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Abstract: In this paper, the problem of optimal design of discrete coefficient FIR filters is considered. A novel
hybrid descent method, consisting of a simulated annealing algorithm and a gradient-based method, is proposed. The
simulated annealing algorithm operates on the space of orthogonal matrices and is used to locate descent points for
previously converged local minima. The gradient-based method is derived from converting the discrete problem to a
continuous problem via the Stiefel manifold, where convergence can be guaranteed. To demonstrate the effectiveness of
the proposed hybrid descent method, several numerical examples show that better discrete filter designs can be sought
via this hybrid descent method.
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I. Introduction

Most existing FIR filter design methods are based on infinite precision arithmetic and thus lead to

filters which cannot be readily implemented with microprocessors particularly in fixed point implemen-

tation. Such infinite precision filters have to be transformed into finite precision filters using techniques

such as coefficient quantization and rounding before they can be implemented with hardware. There

are several major problems with these finite precision filters. One problem is the likely sacrifice of filter

performance because of the deviation from the infinite precision filters. Although this problem can be

alleviated by the increase of the level of precision, there is a limitation to the maximum wordlength

which can used in practice. Moreover, simply by increasing the number bits tends to increase the cost

and complexity of the hardware implementation.

There are several methods proposed to use integer programming techniques to design FIR digital

filters with discrete coefficients, such as [1]. However, simply using the integer space or the finite word

length space where each coefficient value is represented by a finite number of bits suffers from the

disadvantages that it saves only a few bits in coefficient word length when compared to the solution

obtained by simple coefficient rounding. A better space has been introduced in [2], which is the space

of powers-of-two. Under this space, the filters can be implemented with simple adders and shifters

only, eliminating the need to use any multipliers which are generally costly to use. This approach

has become very popular and many different algorithms have been proposed. These include the linear

programming technique [2], [3], [4], the stochastic optimization techniques such as simulated annealing

[5], [6], [7], tabu search [8], simulated evolution [9], and other heuristic methods such as the proportional

relation-preserve method [10].

Because of the discrete nature of the problem, every feasible solution can be considered as a local

minimum in continuous sense. Most of the methods proposed so far is to search through this vast

space of local minima and try to find the best out of it. Clearly, this is a formidable task because of

limited computer power. A better approach is to consider a continuous transformation of the discrete

optimization problem such that solving the equivalent continuous optimization problem will give a

discrete solution to the original discrete problem. In this way, a good continuous transformation will

be able to by-pass a lot of poor discrete solutions automatically and many optimization techniques

derived for continuous problems can be applied. The remaining problem is to search for the global

minimum of the transformed continuous problem.

In this paper, this problem is addressed. The Stiefel manifold of real orthogonal matrices is applied

to convert the discrete problem into an equivalent continuous problem [11]. A new hybrid descent

algorithm is then proposed to search for the global solution of the continuous problem. In general,

a good global optimization technique should have the capability of avoiding local minima, and the

speed of convergence to approach stationary points. The hybrid descent algorithm is composed of two

components: an analytic gradient-based approach which ensures rapid convergence to local minima,

and a modified simulated annealing algorithm iterating on the Stiefel manifold to local descent points

by-passing previous converged local minima. Since the simulated annealing algorithm is mainly used

to locate a descent point from a previously converged local solution, if a solution obtained is not global,

the set of possible descent points is infinite with a strictly positive measure; therefore the probability

of locating a descent point is strictly positive. Coupling with a gradient-based algorithm to speed

up the task of local search, the hybrid method is much more efficient computationally in finding the

global minimum. Since the simulated annealing is mainly used for seeking descent points, the decrease
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in the objective function after executing each simulated annealing search might be very small. But

it is sufficient to by-pass previously converged local solutions and resume local neighbourhood search.

Finally, to demonstrate the effectiveness of the proposed algorithm, numerical examples are presented.

II. Problem formulation

Consider a given FIR filter of length N with frequency response given by

H0(jω) =
N−1∑
n=0

h0(n)e−jωn. (1)

It is assumed that this filter is obtained from some conventional design methods and the corresponding

coefficients have very high precision. There are many variety of applications in the literature for FIR

filters. From our experience, it can be used as a prototype filter for subband processing where the

filter decomposes the signal into different bands of frequency [12], [13]. It can also be used in noise

reduction such as echo cancellation [14] or signal enhancement [15], [16], [17]. Obviously, the literature

is vast and we are still omitting many other important applications in many different areas.

For practical hardware implementation, we are interested in designing a finite wordlength FIR filter

which approximates optimally the original filter H0(jω) in a specific way. This discrete FIR filter is

assumed to take the form

H(jω) =
N−1∑
n=0

h(n)e−jωn, (2)

where each coefficient h(n) is constrained to being a sum of at most m signed powers-of-two (SPT)

elements from the set

P 2 = {−20,−2−1, · · · ,−2−B+1, 0, 2−B+1, · · · , 2−1}. (3)

Here, B is a positive integer determining the maximum number of bits and m is the maximum number

of SPT terms allowed for each of the filter coefficients. They are usually specified to meet practical

implementation constraints.

Let Ψ denote the set of all finite wordlength filters within the set of SPT elements. To pose the

problem formally, we want to find a filter H(jω) ∈ Ψ which minimizes the weighted quadratic error

criterion

J ≡
∫ π

−π
|W (ω)(H(jω)−H0(jω))|2dω (4)

where W (ω) is a specified frequency weighting function. Note that for a filterbank application, a set of

uniform frequency weighting function, which spans the required frequency band, can be conveniently

defined. In evaluating the cost function (4), the error transfer function H(z)−H0(z) can be shown to

have the state-space representation (Ae, Be, Ce, de) where

Ae =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , Be =


1
0
...
0

 (5)

Ce = (h− h0)TE2, de = (h− h0)TE1 (6)
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where h = [h(0) · · ·h(N − 1)]T , h0 = [h0(0) · · ·h0(N − 1)]T , and the N × N identity matrix IN is

partitioned as IN =
[
E1 E2

]
with E1 being N × 1 and E2 being N × (N − 1). Assume we specify the

frequency weight function in terms of a state-space realization as

W (z) = dw + Cw(zI − Aw)−1Bw, (7)

therefore, the weighted error transfer function W (z)[H(z)−H0(z)] has the state-space representation

(Awe, Bwe, Cwe, dwe) where

Awe =

(
Ae BeCw
0 Aw

)
, Bwe =

(
Bedw
Bw

)
(8)

Cwe =
(
Ce deCw

)
, dwe = dedw. (9)

As a result, the cost criterion (4) can be expressed as

J = CwePC
T
we + d2

we (10)

where P denotes the controllability Gramian of the above realization, i.e., the unique solution to the

Lyapunov equation

AwePA
T
we − P +BweB

T
we = 0. (11)

Since

Cwe = (h− h0)T
(

0 Cw
IN−1 0

)
and Dwe = dw(h− h0)TE1,

we can deduce that (10) is equivalent to

J = (h− h0)TS(h− h0) (12)

with

S =
(
IN C̄w

)(d2
w 0
0 P

)(
IN C̄w

)T
(13)

where C̄w is an N ×Nw matrix with the first row being Cw and all the other rows being 0. As S is a

constant matrix, the formula (12) provides a simple way to evaluate the cost function.

III. Continuous transformation

In the sum of m powers-of-two formulation, each coefficient h(n) is constrained to being a sum

of at most m signed powers-of-two (SPT) elements from the set Pm as defined by (3). Define v ≡
[−20− 2−1 · · ·− 2−B+1 0 · · · 0 2−B+1 · · · 2−1]T and g is an arbitrarily chosen (2B+m− 1)-dimensional

row vector with m elements of one and zeroes otherwise. Each filter coefficient h(n) can be rewritten

via a permutation matrix P as

h(n) = gPv, (14)

where P is an unknown matrix in this combinatorial representation. Note that a permutation matrix

is a square matrix of 0s and 1s in which each row and each column contains exactly one 1. Therefore,

a permutation matrix is within the set of orthogonal matrix

St2B+m−1 ≡ {U ∈ R(2B+m−1)×(2B+m−1)|UTU = I} (15)
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which is the well-known Stiefel manifold of real orthogonal (2B+m− 1)× (2B+m− 1) matrices [18].

In order to search for the correct permutation matrices from the Stiefel manifold, a few constraints

are needed. The first constraint is to restrict the sign of the elements to be positive, which can be

achieved by writing

P = U � U U ∈ St2B+m−1 (16)

where � denotes entrywise matrix multiplication. The second constraint is to enforce P being a

permutation matrix. One important property (see lemma 3.1 in [11]) of a permutation matrix is the

following:

‖Λ‖2 = ‖diag(UTΛU)‖2 (17)

where Λ is a diagonal matrix with distinct elements and diag(·) denotes the diagonal part of a ma-

trix. With these two constraints, a permutation matrix can be identified as a subset from the Stiefel

manifold. The first constraint can be directly substituted into

h =


g1(U1 � U1)
g2(U2 � U2)

...
gN(UN � UN)

v, (18)

where g1, g2, · · · , gN are N arbitrarily chosen (2B+m− 1)-dimensional row vectors with m elements

of one and zeroes otherwise. The second constraint has to be added as a penalty term. Let

Jc(U1, · · · , UN) ≡
N∑
i=1

(‖Λ‖2
2 − ‖diag(UT

i ΛUi)‖2
2) (19)

the final optimization over the continuous Stiefel manifold together with the second constraint can be

formulated as

min
U1,··· ,UN∈St2B+m−1

Jk(U1, · · · , UN) = J(U1, · · · , UN) + kJc(U1, · · · , UN), (20)

where k is a penalty constant.

IV. Gradient-based algorithm

In deriving the gradient of the function Jk, each of the unknown matrices is perturbed sequentially

to form the generalized Taylor expansion as

Jk(U1, · · · , Ui + δUi, · · · , UN)− Jk(U1, · · · , Ui, · · · , UN) = 〈∂Jk/∂Ui, δUi〉+ ◦(δUi), (21)

where 〈·〉 is a suitable inner product and ◦(·) denotes higher order terms. For the Stiefel manifold, a

suitable inner product is defined in terms of the trace of a matrix

〈ξ, η〉 ≡ 2trace(ξTη) (22)

where ξ, η are in the tangent plane of St2B+m−1 [18]. By doing so, ∇Jk can be derived for all variations

of U and is given by [11]

∇Jk = (R1 − U1R
T
1 U1, · · · , RN − UNRT

NUN) (23)
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where

Ri = 2(h− h0)Tsi(Ui � (vgi)
T )− 2kΛUidiag(UT

i ΛUi), (24)

with si being the ith column of the constant matrix S defined in (12). Therefore, any minimum of

Jk(U1, · · · , UN) must obey the optimality conditions

Ri − UiRT
i Ui = 0, i = 1, · · · , N. (25)

When these conditions are not fulfilled, a gradient flow algorithm can be derived to update U1, · · · , UN
via the ordinary differential equations

U̇i(t) = Ui(t)R
T
i (t)Ui(t)−Ri(t), i = 1, · · · , N. (26)

Since
dJk
dt

= 2trace((∂Jk/∂Ui)
T U̇T (t)) = −2‖U̇(t)‖2

2 ≤ 0, (27)

a descent direction for Jk is clearly defined. In solving (26), the ordinary differential equations can be

integrated as

U
(n+1)
i = eαΛ

(n)
i U

(n)
i , i = 1, · · · , N (28)

where α is a step-size of integration and

Λi = UiR
T
i −RiU

T
i , i = 1, · · · , N. (29)

Since each Λi is skew-symmetric, the exponential of the matrix is therefore orthogonal for any scalar α.

Thus, the integration step (28) preserves the orthogonality of U . The final gradient-based algorithm

can be summarized as:

1 Set k = 0, choose the integration stepsize α and N initial orthogonal matrices (U
(0)
1 , · · · , U (0)

N ).

2 Calculate (28) iteratively until convergence. Denote the final orthogonal matrices by

(U1(k), · · · , UN(k)).

3 Compute Jk.

4 Go back to Step 2 with

U
(0)
i = Ui(k), i = 1, · · · , N (30)

and increase k if (17) is not satisfied.

The convergence of this algorithm to a stationary point has been proven in [11] for a fixed penalty

constant k. As k increases, it is known that the sequences have the following property [19]:

(i) Jk(U1, · · · , UN) is non-decreasing,

(ii) Jc(U1, · · · , UN) is non-increasing,

(iii) J(U1, · · · , UN) is non-decreasing.

As J increases with k, a lot of the converged solutions are useless because they are poorer than the

simple direct rounding of the infinite precision solution. Therefore, in order to get the global minimum

of the problem, the increase of J with k must be controlled properly.
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V. Simulated annealing algorithm

It is obvious that (20) is a highly nonlinear minimization problem despite the fact that the solution

space is now continuous. This problem usually have numerous local minima. A gradient descent type

of minimization algorithm often converges to local minima. One way of obtaining a global minimum

solution to the nonlinear minimization problem is to use a global optimization algorithm, e.g., a

simulated annealing algorithm. In general, the algorithm is composed of three key steps, namely the

generation of the next point in the solution, using random perturbations, a choice of a probability

distribution to govern the acceptance of uphill steps, and an annealing schedule.

Although the choice of the probability distribution and the annealing schedule are relatively easy,

the generation of random changes is the most problematic. If the random changes cover a vast area in

the solution domain, uphill moves are often generated. However, if random changes are restricted to a

small area, local minima are often reached instead unless the starting point is sufficiently close to the

global minimum. Therefore, this is an important step requiring much experimentation and is usually

problem dependent.

In this paper, following [20] and [21], the Boltzmann probability distribution is used. The annealing

schedule is determined by the parameters γ (the cooling speed), Nc (the number of cooling steps), Np

(the number of random perturbations for each temperature), and T (the initial temperature). Their

values are chosen via numerical experiments.

There are many ways to introduce random perturbations to the solution. A simple method is to

re-generate a new solution. However, this method suffers from the fact that there is little control on

the magnitude of the random perturbation and frequent uphill moves might be incurred. Another way

is to modify some of the unknowns only in the current solution in order to produce gradual changes.

We find from experiments that it is better to generate a number of new potential solutions and select

among them randomly. It is required that some of the perturbations resemble local searches, while

some might deviate from the current solution significantly. Consequently, the set of perturbations

applied here include:

(i) Re-generate the orthogonal matrix.

(ii) Re-generate two rows of the orthogonal matrix and orthogonalize the final matrix.

(iii) Multiply a randomly selected submatrix by another random matrix and orthogonalize the final

matrix.

(iv) Apply a Givens rotation to the orthogonal matrix.

(v) Apply a Householders reflection to the orthogonal matrix.

(vi) The orthogonal matrix remains unchanged.

In the above perturbations, (i) and (v) create larger deviations from the current solution while (ii),

(iii) and (iv) resemble local searches. (vi) is added as we need to include the possibility of the current

solution is a accepted solution for some of the orthogonal matrices. Note that for the Givens rotation,

the rotational angle is generated randomly. As for the Householders reflection P = I − 2wwT

wTw , the

vector w is generated randomly. It is expected that local perturbations will help to reduce J and the

global moves will decrease Jc effectively. Since there is no reason why any potential solution generated

would have any preference over any other potential solutions, we choose to run each cooling step Np

times and choose randomly among the six potential solutions.

The simulated algorithm can be implemented as follows:

Initiation
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Fix a penalty constant k. Select γ, Nc, Np, initial T , and N initial orthogonal matrices.

Cooling

(a) Let j be the cooling step. Set j = 1.

(b) If j ∈ (1, · · · , Nc)

(i) For each of the orthogonal matrices, calculate i = random{1, 2, 3, 4, 5, 6} and generate the corre-

sponding perturbation according to the outcome of i.

(ii) Calculate D = J̃k − Jk. If D < −δk or random[0, 1] < T exp(−D/T ), then update the set of

orthogonal matrices.

(iii) Set j := j + 1 and return to (i) until Np perturbations are executed.

(c) Set T := γT and j := j + 1. Return to Step (b) until Nc cooling steps are executed.

VI. Hybrid descent algorithm

Since Jk is not convex, we cannot expect to locate its global minimum using a gradient-based

approach. Theoretically, the global minimum of Jk could be sought by using the simulated annealing

algorithm alone. However, its convergence rate is usually very slow. On the other hand, a gradient-

based algorithm is much more efficient in converging to a stationary point. Thus, by combining the

simulated annealing algorithm with a gradient-based local minimization algorithm suitably, an efficient

hybrid descent method can be derived which inherits the advantages of both methods. Let JDR be the

cost function of the solution derived from rounding the infinite precision solution directly. Since both

Jk and J are increasing sequences of k, once J crosses the JDR, the converged solution will be useless.

It is therefore essential to keep

J ≤ JDR ∀k. (31)

Because of the global convergence nature of the simulated annealing algorithm, for any particular

penalty constant k, a descent point can be identified easily so that the value of Jk is decreased and

prevents J from growing too fast. The final hybrid descent algorithm can be formally stated in the

following:

A Hybrid Descent Algorithm

1 Set k = 0. Select N initial orthogonal matrices (U1(0), · · · , UN(0)).

2 Solve for the local minimum of Jk via the gradient-based algorithm to get (U∗1 (k), · · · , U∗N(k)).

3 If J ≥ βJDR, starting from (U∗1 (k), · · · , U∗N(k)), execute the simulating annealing algorithm to get a

new set of orthogonal matrices (Û1(k), · · · , ÛN(k)). If Jk(Û1(k), · · · , ÛN(k))− J(U∗1 (k), · · · , U∗N(k)) ≤
0, return to Step 2.

4 Increase k. If Jc > ε, return to Step 2.

VII. Numercial results

In the following, the hybrid descent algorithm is applied to design high-pass, low-pass and band-pass

filters. Matlab 7 is used for the design of the infinite precision filters. Initial finite precision filters are

obtained by seeking the best approximation for each filter coefficient in the set P 2 defined in (3). These

filters will be the baseline for further improvement. Note that there is no uniformly better solution

than the direct-discretized filter as this filter is optimal with respect to a uniform weight W (ω) [2].

Therefore, a suitable weight is imposed to perfect the performance of the filter.

In the first example, a simple FIR filter with 5 taps was used as a simple test of the algorithm.

The number of bits B = 6 was applied and each coefficient was a sum of two powers-of-two terms. In
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the normalized frequency scale, the stopband was [0, 0.4] while the passband was [0.6, 1]. W (ω) was

fixed such that a larger weight is imposed towards the stopband. By discretizing the infinite precision

filter directly, a cost value J = 0.2785 was incurred. To test the hybrid descent algorithm, it was

executed many times with a different set of randomly generated initial orthogonal matrices. All of

them converged to the global solution with a cost value J = 0.085, similar to the result obtained in

[11]. In addition, we do not need to try out many initial guesses to obtain the global minimum here.

A typical convergence history is depicted in Fig. 1. Note that a very small β is used in the algorithm

which corresponds to activate the simulated annealing algorithm each time after a local search with

the gradient-based algorithm.

In the second example, a FIR filter with 13 taps was used to design a high-pass filter. The number of

bits B = 6 was applied and each coefficient was a sum of two powers-of-two terms. In the normalized

frequency scale, the stopband was [0, 0.7] while the passband was [0.8, 1]. The direct-discretized finite

precision filter is shown in Fig. 2. Clearly, the transition region has been poorly shifted and the

suppression in the very low frequency is relatively poor. To correct these defects, a suitable weight

W (ω) skewed towards the stopband was used, giving an initial cost J = 1.3372. The hybrid descent

algorithm was executed and the final optimized filter has a cost J = 1.127. The designed filter is

shown in Fig. 2 and the convergence history is depicted in Fig. 3. Note that in this case, β = 0.2 is

used in the algorithm so that the simulated annealing algorithm is activated occasionally. Similarly,

for the low-pass case, the hybrid descent algorithm was executed to reduce the cost from J = 1.336

initially to J = 1.065 in the final design. The result is shown in Fig. 4. For the band-pass case, the

initial cost is J = 0.899 which is subsequently reduced to J = 0.471 by the algorithm. The result is

depicted in Fig. 5.

VIII. Conclusions

In this paper, a new hybrid descent method has been proposed for solving the discrete FIR filter

design problem. The method combines the capability of simulated annealing method to by-pass local

solutions, and a novel gradient flow method on the set of orthogonal matrices to gain rapid convergence

for local neighbourhood improvement. Numerical results have shown that the global minimum can be

sought using this hybrid descent method with a very nice monotonic convergence history. As a future

extension of the present work, it is certainly of interest to look at the design of high order filters, and

to investigate procedures for the weight selection in the present error criterion. Furthermore, different

error criteria can also be investigated and different finite precision filters can be studied and compared.
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Fig. 2. The comparison of the initial and designed high-pass filters

Fig. 3. The convergence of the hybrid descent algorithm for test 2 with a larger β
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Fig. 4. The comparison of the initial and designed low-pass filters
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Fig. 5. The comparison of the initial and designed band-pass filters
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