98 research outputs found

    Modeling the ballistic-to-diffusive transition in nematode motility reveals variation in exploratory behavior across species

    Full text link
    A quantitative understanding of organism-level behavior requires predictive models that can capture the richness of behavioral phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here we investigate the motile behavior of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioral repertoire by measuring motile trajectories of the canonical lab strain C.elegansC. elegans N2 as well as wild strains and distant species. We focus on trajectory dynamics over timescales spanning the transition from ballistic (straight) to diffusive (random) movement and find that salient features of the motility statistics are captured by a random walk model with independent dynamics in the speed, bearing and reversal events. We show that the model parameters vary among species in a correlated, low-dimensional manner suggestive of a common mode of behavioral control and a trade-off between exploration and exploitation. The distribution of phenotypes along this primary mode of variation reveals that not only the mean but also the variance varies considerably across strains, suggesting that these nematode lineages employ contrasting ``bet-hedging'' strategies for foraging.Comment: 46 pages, 18 figures, 6 table

    A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Get PDF
    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden

    Effects of Fusion between Tactile and Proprioceptive Inputs on Tactile Perception

    Get PDF
    Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment

    Activity-Based Funding of Hospitals and Its Impact on Mortality, Readmission, Discharge Destination, Severity of Illness, and Volume of Care: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Activity-based funding (ABF) of hospitals is a policy intervention intended to re-shape incentives across health systems through the use of diagnosis-related groups. Many countries are adopting or actively promoting ABF. We assessed the effect of ABF on key measures potentially affecting patients and health care systems: mortality (acute and post-acute care); readmission rates; discharge rate to post-acute care following hospitalization; severity of illness; volume of care.     Methods: We undertook a systematic review and meta-analysis of the worldwide evidence produced since 1980. We included all studies reporting original quantitative data comparing the impact of ABF versus alternative funding systems in acute care settings, regardless of language. We searched 9 electronic databases (OVID MEDLINE, EMBASE, OVID Healthstar, CINAHL, Cochrane CENTRAL, Health Technology Assessment, NHS Economic Evaluation Database, Cochrane Database of Systematic Reviews, and Business Source), hand-searched reference lists, and consulted with experts. Paired reviewers independently screened for eligibility, abstracted data, and assessed study credibility according to a pre-defined scoring system, resolving conflicts by discussion or adjudication.     Results: Of 16,565 unique citations, 50 US studies and 15 studies from 9 other countries proved eligible (i.e. Australia, Austria, England, Germany, Israel, Italy, Scotland, Sweden, Switzerland). We found consistent and robust differences between ABF and no-ABF in discharge to post-acute care, showing a 24% increase with ABF (pooled relative risk = 1.24, 95% CI 1.18–1.31). Results also suggested a possible increase in readmission with ABF, and an apparent increase in severity of illness, perhaps reflecting differences in diagnostic coding. Although we found no consistent, systematic differences in mortality rates and volume of care, results varied widely across studies, some suggesting appreciable benefits from ABF, and others suggesting deleterious consequences.     Conclusions: Transitioning to ABF is associated with important policy- and clinically-relevant changes. Evidence suggests substantial increases in admissions to post-acute care following hospitalization, with implications for system capacity and equitable access to care. High variability in results of other outcomes leaves the impact in particular settings uncertain, and may not allow a jurisdiction to predict if ABF would be harmless. Decision-makers considering ABF should plan for likely increases in post-acute care admissions, and be aware of the large uncertainty around impacts on other critical outcomes

    The Proprioceptive Map of the Arm Is Systematic and Stable, but Idiosyncratic

    Get PDF
    Visual and somatosensory signals participate together in providing an estimate of the hand's spatial location. While the ability of subjects to identify the spatial location of their hand based on visual and proprioceptive signals has previously been characterized, relatively few studies have examined in detail the spatial structure of the proprioceptive map of the arm. Here, we reconstructed and analyzed the spatial structure of the estimation errors that resulted when subjects reported the location of their unseen hand across a 2D horizontal workspace. Hand position estimation was mapped under four conditions: with and without tactile feedback, and with the right and left hands. In the task, we moved each subject's hand to one of 100 targets in the workspace while their eyes were closed. Then, we either a) applied tactile stimulation to the fingertip by allowing the index finger to touch the target or b) as a control, hovered the fingertip 2 cm above the target. After returning the hand to a neutral position, subjects opened their eyes to verbally report where their fingertip had been. We measured and analyzed both the direction and magnitude of the resulting estimation errors. Tactile feedback reduced the magnitude of these estimation errors, but did not change their overall structure. In addition, the spatial structure of these errors was idiosyncratic: each subject had a unique pattern of errors that was stable between hands and over time. Finally, we found that at the population level the magnitude of the estimation errors had a characteristic distribution over the workspace: errors were smallest closer to the body. The stability of estimation errors across conditions and time suggests the brain constructs a proprioceptive map that is reliable, even if it is not necessarily accurate. The idiosyncrasy across subjects emphasizes that each individual constructs a map that is unique to their own experiences

    Inclusive fitness theory and eusociality

    Get PDF

    Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways

    Get PDF
    Psoriasis is a common immune-mediated disorder that affects the skin, nails and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 psoriasis cases and 1,436 controls of European ancestry. We followed up 21 promising SNPs in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P less than 5 × 10−8). Loci with confirmed association include HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-α and regulate NF-κB signaling (TNIP1, TNFAIP3) and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders
    • …
    corecore