
    AbstractFrontonasal dysplasia (FND) can have severe presentations that are medically and socially debilitating. Several genes are implicated in FND conditions, including Aristaless-Like Homeobox 1 (ALX1), which is associated with FND3. Breeds of cats are selected and bred for extremes in craniofacial morphologies. In particular, a lineage of Burmese cats with severe brachycephyla is extremely popular and is termed Contemporary Burmese. Genetic studies demonstrated that the brachycephyla of the Contemporary Burmese is a simple co-dominant trait, however, the homozygous cats have a severe craniofacial defect that is incompatible with life. The craniofacial defect of the Burmese was genetically analyzed over a 20 year period, using various genetic analysis techniques. Family-based linkage analysis localized the trait to cat chromosome B4. Genome-wide association studies and other genetic analyses of SNP data refined a critical region. Sequence analysis identified a 12bp in frame deletion in ALX1, c.496delCTCTCAGGACTG, which is 100% concordant with the craniofacial defect and not found in cats not related to the Contemporary Burmese

    Genotyping coronaviruses associated with feline infectious peritonitis

    Get PDF
    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP

    Whole genome sequencing in cats, identifies new models for blindness in AIPL1 and somite segmentation in HES7

    Get PDF
    BackgroundThe reduced cost and improved efficiency of whole genome sequencing (WGS) is drastically improving the development of cats as biomedical models. Persian cats are models for Leber's congenital amaurosis (LCA), the most severe and earliest onset form of visual impairment in humans. Cats with innocuous breed-defining traits, such as a bobbed tail, can also be models for somite segmentation and vertebral column development.MethodsThe first WGS in cats was conducted on a trio segregating for LCA and the bobbed tail abnormality. Variants were identified using FreeBayes and effects predicted using SnpEff. Variants within a known haplotype block for cat LCA and specific candidate genes for both phenotypes were prioritized by the predicted variant effect on the proteins and concordant segregation within the trio. The efficiency of WGS of a single trio of domestic cats was evaluated.ResultsA stop gain was identified at position c.577C &gt; T in cat AIPL1, a predicted p.Arg193*. A c.5A &gt; G variant causing a p.V2A was identified in HES7. The variants segregated concordantly in a Persian - Japanese bobtail pedigree. Over 1700 cats from 40 different breeds and populations were genotyped for the AIPL1 variant, defining an allelic frequency in only Persian -related breeds of 1.15%. A sub-set of cats was genotyped for the HES7 variant, supporting the variant as private to the Japanese bobtail breed. Approximately 18 million SNPs were identified for application in cat research. The cat AIPL1 variant would have been considered a high priority variant for evaluation, regardless of a priori knowledge from previous genetic studies.ConclusionsThis study represents the first effort of the 99 Lives Cat Genome Sequencing Initiative to identify disease--causing variants in the domestic cat using WGS. The current cat reference assembly is efficient for gene and variant identification. However, as the feline variant database improves, development of cats as biomedical models for human disease will be more efficient, providing an alternative, large animal model for drug and gene therapy trials. Undiagnosed human patients with early-onset blindness should be screened for this AIPL1 variant. The HES7 variant should further calibrate the somite segmentation clock

    Evaluation of interferon-gamma polymorphisms as a risk factor in feline infectious peritonitis development in non-pedigree cats:a large cohort study

    Get PDF
    Feline infectious peritonitis (FIP) is a common infectious cause of death in cats, with heritable host factors associated with altered risk of disease. To assess the role of feline interferon-gamma gene (fIFNG) variants in this risk, the allele frequencies of two single nucleotide polymorphisms (SNPs) (g.401 and g.408) were determined for non-pedigree cats either with confirmed FIP (n = 59) or from the general population (cats enrolled in a large lifetime longitudinal study; n = 264). DNA was extracted from buccal swabs or tissue samples. A pyrosequencing assay to characterize the fIFNG SNPs was designed, optimized and subsequently performed on all samples. Genotype and allele frequency were calculated for each population. Characterization of the target SNPs was possible for 56 of the cats with FIP and 263 of the cats from the general population. The SNPs were in complete linkage disequilibrium with each other. There was an association between FIP status and genotype (χ2; p = 0.028), with a reduced risk of developing FIP (χ2; p = 0.0077) associated with the genotype TT at both positions. These results indicate that, although fIFNG variants may be associated with altered risk of disease, the prevalence of individual variants within both populations limits application of their characterization to breeding purpose
    corecore