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Aristaless-like homeobox protein 1 (ALX1) variant associated with 

craniofacial structure and frontonasal dysplasia in Burmese cats.

Highlights

Cat breeds are models for mammalian frontonasal development.

A 12 bp in frame deletion in ALX1, c.496delCTCTCAGGACTG is 100% concordant with 
the craniofacial defect in cats.

The ALX1 variant in cats has a heterozygous advantage in Burmese cat breeding.

The cat model for frontonasal dysplasia could facilitate therapeutics directed to early 
developmental stages.
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Abstract

Frontonasal  dysplasia  (FND) can have severe  presentations that  are medically  and

socially  debilitating.   Several  genes  are  implicated  in  FND  conditions,  including

Aristaless-Like Homeobox 1 (ALX1), which is associated with FND3.  Breeds of cats are

selected and bred for extremes in craniofacial morphologies.  In particular, a lineage of

Burmese  cats  with  severe  brachycephyla  is  extremely  popular  and  is  termed

Contemporary Burmese.  Genetic studies demonstrated that the brachycephyla of the

Contemporary Burmese is a simple co-dominant trait, however, the homozygous cats

have a severe craniofacial defect that is incompatible with life.  The craniofacial defect

of the Burmese was genetically analyzed over a 20 year period, using various genetic

analysis  techniques.   Family-based  linkage  analysis  localized  the  trait  to  cat

chromosome B4.  Genome-wide association studies and other genetic analyses of SNP

data refined a critical region.  Sequence analysis identified a 12 bp in frame deletion in

ALX1,  c.496delCTCTCAGGACTG,  which  is  100%  concordant  with  the  craniofacial

defect and not found in cats not related to the Contemporary Burmese.

[Keywords: Cartilage homeo protein 1, CART1, domestic cat, facial development, 

frontonasal dysplasia, FND, Felis silvestris catus]

http://omim.org/entry/601527?search=ALX1&highlight=alx1


Frontonasal dysplasia (FND) or median cleft syndrome is a heterogeneous group of

disorders that describes an array of abnormalities affecting development of the maxilla-

facial structures and the skull.  The prevalence of FND is unknown and is considered a

rare  or  “orphan”  disease (ORPHA No.:  ORPHA250),  however  affected children can

have severe presentations that are life-long medically and socially debilitating.  Three

genes have been implicated in FND conditions.  Aristaless-Like Homeobox 1 (ALX1)

(OMIM:601527) is associated with FND3, which was defined in three Turkish sibs of

consanguineous parents .  ALX1 is also known as Cartilage homeoprotein-1 (CART1) ,

which has been demonstrated to cause neural tube defects in mice ,  presenting as

acrania and meroanencephaly in mice.

Domesticated animals are often selected for craniofacial  variants that become breed

defining traits.  Conditions that would be considered abnormalities or severe craniofacial

defects in humans are desired phenotypes in cats and dogs, thus companion animals

are excellent models for human facial development due to their popularity.  Many dog

and cat breeds are bred for brachycephaly, which is assumed to be preferred due to its

neotenic effect on the animal’s face.  In dogs, the definition of brachycephaly has been

quantified by morphological measurements  and two genes have been implicated for

affecting head type .  The health concerns associated with canine brachycephaly have

come under strong veterinary and public scrutiny , suggesting severe modifications to

breeding programs to alleviate the extent of brachycephaly.

The Burmese is a cat breed with an extreme brachycephalic phenotype (Fig. 1a).  In the

late 1970’s, a male Burmese cat in the USA with a more brachycephalic head type

became a highly popular sire and his lineage became known as the “Contemporary”

http://omim.org/entry/601527?search=ALX1&highlight=alx1


Burmese (Fig. 1b).  The head type was found to be heritable, however, offspring from

“Contemporary” style mating produced a craniofacial defect in 25% of offspring .  The

abnormality  is  characterized  by  agenesis  of  all  derivatives  of  the  medial  nasal

prominence; lateral duplication of most derivatives of the maxillary process; including

the  canine  teeth  and  whiskers  fields;  telencephalic  meningoencephalocele;  and

secondary ocular degeneration (Fig. 1c - d).  The midline facial defect is autosomal

recessive, however, carriers of the mutation are more brachycephalic individuals than

wildtype  and  were  positively  selected  in  the  breed,  thus  the  trait  has  also  been

described  as  co-dominant.   Affected  kittens  were  generally  born  live  and  require

euthanasia as the condition is incompatible with life.  The heterozygous cats became

the hallmark phenotype of the “Contemporary” Burmese and the predominant winners

at cat shows.

The controversy of the craniofacial defect and the recognition of other health concerns

in non-USA Burmese, such as hypokalemia , orofacial pain  and diabetes  has led to the

isolation  of  the  USA  and  non-USA  breeds  and  the  USA  Burmese  divided  into

“Traditional” and “Contemporary” styles; Burmese are now one of the most genetically

inbred cat populations worldwide with significantly reduced popularity due to the health

concerns .  Genetic studies have proven to be highly efficient in populations with high

linkage disequilibrium (LD) and inbreeding, particularly companion animals.  The LD of

the Burmese is amongst the most extended for cat breeds .

A long-term project that initiated with targeted linkage analysis, and, as domestic cat

genomic resources improved, progressed to identity by descent mapping, homozygosity

mapping and a genome-wide case – control association study (GWAS) suggests ALX1



as a major gene controlling craniofacial structure and the variant in ALX1 is associated

with the Burmese brachycephaly and the craniofacial abnormality.



Materials & Methods

Burmese cat sample collection

Cadavers of affected and normal stillborn kittens were voluntarily submitted by Burmese

owners from the period of twenty years (1992 – 2012).  Approximately 3 ml EDTA anti-

coagulated  whole  blood  of  normal  parents  and  siblings  was  also  collected  and

submitted  by  the  owners’  veterinarians.   For  more  recent  submissions,  DNA was

supplied  by  owners  on  cotton  swabs  or  cytological  brushes  via  buccal  swabbing.

Pedigrees were supplied by the owners.  White blood cells were isolated from the whole

blood using standard techniques and DNA from white cells and tissues was isolated by

phenol  –  chloroform  extraction  ,  salt  precipitation  ,  or  using  Qiagen  kits  (Qiagen,

Valencia, CA). Genomic DNA from buccal swabs was isolated using the DNAeasy kit

(Qiagen).  Pedigree relationships were confirmed by parentage analyses .

Markers for Linkage Analysis

Short tandem repeat (STRs) markers for linkage analysis were selected in proximity to

candidate genes, including the homeobox gene clusters (HOXA@, HOXB@, HOXC@,

HOXD@) and sonic hedgehog (SHH).  These genes are mapped by somatic cell hybrid

studies  to  cat  chromosomes  that  have  conserved  regions  of  synteny  to  human

chromosomes 7, 11, 12, and 17, respectively .  At that time, twenty-four STRs were

publically  available  on  cat  chromosomes  A2q,  D1,  B4q,  E1  in  juxtaposition  to  the

candidate genes . 



Linkage Analysis

Linkage analysis was conducted using the software package LINKAGE .  The kittens

with the craniofacial defect were considered congenitally affected with full penetrance of

the  phenotype,  assuming  an  autosomal  recessive  mode  of  inheritance.   The  allele

frequency of 0.5 was estimated for non-genotyped founders of the pedigree since the

trait is under positive selection in the Contemporary lines of the breed.

SNP array genotyping

The initial dataset for the SNP array genome-wide analysis comprised 46 cats, including

affected Burmese kittens cases that were unrelated as possible and related Burmese,

and cats from the closely related breed, Bombay, for controls.  Approximately 600 ng of

genomic  DNA from  tissue,  blood  or  buccal  swab  was  submitted  to  Neogene,  Inc

(Lincoln, NE, USA) for genotyping on the Illumina Infinium Feline 63K iSelect DNA array

(Illumina, Inc., San Diego, CA).  Genotyping and analysis was performed as previously

described .

Array data analyses

SNP genotyping rate and minor allele frequency was evaluated using PLINK .  SNPs 

with a MAF < 5%, genotyping rate < 90%, and individuals genotyped for < 90% of SNPs

were excluded from downstream analyses.  An MDS with 2 dimensions was performed 

using PLINK to evaluate population substructure within cases and controls.  Inflation of 

p-values was evaluated by calculating the genomic inflation factor (λ).  The P for each 

individual was calculated using PLINK.  To reduce λ, cats not tightly clustered and/or 

highly related with a p-hat > 0.3 were removed from downstream analyses.  Moreover, 



selection for each case to the closest control using the values from the MDS dimensions

was attempted.  Linkage disequilibrium from position 106,142,990 - 114,551,706 was 

determined and presented as a plot produced by HAPLOVIEW .  To investigate the 

haplotype, SNPs from the haplotype block (n = 129 SNPs) were exported and visually 

inspected. 

Identity by descent (IBD) analysis was conducted using PLINK .  Segmental sharing

was surveyed with the command --segment using a window of 25 SNPs (~1000 Kb).  All

the  samples  were  included  in  the  analysis  using  the  function  --all-pairs.   Shared

haplotypes between all sample comparisons were plotted and visually inspected. 

Homozygosity analysis was conducted using PLINK .  A window of 25 SNPs (~1000 Kb)

was  surveyed  for  homozygosity,  allowing  five  missing  genotypes  and  a  single

heterozygous.  A homozygous block was defined by five SNPs (or ~250 Kb) and the

threshold of homozygosity match was selected as 0.99.  The consensus homozygosity

block was defined as the overlapping homozygosity block from each individual using the

command (--homo-group).  Minor allele frequency (MAF) was calculated for each SNP

using the function --geno in PLINK, separating cases from controls.  For each SNP, the

MAF was plotted along the chromosomal length.

ALX1 genomic analyses

The complete CDS of ALX1 is publicly available and can be found on chromosome B4:

110145316 – 110165008 in Felis catus 6.2.  ALX1 has 4 coding exons; the full CDS and

the 5 UTR and 3’ UTR was analyzed on genomic DNA.  Primers were tested for efficient

product amplification on a DNA Engine Gradient Cycler (MJ Research, GMI, Ramsey,



MN)  and  the  final  PCR  magnesium  concentrations,  annealing  temperatures,  and

amplicon sizes for each primer pair are shown in  Supplementary Table 1.  PCR and

thermocycling conditions were conducted as previously described .  The PCR products

were  purified  and  directly  sequenced  as  previously  described  .   Sequences  were

verified and aligned using the software sequencer version 4.10 (Gene Codes Corp., Ann

Arbor, MI).

ALX1 mutation genotyping

The  cats  of  the  multi-generational  pedigree  segregating  for  the  deformity

(Supplementary Fig. 1, 2), as well as Burmese and other breed cats, were genotyped

to confirm segregation of the variant with the craniofacial defect and to determine allele

frequency.  The University of California – Davis, Veterinary Genetics Laboratory and

Langford Veterinary Services has offered the Burmese craniofacial mutation genetic test

for approximately three years.  A PCR reaction using Alx1-Fdel with a fluorescence label

and  Alx1-R  del  (Supplementary  Table  1)  was  performed  and  electrophoretically

separated on an ABI DNA analyzer (Applied Biosystems).  The predicted size of the

wild-type allele was 198 bp and 186 for the variant allele and verified using the software

STRand .   Langford Veterinary Services, primers for pyrosequencing were designed

using  PyroMark  Assay  Design  Ver  2.0  (Qiagen,  UK)  (Supplementary  Table  1).

Pyrosequencing  was  undertaken  after  PCR  amplification  using  GoTaq  Master  Mix

(Promega, UK) of genomic DNA isolated from mouth swabs using the Nucleospin Blood

kit (Macherey-Nagel, Germany) according to the manufacturer’s instructions (PyroGold,



Qiagen) on a PyroMark Q24 (Qiagen). Pyrosequencing PCR was conducted using 95C

for 2 min, followed by 38 cycles of 95C for 20 sec and 58C for 40 sec.

Results

Burmese cat sample collection

The phenotype of the craniofacial defect in the affected Burmese cats is unique and

distinct, with only mild variations in presentation, therefore diagnosis of affected kittens

is not confounded by other congenital birth defects in cats (Fig 1c - d.).  All affected cats

used  in  the  analyses  were  presented  to  the  investigators  and  were  phenotypically

confirmed.  Additional stillborn kitten littermates were often submitted and were used as

normal siblings when determined phenotypically normal by gross examination.  Cats

were considered normal if a blood or buccal swab sample had been submitted.  Over

488 samples from Burmese cats were ascertained, 83 were stillborn kittens with the

craniofacial defect. 

Linkage Analysis

A  linkage  analysis  was  conducted  on  two  extended  families  consisting  of  124

individuals, which included 47 affected and 62 normal offspring (Supplementary Fig. 1

and  2).   Linkage  was  suggested  by  four  STRs,  FCA863,  FCA683,  FCA864 and

FCA866.  STR FCA864 identified significant complete linkage (Z = 4.63, Θ = 0.00) to the

craniofacial phenotype suggesting the trait should be localized to cat chromosome B4

(Table 1).  Fourteen additional STRs, including  FCA105, FCA124, FCA298, FCA327,

FCA621,  RCA656,  FCA785,  FCA789,  FCA790,  FCA791,  FCA792,  FCA991,  and

FCA992,  were also tested for linkage to the cranial  defect data not shown).  These



markers did not support linkage and generally excluded 10 – 15 cM flanking the loci.

No linkage was suggested with the four HOX@ clusters and SHH, although HOXC@ is

on cat chromosome B4.  FCA864 is located at chrB4: 91513852 - 91514204 in the cat

reference assembly - Felis catus 6.2 (http://www.ncbi.nlm.nih.gov/assembly/320798).

SNP data analyses

Forty-eight cats, including 23 cases (20 Burmese, three Bombay) and 23 controls (16

Burmese and seven Bombay), were submitted for SNP genotyping.  Affected Burmese,

Bombay and American Shorthair cats originated from United States and healthy controls

from the Burmese and Bombay breeds were selected from the USA and other countries

were included in the analysis.  The genotyping rate was 0.995, hence all the cats were

included in the downstream analysis.  After evaluating the genotype qualities of 62,897

SNPs on the array, 43,087 markers passed quality control and were included in the

case-control association.  Approximately 19,549 SNPs were eliminated for low MAF and

314 SNPs were eliminated for poor genotyping.  For haplotype analysis, ROH and IBD,

only SNPs with poor genotyping rate were removed from analyses.

Association Studies

Multi-dimensional scaling (MDS) revealed stratification of the cats used in the analysis

(Supplementary Fig.  3).   Two  main  clusters,  one  containing  Burmese  cases  and

controls and some Bombay, a second tight cluster containing only Burmese controls,

and  some isolated  Bombay  were  observed.   The MDS removed  one  case  and  11

controls  leaving  22  cases  and  12  controls  for  the  analysis,  reducing  the  genomic

inflation from 2.95 - 2.13.  Seven cases showed a  P> 0.3, and were removed, with a



decrease in inflation to 1.84.  Finally,  15 cases (ten Burmese, five Bombay) and 12

controls (11 Burmese, one Bombay) were included in the association analysis and a

significant association was identified with several SNPs on chromosome B4 (Fig. 2).

After permutation testing,  only three SNPs on chromosome B4 remained genome –

wide  significant.   SNPs  B4.128525117  (position  111,895,171)  and  B4.128576912

(position  111,938,566)  had  the  most  significant  association  with  the  trait  (Table  2).

Using the solid spine of LD analysis in Haploview , a haplotype with 92% frequency in

the cases from position 106,871,872 -  111,795,395 (~ 5 Mb) was identified.   In the

controls, smaller blocks are detected as shown in Fig. 2, Supplementary Fig. 4.  The

haplotype was inspected from position 106,142,990 -  114,551,706 and four affected

Burmese  were  key  in  refining  the  area  containing  the  gene  associated  with  the

phenotype.   Two  Burmese  cats  refined  the  area  of  association  from  position

108,534,662 -  112,980,578,  while  three Bombay showed heterozygous SNPs in  the

haplotype  and  the  remaining  two  Bombay  were  heterozygous  for  SNPs across  the

entire ~ 4.5 Mb region, leaving only short block for visual examination, including a 161

Kb block that contains ALX1 (Fig. 2, Supplementary Fig. 4).  

When comparing each case to all the other cases included in the IBD analysis, a region

on chromosome B4 is shared across the majority of the cats (Supplementary Fig. 5).

Four cats did not have the complete common ancestral allele.  Other regions, such as

chromosome D1 showed an extended shared allele across all the Burmese to Burmese

comparisons (Supplementary Fig. 6).

ROH analysis was conducted on all the available cases (n = 23) and controls (n = 23)

separately.  Excluding the ROHs detected on the X chromosome shared in 23 cases as



well  as  in  the  controls  (data  not  shown),  a  ROH  was  detected  in  23  cases  on

chromosome B4 (Supplementary Fig. 5 & 7).  The ROH spanned 162 SNPs (position

106,754,478 - 112,937,278) and covers ~ 6.2 Mb.  No ROH was identified for the control

group in this location (Supplementary Fig. 5 & 7).  Other shorter ROHs were identified

on several other chromosomes (Supplementary Table 2).  Several other reductions in

MAF are detected, but none exclusive to cases compared to controls (Supplementary

Fig. 7).

ALX1 genomic analysis and variant genotyping

The  entire  ALX1 CDS  sequence  was  analyzed  in  ten  cats, including  five  affected

Burmese and five controls (domestic shorthair, one Persian, and three Burmese).  ALX1

has one isoform and the length of the coding region of the transcript is 981 bp in human

and  cats,  translating  into  326  amino  acids.   The  average  CDS homology  between

human  and  cat  is  93.8%  and  the  protein  identity  is  97.5%.   A  12  bp  deletion

(c.496delCTCTCAGGACTG)  was  identified  in  the  coding  region  of  ALX1

(XM_011288799.1).  The variant is predicted  in silico to be responsible for the lack of

four amino acids in the homeobox domain of the protein (Supplementary Fig. 8) was

further investigated.  No other variants were identified during the sequencing effort.

All the unaffected cats in the pedigree were confirmed to be homozygous wild-type or

carrier  of  the  12  bp  deletion  while  all  the  affected  cats  were  homozygous  for  the

identified variant (Supplementary Fig. 2 and 3).  Genotyping of over 3,000 Burmese

type cats suggests the allele frequency is ~6% in the Burmese population.  However,

this  estimation  is  biased  as  breeders  know the  at-risk  cats.   The variant  was also



genotyped in ~2400 cats from other breeds with brachycephaly, such as Persian, Exotic

Shorthair, Scottish Fold, Selkirk Rex and British shorthair, as well as random bred cats.

None of the tested cats from other breeds or populations showed the deletion (Table 3).

Discussion

Frontonasal  dysplasias  are  a  heterogeneous  group  of  disorders  .   Cases  can  be

sporadic, however, several familial cases have been reported , with two or more of the

following clinical signs: true ocular hypertelorism, broadening of the nasal root, median

facial cleft affecting the nose and/or upper lip and palate, unilateral or bilateral clefting of

the  alae  nasi,  lack  of  formation  of  the  nasal  tip,  anterior  (rostral)  cranium bifidum

occultum and a V-shaped or widow's peak frontal hairline .  The Burmese craniofacial

defect has the same constellation of dysmorphologies as in humans and is a biomedical

model  for  FND (Fig 1 and 3).   The Burmese craniofacial  abnormality was originally

described as either maxillonasal hypoplasia  or incomplete diprosopus  and a mechanism

of transformation of the medial nasal part of the frontonasal process was suggested.  The

dysmorphology was declared a telencephalic meningohydroencephalocele.  Defects in

ALX1 are the cause of frontonasal dyspasia type 3 (FND3; OMIM: 613456) .

The genetic analyses of the craniofacial abnormality in the Burmese cats were initiated

prior  to  the  development  of  valuable  genetic  resources  for  the  cat.  Progress  was

incremental as the positions of the  HOX@ in the cat were identified by somatic cell

hybrid analyses , STRs developed, linkage and radiation hybrid maps constructed  and

synteny between the cat and human genomes established .  Before the understanding

of the function of ALX1, candidate genes on cat chromosome B4, such as SHH, were

sequenced and eliminated (data not shown).  The development of the cat BAC library,



and later the first cat genome assembly also allowed the identification of regional STRs

and  repeated  linkage  studies  continued  to  eliminate  candidate  genes  on  cat

chromosome  B4  (data  not  shown).   The  cat  samples  submitted  by  the  Burmese

breeders produced a larger, more extended pedigree containing over 300 genotyped

cats  that  included  the  Burmese,  Bombay  and  American  Shorthair  breeds  (data  not

shown).  Eventually, several different genetic methods identified the same chromosomal

region for the craniofacial defect in the Burmese cats and the newly recognized function

of ALX1 suggested a strong candidate gene .

Initially,  extended  pedigrees  of  Burmese  and  Bombay  cats  segregating  for  the

craniofacial defect supported linkage analyses with STRs, suggesting the craniofacial

defect was linked to markers that had been mapped to cat chromosome B4.  Recent,

intense  and  rapid  selection  for  the  brachycephalic  muzzle  in  the  Burmese  breed

suggested that the region with the causative locus may have high linkage disequilibrium

(LD).  LD analyses across several cat breeds showed the Burmese had the highest LD

amongst cats (~200 Kb) , implying the Burmese would be an efficient breed for analyses

on the 63K cat DNA array.  The first successful genome-wide association study used

non-USA Burmese cats to localize the variant causing hypokalemia with 25 cases and

35 controls and a genomic inflation of 1.8 .  As a disease trait, hypokalemia was not

under positive selection, thus, the craniofacial defect, also autosomal recessive, would

likely require fewer cats since the trait was under intense positive selection and had

heterozygous advantage.  After correction for sub-structure and relatedness, a GWAS

with  a  genomic  inflation  of  1.84  using  15  cases  and  12  controls  also  suggested

localization  of  the  craniofacial  defect  to  cat  chromosome B4.   Both  haplotype  and



identity by descent analysis revealed a 5 - 10 Mb region on chromosome B4 in which

four  recombinant  cats  reduced  the  critical  region  to  161  Kb,  which  included  the

candidate  gene  ALX1.   The  same region  on  chromosome B4  was  confirmed  by  a

reduction  in  MAF in  the  cases  versus  the  controls.   Other  regions  also  showed a

remarkable  reduction  in  MAF,  but  the  decrease  was  not  unique  to  the  cases;  the

presence  of  these  regions  was  expected,  since  Burmese  and  the  closely  related

Bombay  have  other  unique  phenotypic  features  under  selection.   The  region  that

contains  the  temperature  sensitive  coloration  pattern  in  TYR  showed  a  reduction

spanning almost 40 Mb, indicating a historic and positive selective pressure for the trait. 

The  candidate  gene,  homeobox  transcription  factor  ALX1,  is  within  the  short

homozygous  block  spanning  161  Kb.  Sequencing  of  the  gene  identified  a  12  bp

deletion,  496delCTCTCAGGACTG.   ALX1 contains  two  domains:  the  homeobox

domain at position 133 – 191 and the OAR domain at positions 302 – 321 of the protein.

The homeobox family transcription factor domain is defined by a highly conserved 60

amino acid sequence that encodes for a helix-turn-helix DNA binding domain (Gehring

et  al  1994).   In  vertebrates,  ALX1 regulates  the  development  and  survival  of

mesenchyme-derived elements of the face and neck and complete gene loss of ALX1

prevents the fusion of frontonasal, nasomedial, nasolateral,  and maxillary elements .

Uz et al. (2010) identified a 3.7 Mb chromosomal deletion of a region containing ALX1

that is associated with a frontonasal dysplasia.  While normal development of structures

originating from the frontal and nasomedial prominences are observed, the presence of

bilateral cleft is suggests lack of fusion of nasomedial and nasolateral prominences.  In

humans, the lack of fusion of the apices of the palatal shelves suggests that embryonic



development might be disrupted before the seventh week of gestation  or earlier from

studies in mice  due to the similar phenotype is hypothesized that ALX1 has a similar

role in early embryogenesis in the feline model.   ALX1 is  tuned by several  primary

mesenchyme  cell  signals,  and  controls  ingression  genes,  several  skeletogenic

differentiation genes and secondary mesenchyme cells specification genes .  The 4

amino  acid  deletion  in  the  mutated  feline  protein  from position  68 -  71,  within  the

homeobox  binding  domain  alters  the  activity  of  the  element,  disrupting  the  normal

development  of  affected  Burmese  craniofacial  mesenchyme.   This  12  bp  deletion

causes a desired brachcephalic presentation in the heterozygous state and the severely

dysmorphic congenital abnormality when homozygous (Fig 1 and 3).

ALX1 is  expressed  during  embryogenesis  in  mesenchyme  of  craniofacial  primordia

(Zhao et al., 1993).  In vivo studies of ALX1 have demonstrated the aristaless domain of

ALX1 functions  to  restrain  activity  of  this  transcription  factor  mainly  or  completely

through its effect on DNA binding .  The aristaless domain (OAR) is essential for correct

morphogenesis of the cranium and other regions of the body.  The deletion of 4 amino

acids  of  the  homeobox  domain  in  ALX1 in  the  cat  demonstrates  disruption  of  the

cranium morphogenesis, but only in the homozygous state.  Heterozygous cats do have

a brachycephalic appearance, thus all variants in ALX1 may not be lethal.

The Burmese has its origins in cats of Thailand, historically known as the Supilak or the

Copper Cat of Siam .  The Burmese was accepted for stud book registration by the Cat

Fancy Association (CFA) in 1936.  The foundation of this breed in the United States

originated the importation of a single female, "Wong Mau", from the capital of Rangoon.

Wong Mau was phenotypically distinct from the Siamese cats of her homeland in that she



had a distinctively more cobby body frame with a walnut-brown coat color,  exhibiting

darker brown points.   The Burmese has a breed defining coloration mutation at  the

Color (C) locus, all cats being homozygous, cbcb, for a temperature sensitive mutation in

Tyrosinase (TYR) that causes the sable coloration .  Genetic studies support Burmese

origins from South –East Asia , as well as other closely related breeds such as Bombay,

Singapura,  Siamese  and  Korats.   The  Bombay,  Singapura,  Asian  and  Burmilla  cat

breeds are derived from the Burmese and need to be screened for the craniofacial

defect, as well as hypokalemia.

Animal  models  offer  a  useful  tool  to  understand the effects  of  single  gene defects.

Moreover,  breed  phenotypes  under  strong  positive  selective  pressure  facilitates  the

localization of the loci that harbor gene(s) controlling aesthetic features (Gandolfi 2013,

Gandolfi  2013).   The Persians are  one of  the  oldest  cat  breeds,  presented  as  the

Angora in early cat shows of the late 1800’s and early 1900’s .  Besides Burmese, the

craniofacial  structure  of  the  breed was also  drastically  modified  after  World  War  II,

replacing the moderate facial structure with the drastically brachcephalic structure of the

Peked-faced Persian during the 1960’s .  Persians have influenced many breeds and

are the major craniofacial type contributor to the Exotic Shorthair, Himalayan, Scottish

Fold,  Selkirk  Rex and even the modern British Shorthair.   Combined,  these breeds

represent over 60% of the registered cats in the Cat Fanciers’ Association in the USA .

The Burmese  ALX1 variant was not  identified in these brachycephalic breeds.   The

drastic and rapid change in the Persian family of cat breeds suggests a second gene

affecting  the  craniofacial  structure  in  these breeds.   Traditional  Burmese have  also

become more brachycephalic over the past 3 decades and their phenotype cannot be



clearly  distinguished  from  Burmese  heterozygous  for  the  ALX1 variant.   Thus,  all

Burmese need to be genotyped to confirm presence or absence of the variant.
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Tables

Table 1.  Linkage of feline STRs on chromosome B4 to the Burmese craniofacial defect.

θ Max Max

Marker 1 Marker 2 0.00 0.01 0.05 0.10 0.20 theta, θ LOD Z

FCA683 Defect - ∞ -0.82 2.10 2.87 2.83 0.140 3.00

FCA863 Defect - ∞ -
10.57

-4.66 -2.44 -0.75 --------- --------

FCA864 Defect 4.63 4.56 4.23 3.81 2.87 0.000 4.63

FCA866 Defect - ∞ 0.49 1.56 1.73 1.41 0.097 1.73

FCA683 FCA863 - ∞ 1.62 3.22 3.49 3.02 0.099 3.49

FCA683 FCA864 - ∞ 1.00 1.51 1.59 1.41 0.096 1.59

FCA683 FCA866 - ∞ -0.57 0.55 0.81 0.75 0.127 0.84

FCA863 FCA864 - ∞ --6.70 -
3.33

-1.96 -0.74 --------- --------

FCA863 FCA866 - ∞ -8.63 -3.96 -2.15 -0.71 --------- --------

FCA864 FCA866 - ∞ -4.99 -2.83 -1.88 -
0.93

--------- --------



Table 2. Genome-wide significantly associated SNPS after 100,000 permutation testing.

SNP ID Chromosome Position P value Pgenome value

B4.128525117 B4 111895171 6.38e-7 0.014

B4.128576912 B4 111938566 1.33e-6 0.031

B4.128654054 B4 112016581 2.23e-6 0.045



Table 3. Frequency of the ALX1 variant in different cat breeds*.

Group Tested Carrier Wildtype

Pedigree 230 119 28

Asian 2 0 2

Australian Mist 1 0 1

Bombay 133 43 90

Burmese 3250 151 3099

Burmilla 5 0 5

Tonkinese 6 0 6

Burmese Breeds 3264 194 3070

Other Breeds 2456 0 2456

*Cats homozygous for the variant are affected and stillborn.  From the pedigree, 83
affected  kittens  were  all  homozygous  for  the  ALX1 variant.   The  total  number  of
pedigree cats tested was increased after the linkage analyses.  Testing of other cat
breeds was performed at the University of California, Veterinary Genetics Laboratory,
California, USA and the Langford Veterinary Services, Bristol, UK.



Figure Legends

Figure 1. Variation of the Burmese cat breed’s craniofacial structure. A) Traditional lines
are  not  as  extreme,  but  selection  has  continued  for  the  past  30  years  for  a  more
extreme type that is not associated with congenital  abnormalities.  Some Traditional
lines and contemporary lines are now difficult to distinguish phenotypically.  Thus, all
Burmese need to be genotyped to confirm presence or absence of the variant.

B) The Contemporary style Burmese has extreme brachycephyla and the phenotype is
association with  the craniofacial  defect.   C)  Frontal  view displays duplication of  the
maxillary processes and agenesis of  the medial  nasal  prominence.  D) Lateral  view
displays abnormal development of  the maxillary processes and ocular degeneration.
Photographs  courtesy  of  Nancy  Reeves,  Isabelle  Marchand  and  Richard  Katris  –
Chanan Photography.

Figure  2. Manhattan  plot  of  the  Burmese  head  deformity  GWAS  and  SNPs
genotypes within chromosome B4 haplotype. a. The plot represents the Praw (top)
and Pgenome (bottom) values of each SNP included in the case-control association study.
The association study compared the affected Burmese and Bombay cats.  A significant
association with chromosome B4 was detected. b. The area from SNP B4.121572441
(position 106,142,990) to SNP B4.114551707 (position 114,551,707) spans ~ 8.4 Mb.
The two red vertical dashed lines represent the region of the single haplotype containing
ALX1, from SNP B4.126353636 (position 110,094,604) to SNP B4.126530474 (position
110,255,914)  spanning  161  Kb.   Each  SNP is  represented  by  two  squares  where
markers are on the x-axis and individuals on the y-axis.   Gray boxes represent the
major allele in the cases and black squares represent the minor.

Figure 3. Three dimensional CT reconstructions of Burmese cat crania. Top) Frontal
views of normal stillborn littermate of a Burmese with the craniofacial defect. Bottom)
Lateral and dorsal-ventral view of Burmese kitten with a craniofacial defect.  Normal
kittens may carry the ALX1 variant.  Affected kittens are homozygous for the variant and
have the hallmark features of FND.

 



Supplementary Figure Legends

Supplementary Figure 1.  Pedigree segregating for the Burmese Craniofacial Defect.
Circles represent females, squares represent males, diamonds are unknown gender.
Open symbols indicate phenotypically normal animals, filled symbols indicate affected
cats, half-filled are obligate carriers.  A small filled circle represents a “breeding node”
for parental cats.  Numbers under the symbols represent the laboratory sample number.
Genotypes  for  the  linked  marker  FCA864 are  represented  below  the  identification
numbers or names.  The base pair size of the microsatellite marker was converted to a
single number to distinguish the allele.  No data is represented by dashes, “--”.

Supplementary Figure 2.  Pedigree segregating for the Burmese Craniofacial Defect.
Circles represent females, squares represent males, diamonds are unknown gender.
Open symbols indicate phenotypically normal animals, filled symbols indicate affected
cats, half-filled are obligate carriers.  A small filled circle represents a “breeding node”
for parental cats.  Numbers under the symbols represent the laboratory sample number.
Genotypes  for  the  linked  marker  FCA864 are  represented  below  the  identification
numbers or names.  The base pair size of the microsatellite marker was converted to a
single number to distinguish the allele.  No data is represented by dashes, “--”.

Supplementary  Figure  3.  Multidimensional  scaling  (MDS)  analysis  for  population
stratification of Burmese. Forty-six samples were plotted for principle components 1 and 2, a.
represents the distribution of cases and controls, b. shows the distribution of the samples based
on breed, and c. The Burmese controls on the lower left of each plot were eliminated from the
case-control analysis.

Supplementary  Figure  4.  Haplotype  analysis  of  Burmese  cases  and  controls  for  the
craniofacial  defect.  Position 106,871,872 -  111,795,156 of  chromosome B4 in cases and
controls. a. LD block identified by HAPLOVIEW across all the cases, spanning 4,923 Kb. b.
Haplotypes sequence and frequencies across the 4,923 Kb regions.  The main haplotype is
squared  in  red  and  shows  a  frequency  of  92%  across  cases.  c.  LD  blocks  identified  by
HAPLOVIEW  in  the  correspondent  region  across  all  controls  included  in  the  study.  d.
Haplotypes sequence and frequencies for each identified LD block within the 4,923 Kb region in
the control cats.

Supplementary  Figure  5. Identity  by descent  (IBD)  and  minor  allele  frequency  (MAF)
analyses for chromosome B4.  The horizontal lines in the graph represent all the IBD regions
(shared alleles) on chromosome B4 between all the cats included in the analysis. a. Each case
is compared to all the other cases included in the analysis.  Each group of comparison (breed to
breed) is color-coded.  Vertical black dashed lines represent a shared IDB region in common
between almost all cases.  b. Each case is compared to all the controls included in the study. c.
Controls versus controls comparison of shared IBD. Cases versus controls and controls versus
control comparisons do not show any shared IBD across all the specimens. (Bottom) Graphical
representation of the MAF differences within the affected samples (black line) and the control



samples (red line) across all the Felis catus chromosomes.  The black line represents the MAF
within the cases and is compared with the MAF within the controls for each SNP.  The red
dashed line represent  the MAF mean for  the chromosome within  the cases and the black
dashed line the MAF mean within the controls.  Several gaps are present in the current genome
assembly, thus SNPs surrounding the gaps are connected with straight lines.

Supplementary Figure 6.  Identity by descent (IBD) analysis for chromosome D1.  The
horizontal lines in the graph represent all the IBD regions (shared alleles) on chromosome D1
between all the cats included in the analysis.  a. Each case is compared to all the other cases
included in the analysis.  Each group of comparison (breed to breed) is color-coded.  b. Each
case  is  compared  to  all  the  controls  included  in  the  study.   c.  Controls  versus  controls
comparison of shared IBD.  A common IBD is shared across the majority of East Asian breeds.
The trait contained in the IBD region is a phenotypic trait responsible for the Burmese point
coloration, fixed within the breed and confirmed by other analysis included in this study.

Supplementary Figure 7.  Full  chromosomal  minor allele frequency (MAF) comparison
within  cases  and  controls.   Graphical  representation  of  the  MAF  differences  within  the
affected  samples  (black  line)  and the control  samples  (red  line)  across  all  the Felis  catus
chromosomes.  The black line represents the MAF within the cases and is compared with the
MAF within the controls for each SNP.  The red dashed line represent the MAF mean for the
chromosome within the cases and the black dashed line the MAF mean within the controls.
Several gaps are present in the current genome assembly, thus SNPs surrounding the gaps are
connected with straight lines.

Supplementary Figure 8: Protein alignment of the Cart1 wildtype and mutated alleles. The
mutation, underlined in red, is responsible for the lack of 4 amino acids (in silico prediction) in
the homeobox domain.  In the human protein, the homeobox domain starts at position 132 and
ends at position 191 of the amino acid chain.  Underlined in blue is the Cart1 OAR domain,
which starts at position 306 and ends at position 319 of the Cart1 protein.









Supplementary Table 1. PCR and primers for analysis of cat ALX1. 
Forward Reverse Mg Tm 
GGACGTATTAAGGGCTCGGAGC TAAAACGCTCGCAGTTCCACCG 1.5 mM 58 °C 
AAATCATTAACAGACTGCTTTCCTGA ATGGTTCTAGTCTTTAGTGAGAGGATCA* 2 mM 58 °C 
TTAGTGATTTTGTTGACCTGGTTTGTGT TAAAATGCTCTCCTGGCACCTGG 1.5 mM 60 °C 
TAAGGGGACAAAAGTGAGAATGCG CGTTTGTGGAGACTGATGGATGGT 1.5 mM 60 °C 
Pyrosequencing    
Biotin-GAAAACCCATTACCCGGATGTAT CTTCATTTGGCTCCTACCTGGA   
CCTGGACTCTGGCCTCCGTGA$    
*for genotyping, this primer was labelled with FAM dye.  
$This primer is for sequencing in the pyrosequencing reaction. 

 



Supplementary Table 2. Consensus details homozygous regions across the affected cats. 
Chr. SNP1 SNP2 bp start bp end Kb # SNPs # cats 

X chrX.38990530 chrX.40531503 31154766 32362304 1207.54 26 23 
X chrX.36970662 chrX.38733350 29539864 30953514 1413.65 38 23 
B4 chrB4.122309957 chrB4.129821393 106754478 112937278 6182.8 162 23 
X chrX.17358465 chrX.26762022 13769102 21616256 7847.15 201 21 

D1 chrD1.29042292 chrD1.31719770 23604822 25470200 1865.38 61 21 
B3 chrUn.36239579 chrB3.37818450 30716536 32150500 1433.96 38 21 
D3 chrD3.10607895 chrA1.170901230 8276516 10296770 2020.25 55 20 
D1 chrD1.74373646 chrD1.77044135 47727880 49998734 2270.85 69 20 
B4 chrB4.133640812 chrB4.133943775 116050184 116294718 244.534 5 20 
B1 chrB1.58452923 chrB1.58795359 45352082 45619806 267.724 9 20 
B1 chrB1.55781749 chrB1.56493341 43293324 43849984 556.66 18 20 

 



Supplementary Figures: 
 

 
 
Supplementary Figure 1.  Pedigree segregating for the Burmese Craniofacial Defect.  
Circles represent females, squares represent males, diamonds are unknown gender.  
Open symbols indicate phenotypically normal animals, filled symbols indicate affected 
cats, half-filled are obligate carriers.  A small filled circle represents a “breeding node” 
for parental cats.  Numbers under the symbols represent the laboratory sample number.  
Genotypes for the linked marker FCA864 are represented below the identification 
numbers or names.  The base pair size of the microsatellite marker was converted to a 
single number to distinguish the allele.  No data is represented by dashes, “--”. 



 

 
 
Supplementary Figure 2.  Pedigree segregating for the Burmese Craniofacial Defect.  
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Open symbols indicate phenotypically normal animals, filled symbols indicate affected 
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Genotypes for the linked marker FCA864 are represented below the identification 
numbers or names.  The base pair size of the microsatellite marker was converted to a 
single number to distinguish the allele.  No data is represented by dashes, “--”. 
 



 
Supplementary Figure 3. Multidimensional scaling (MDS) analysis for population 
stratification of Burmese. Forty-six samples were plotted for principle components 1 and 2,a. 
represents the distribution of cases and controls, b. shows the distribution of the samples based 
on breed.  c. The Burmese controls on the lower left of each plot were eliminated from the case-
control analysis.  
 
 



 
Supplementary Figure 4. Haplotype analysis of Burmese cases and controls for the 
craniofacial defect. Position 106,871,872 to position 111,795,156 of chromosome B4 in cases 
and controls. a. LD block identified by HAPLOVIEW across all the cases, spanning 4,923 Kb. b. 
Haplotypes sequence and frequencies across the 4,923 Kb regions. The main haplotype is 
squared in red and shows a frequency of 92% across cases. c. LD blocks identified by 
HAPLOVIEW in the correspondent region across all controls included in the study. d. 
Haplotypes sequence and frequencies for each identified LD block within the 4,923 Kb region in 
the control cats. 
 
 



 

 
Supplementary Figure 5. Identity by descent (IBD) and MAF analyses for chromosome 
B4. The horizontal lines in the graph represent all the IBD regions (shared alleles) on 
chromosome B4 between all the cats included in the analysis. a. Each case is compared to all 
the other cases included in the analysis.  Each group of comparison (breed to breed) is color-
coded.  Vertical black dashed lines represent a shared IDB region in common between almost 
all cases.  b. Each case is compared to all the controls included in the study. c. Controls versus 
controls comparison of shared IBD. Cases versus controls and controls versus control 
comparisons do not show any shared IBD across all the specimens. (Bottom) Graphical 
representation of the MAF differences within the affected samples (black line) and the control 



samples (red line) across all the Felis catus chromosomes. The black line represents the MAF 
within the cases and is compared with the MAF within the controls for each SNP. The red 
dashed line represent the MAF mean for the chromosome within the cases and the black 
dashed line the MAF mean within the controls. Several gaps are present in the current genome 
assembly, thus SNPs surrounding the gaps are connected with straight lines.   
  



 
 
 

 
Supplementary Figure 6. Identity by descent (IBD) analysis for chromosome D1. The 
horizontal lines in the graph represents all the IBD regions (shared alleles) on chromosome D1 
between all the cats included in the analysis. a. Each case is compared to all the other cases 
included in the analysis. Each group of comparison (breed to breed) is color-coded. b. Each 
case is compared to all the controls included in the study. c. Controls versus controls 
comparison of shared IBD. A common IBD is shared across the majority of East Asian breeds. 
The trait contained in the IBD region is a phenotypic trait responsible for the Burmese point 
coloration, fixed within the breed and confirmed by other analysis included in this study. 
 
 
 



  
Supplementary Figure 7. Full chromosomal MAF comparison within cases and 
controls.  Graphical representation of the MAF differences within the affected samples (black 
line) and the control samples (red line) across all the Felis catus chromosomes. The black line 
represents the MAF within the cases and is compared with the MAF within the controls for each 
SNP. The red dashed line represent the MAF mean for the chromosome within the cases and 
the black dashed line the MAF mean within the controls. Several gaps are present in the current 
genome assembly, thus SNPs surrounding the gaps are connected with straight lines.   
 
  



 
 
  1            60 
Wild-type MEFLSEKFALKSPPSKNSDFYMGAGGALEHVMETLDNESFYSKASAGKCVQAFGPLPRAE 
Mutant  MEFLSEKFALKSPPSKNSDFYMGAGGALEHVMETLDNESFYSKASAGKCVQAFGPLPRAE 
 
  61           120 
Wild-type HHVRLERASPCQDSGVNYGITKGEGQPLHPELNRAMDNCNSLRMSPVKGMPEKGELDELG 
Mutant  HHVRLERASPCQDSGVNYGITKGEGQPLHPELNRAMDNCNSLRMSPVKGMPEKGELDELG 
 
  121           180 
Wild-type DKCDSNVSSSKKRRHRTTFTSLQLEELEKVFQKTHYPDVYVREQLALRTELTEARVQVWF 
Mutant   DKCDSNVSSSKKRRHRTTFTSLQLEELEKVFQKTHYPDVYVREQLEL----TEARVQVWF 
 
  181           240 
Wild-type QNRRAKWRKRERYGQIQQAKSHFAATYDISVLPRTDSYPQIQNNLWAGNASGGSVVTSGM 
Mutant  QNRRAKWRKRERYGQIQQAKSHFAATYDISVLPRTDSYPQIQNNLWAGNASGGSVVTSGM 
 
  241           300 
Wild-type LPRDTSSCMTPYSHSPRTDSSYTGFSHHQNQFSHVPLNNFFTDSLLTGATNGHAFETKPE 
Mutant  LPRDTSSCMTPYSHSPRTDSSYTGFSHHQNQFSHVPLNNFFTDSLLTGATNGHAFETKPE 
 
  301    327 
Wild-type  FERRSSSIAVLRMKAKEHTANISWAM 
Mutant  FERRSSSIAVLRMKAKEHTANISWAM 
 
Homeobox domain 
OAR domain 
 
 
Supplementary Figure 8: Protein alignment of the Cart1 wildtype and mutated alleles. The 
mutation, underlined in red, is responsible for the lack of 4 amino acids (in silico prediction) in 
the homeobox domain.  In the human protein, the homeobox domain starts at position 132 and 
ends at position 191 of the amino acid chain.  Underlined in blue is the Cart1 OAR domain, 
which starts at position 306 and ends at position 319 of the Cart1 protein. 


