323 research outputs found

    MoleNet: An Underground Sensor Network for Soil Monitoring

    Get PDF
    With the increasing digitalization worldwide, the demand of information also increases in all areas. MoleNet is a low-power sensing platform which is easy to assemble and use. It offers several options to monitor, for example, the soil moisture and temperature and visualize the data. Several researchers from different countriesare currently working and improving MoleNet for different applications. This demoshows the main application of MoleNet: Monitoring soil conditions in a remote area,transmitting the data and visualizing the current status

    Recent Insights Into Nitrite Signaling Processes in Blood

    Get PDF
    Nitrite was once thought to be inert in human physiology. However, research over the past few decades has established a link between nitrite and the production of nitric oxide (NO) that is potentiated under hypoxic and acidic conditions. Under this new role nitrite acts as a storage pool for bioavailable NO. The NO so produced is likely to play important roles in decreasing platelet activation, contributing to hypoxic vasodilation and minimizing blood-cell adhesion to endothelial cells. Researchers have proposed multiple mechanisms for nitrite reduction in the blood. However, NO production in blood must somehow overcome rapid scavenging by hemoglobin in order to be effective. Here we review the role of red blood cell hemoglobin in the reduction of nitrite and present recent research into mechanisms that may allow nitric oxide and other reactive nitrogen signaling species to escape the red blood cell

    Erythrocytes and Vascular Function: Oxygen and Nitric Oxide

    Get PDF
    Erythrocytes regulate vascular function through the modulation of oxygen delivery and the scavenging and generation of nitric oxide (NO). First, hemoglobin inside the red blood cell binds oxygen in the lungs and delivers it to tissues throughout the body in an allosterically regulated process, modulated by oxygen, carbon dioxide and proton concentrations. The vasculature responds to low oxygen tensions through vasodilation, further recruiting blood flow and oxygen carrying erythrocytes. Research has shown multiple mechanisms are at play in this classical hypoxic vasodilatory response, with a potential role of red cell derived vasodilatory molecules, such as nitrite derived nitric oxide and red blood cell ATP, considered in the last 20 years. According to these hypotheses, red blood cells release vasodilatory molecules under low oxygen pressures. Candidate molecules released by erythrocytes and responsible for hypoxic vasodilation are nitric oxide, adenosine triphosphate and S-nitrosothiols. Our research group has characterized the biochemistry and physiological effects of the electron and proton transfer reactions from hemoglobin and other ferrous heme globins with nitrite to form NO. In addition to NO generation from nitrite during deoxygenation, hemoglobin has a high affinity for NO. Scavenging of NO by hemoglobin can cause vasoconstriction, which is greatly enhanced by cell free hemoglobin outside of the red cell. Therefore, compartmentalization of hemoglobin inside red blood cells and localization of red blood cells in the blood stream are important for healthy vascular function. Conditions where erythrocyte lysis leads to cell free hemoglobin or where erythrocytes adhere to the endothelium can result in hypertension and vaso constriction. These studies support a model where hemoglobin serves as an oxido-reductase, inhibiting NO and promoting higher vessel tone when oxygenated and reducing nitrite to form NO and vasodilate when deoxygenated. How erythrocytes modulate vascular tone has been widely studied over the last two decades. The vasodilation of the vasculature under hypoxic conditions has inspired much research ranging from the effect of oxygen partial pressure on smooth muscle cell contractility and endothelial nitric oxide synthase (eNOS) activity to nitrite reduction by hemoglobin (Hb) inside erythrocytes and subsequent production of nitric oxide. Here we review how red blood cells (RBCs) and hemoglobin regulate vascular function and blood flow

    Bioactivating a bone substitute accelerates graft incorporation in a murine model of vertical ridge augmentation

    Get PDF
    OBJECTIVE: Compared to autologous bone grafts, allogeneic bone grafts integrate slowly, which can adversely affect clinical outcomes. Here, our goal was to understand the molecular mechanisms underlying graft incorporation, and then test clinically feasible methods to accelerate this process. METHODS: Wild-type and transgenic Wnt reporter mice were used in a vertical ridge augmentation procedure. The surgery consisted of tunneling procedure to elevate the maxillary edentulous ridge periosteum, followed by the insertion of bone graft. Micro-computed tomographic imaging, and molecular/cellular analyses were used to follow the bone graft over time. Sclerostin null mice, and mice carrying an activated form of β-catenin were evaluated to understand how elevated Wnt signaling impacted edentulous ridge height and based on these data, a biomimetic strategy was employed to combine bone graft particles with a formulation of recombinant WNT protein. Thereafter, the rate of graft incorporation was evaluated. RESULTS: Tunneling activated osteoprogenitor cell proliferation from the periosteum. If graft particles were present, then osteoprogenitor cells attached to the matrix and gave rise to new bone that augmented edentulous ridge height. Graft particles alone did not stimulate osteoprogenitor cell proliferation. Based on the thicker edentulous ridges in mice with amplified Wnt signaling, a strategy was undertaken to load bone graft particles with WNT; this combination was sufficient to accelerate the initial step of graft incorporation. SIGNIFICANCE: Local delivery of a WNT protein therapeutic has the potential to accelerate graft incorporation, and thus shorten the time to when the graft can support a dental implant

    Exposure of fibrinogen and thrombin to nitric oxide donor ProliNONOate affects fibrin clot properties

    Get PDF
    Fibrin fibers form the structural backbone of blood clots. The structural properties of fibrin clots are highly dependent on formation kinetics. Environmental factors such as protein concentration, pH, salt, and protein modification, to name a few, can affect fiber kinetics through altered fibrinopeptide release, monomer association, and/or lateral aggregation. The objective of our study was to determine the effect of thrombin and fibrinogen exposed to nitric oxide on fibrin clot properties. ProliNONOate (5 [mu]mol/l) was added to fibrinogen and thrombin before clot initiation and immediately following the addition of thrombin to the fibrinogen solution. Resulting fibrin fibers were probed with an atomic force microscope to determine their diameter and extensibility and fibrin clots were analyzed for clot density using confocal microscopy. Fiber diameters were also determined by confocal microscopy and the rate of clot formation was recorded using UV-vis spectrophotometry. Protein oxidation and S-nitrosation was determined by UV-vis, ELISA, and chemiluminescence. The addition of ProliNONOate to fibrinogen or thrombin resulted in a change in clot structure. ProliNONOate exposure produced clots with lower fiber density, thicker fibers, and increased time to maximum turbidity. The effect of the exposure of nitric oxide to thrombin and fibrinogen were measured independently and indicated that each plays a role in altering clot properties. We detected thrombin S-nitrosation and protein carbonyl formation after nitric oxide exposure. Our study reveals a regulation of fibrin clot properties by nitric oxide exposure and suggests a role of peroxynitrite in oxidative modifications of the proteins. These results relate nitric oxide bioavailability and oxidative stress to altered clot properties

    Gender-typed attributes and marital satisfaction among Mexican immigrant couples: A latent profile approach

    Get PDF
    Informed by socioecological and dyadic approaches to understanding marriage, the current study examined the patterning of gender-typed attributes among 120 Mexican immigrant opposite sex couples and the subsequent links with spouses’ reports of marital satisfaction. Latent profile analysis (LPA) was used to identify typologies of couples based on spouses’ self-reported masculine and feminine attributes. Three couple profiles were identified: (a) Androgynous Couples, (b) Undifferentiated Couples, and (c) Mismatched Couples. Results from a mixed model ANCOVA showed profile differences in couples’ marital satisfaction based on profile membership, suggesting that spouses in the Undifferentiated Profile were the least satisfied. Findings illustrate a lack of gender-typing at the individual and couple levels that challenge stereotypical and patriarchal depictions of Latino marital relationships and propose a more complex understanding of Mexican-origin spouses’ gender-typed attributes than has yet been portrayed in the literature. The finding that couples with 1 androgynous partner (i.e., wives in the Mismatched Profile) reported similar levels of marital satisfaction to couples in the Androgynous Profile offers additional insights regarding how these qualities operate under the unique socioecological niches that Mexican immigrant couples inhabit—contexts that may place demands on spouses that challenge gendered and culturally bound depictions of marriage

    The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network

    Get PDF
    The small-molecule inhibitor Exo2 {4-hydroxy-3-methoxy-(5,6,7,8-tetrahydrol[1]benzothieno[2,3-d]pyrimidin-4-yl)hydraz-one benzaldehyde} has been reported to disrupt the Golgi apparatus completely and to stimulate Golgi–ER (endoplasmic reticulum) fusion in mammalian cells, akin to the well-characterized fungal toxin BFA (brefeldin A). It has also been reported that Exo2 does not affect the integrity of the TGN (trans-Golgi network), or the direct retrograde trafficking of the glycolipid-binding cholera toxin from the TGN to the ER lumen. We have examined the effects of BFA and Exo2, and found that both compounds are indistinguishable in their inhibition of anterograde transport and that both reagents significantly disrupt the morphology of the TGN in HeLa and in BS-C-1 cells. However, Exo2, unlike BFA, does not induce tubulation and merging of the TGN and endosomal compartments. Furthermore, and in contrast with its effects on cholera toxin, Exo2 significantly perturbs the delivery of Shiga toxin to the ER. Together, these results suggest that the likely target(s) of Exo2 operate at the level of the TGN, the Golgi and a subset of early endosomes, and thus Exo2 provides a more selective tool than BFA for examining membrane trafficking in mammalian cells

    ISBS 2018 AUCKLAND CONFERENCE SPORTS TECHNOLOGY SHOWCASE PROGRAMME

    Get PDF
    The coordinators Amber Taylor (AUT Ventures), Rosanne Ellis (AUT Research and Innovation Office), and Ryan Archibald (ATEED) have selected companies with new products to be explored by biomechanists. We hope you gain ideas for your research and learn how to commercialise your products at this showcase. ISBS 2018 Auckland Conference Industry Partner Tekscan are supporting the lunch during the showcase. Dr Jono Neville, Shelley Diewald, and Farhan Tinwala will be showcasing AUT Strain Gauge. AUT Strain gauge allows for a valid and reliable assessment of the strength of an entire class or team in a relatively short amount of time. Steve Leftly and Farshid Sarmast will be showcasing Myovolt which is a breakthrough muscle massage system that you wear. It delivers vibration therapy to any part of the body, it\u27s easy to use, lightweight and has benefits backed by clinical research. Parn Jones, Eric Helms and Wilson Huang will be showcasing Avice which is a wearable device that gives you real-time actionable feedback during weight training. It measures changes in muscle performance to inform you how close to muscular failure you are. Xiaoyou Lin and Bandt Li are showcasing Pressure Mat which is a new resistive-sensing contact mat for detecting the pseudo force, of sports activities such as running, jumping, stepping. Holly Sutich and Bradley Phagan will be showcasing Beta-Energy which is a healthier natural energy drink. It provides sustainable energy so you don’t get the crash that you do from a normal energy drink. Arien Hielkema and Yasir Al-Hilali will showcase MyBio Motion which is a smart wearable knee sleeve. It provides support for rehabilitation from post-operative or knee trauma, and prevention from a knee injury. Daniel Thomson and Emily Coates will showcase Circuband which has successfully paired Virtual Reality with Resistance Training to make fitness more engaging and stimulating for both athletes and the public. Colin Anderson will demonstrate Physio Wear
    corecore