771 research outputs found

    Flux of cadmium through a laboratory food chain (media-algae-mussel) and its effects

    Get PDF
    The increasing pollution of the aquatic environment by cadmium is a potentially severe problem and techniques are needed to document the effect of the metal. To investigate the flux of this metal through a laboratory food chain, algae were grown in various cadmium concentrations for subsequent use as contaminated food for mussels. The results showed that in order to make valid deductions, more information about chemical mechanisms and background ecophysiological data is needed, otherwise accumulation reports may become misleading. It was found that the best growth and accumulation results were achieved by harvesting algae from a zinc deficient media containing 7 μmole dm-3 cadmium and at a particular life cycle phase. Two uptake mechanisms are proposed. These "contaminated" algae were fed to mussels under different accumulation regimes. The metal gain and loss were determined and compared to a "baseline" dry body weight which had been calculated from a shell length-body weight relationship. Cadmium accumulation took place in the mussels and after some initial delay, could be correlated to weight loss. Such a weight loss was due to pathological and biochemical changes in the mussels. It was shown that the toxic effect of cadmium could be determined much earlier by the presence of special proteins. The elutant profiles of the gel chromatography study showed the production of metal binding protein as well as a spill over of cadmium into the enzyme pool, caused by a higher uptake than elimination rate. Cadmium on metal binding protein and in the enzyme pool could be related to the poisoning effect of the metal and a pollution history for the mussels identified. The characteristics of the metal binding protein were found to be very similar to those reported for metallothionein and had an approximate molecular weight of 10 600 daltons

    Relative CC"-Numerical Ranges for Applications in Quantum Control and Quantum Information

    Full text link
    Motivated by applications in quantum information and quantum control, a new type of CC"-numerical range, the relative CC"-numerical range denoted WK(C,A)W_K(C,A), is introduced. It arises upon replacing the unitary group U(N) in the definition of the classical CC"-numerical range by any of its compact and connected subgroups KU(N)K \subset U(N). The geometric properties of the relative CC"-numerical range are analysed in detail. Counterexamples prove its geometry is more intricate than in the classical case: e.g. WK(C,A)W_K(C,A) is neither star-shaped nor simply-connected. Yet, a well-known result on the rotational symmetry of the classical CC"-numerical range extends to WK(C,A)W_K(C,A), as shown by a new approach based on Lie theory. Furthermore, we concentrate on the subgroup SUloc(2n):=SU(2)...SU(2)SU_{\rm loc}(2^n) := SU(2)\otimes ... \otimes SU(2), i.e. the nn-fold tensor product of SU(2), which is of particular interest in applications. In this case, sufficient conditions are derived for WK(C,A)W_{K}(C,A) being a circular disc centered at origin of the complex plane. Finally, the previous results are illustrated in detail for SU(2)SU(2)SU(2) \otimes SU(2).Comment: accompanying paper to math-ph/070103

    The Significance of the CC-Numerical Range and the Local CC-Numerical Range in Quantum Control and Quantum Information

    Full text link
    This paper shows how C-numerical-range related new strucures may arise from practical problems in quantum control--and vice versa, how an understanding of these structures helps to tackle hot topics in quantum information. We start out with an overview on the role of C-numerical ranges in current research problems in quantum theory: the quantum mechanical task of maximising the projection of a point on the unitary orbit of an initial state onto a target state C relates to the C-numerical radius of A via maximising the trace function |\tr \{C^\dagger UAU^\dagger\}|. In quantum control of n qubits one may be interested (i) in having U\in SU(2^n) for the entire dynamics, or (ii) in restricting the dynamics to {\em local} operations on each qubit, i.e. to the n-fold tensor product SU(2)\otimes SU(2)\otimes >...\otimes SU(2). Interestingly, the latter then leads to a novel entity, the {\em local} C-numerical range W_{\rm loc}(C,A), whose intricate geometry is neither star-shaped nor simply connected in contrast to the conventional C-numerical range. This is shown in the accompanying paper (math-ph/0702005). We present novel applications of the C-numerical range in quantum control assisted by gradient flows on the local unitary group: (1) they serve as powerful tools for deciding whether a quantum interaction can be inverted in time (in a sense generalising Hahn's famous spin echo); (2) they allow for optimising witnesses of quantum entanglement. We conclude by relating the relative C-numerical range to problems of constrained quantum optimisation, for which we also give Lagrange-type gradient flow algorithms.Comment: update relating to math-ph/070200

    A New Hybrid Descent Method with Application to the Optimal Design of Finite Precision FIR Filters

    Get PDF
    In this paper, the problem of the optimal design of discrete coefficient FIR filters is considered. A novelhybrid descent method, consisting of a simulated annealing algorithm and a gradient-based method, isproposed. The simulated annealing algorithm operates on the space of orthogonal matrices and is used tolocate descent points for previously converged local minima. The gradient-based method is derived fromconverting the discrete problem to a continuous problem via the Stiefel manifold, where convergence canbe guaranteed. To demonstrate the effectiveness of the proposed hybrid descent method, several numericalexamples show that better discrete filter designs can be sought via this hybrid descent method

    Hamiltonian statistical mechanics

    Full text link
    A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the reference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.Comment: 8 pages, 2 figures, references adde

    Eccrine porocarcinoma of the head: An important differential diagnosis in the elderly patient

    Get PDF
    Background: Eccrine porocarcinoma is a rare malignant tumor of the sweat gland, characterized by a broad spectrum of clinicopathologic presentations. Surprisingly, unlike its benign counterpart eccrine poroma, eccrine porocarcinoma is seldom found in areas with a high density of eccrine sweat glands, like the palms or soles. Instead, eccrine porocarcinoma frequently occurs on the lower extremities, trunk and abdomen, but also on the head, resembling various other skin tumors, as illustrated in the patients described herein. Observations: We report 5 cases of eccrine porocarcinoma of the head. All patients were initially diagnosed as having epidermal or melanocytic skin tumors. Only after histopathologic examination were they classified as eccrine porocarcinoma, showing features of epithelial tumors with abortive ductal differentiation. Characteristic clinical, histopathologic and immunohistochemical findings of eccrine porocarcinomas are illustrated. Conclusion: Eccrine porocarcinomas are potentially fatal adnexal malignancies, in which extensive metastatic dissemination may occur. Porocarcinomas are commonly overlooked, or misinterpreted as squamous or basal cell carcinomas as well as other common malignant and even benign skin tumors. Knowledge of the clinical pattern and histologic findings, therefore, is crucial for an early therapeutic intervention, which can reduce the risk of tumor recurrence and serious complications. Copyright (c) 2008 S. Karger AG, Basel

    No association between islet cell antibodies and coxsackie B, mumps, rubella and cytomegalovirus antibodies in non-diabetic individuals aged 7–19 years

    Get PDF
    Viral antibodies were tested in a cohort of 44 isletcell antibody-positive individuals age 7–19 years, and 44 of their islet cell antibody-negative age and sex-matched classmates selected from a population study of 4208 pupils who had been screened for islet cell antibodies. Anti-coxsackie B1-5 IgM responses were detected in 14 of 44 (32%) of the islet cell antibody-positive subjects and in 7 of 44 (16%) control subjects. This difference did not reach the level of statistical significance. None of the islet cell antibody-positive subjects had specific IgM antibodies to mumps, rubella, or cytomegalovirus. There was also no increase in the prevalence or the mean titres of anti-mumps-IgG or IgA and anti-cytomegalovirus-IgG in islet cell antibody-positive subjects compared to control subjects. These results do not suggest any association between islet cell antibodies, and possibly insulitis, with recent mumps, rubella or cytomegalo virus infection. Further studies are required to clarify the relationship between islet cell antibodies and coxsackie B virus infections

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature
    corecore