1,763 research outputs found

    Density Functional Theory of the Hubbard-Holstein Model

    Full text link
    We present a density functional theory (DFT) for lattice models with local electron-electron (e-e) and electron-phonon (e-ph) interactions. Exchange-correlation potentials are derived via dynamical mean field theory for the infinite-dimensional Bethe lattice, and analytically for an isolated Hubbard-Holstein site. These potentials exhibit discontinuities as a function of the density, which depend on the relative strength of the e-e and e-ph interactions. By comparing to exact benchmarks, we show that the DFT formalism gives a good description of the linear conductance and real-time dynamics.Comment: 5 pages, 3 figures, supplemental material provided as pd

    Argentina spectral-agronomic multitemporal data set

    Get PDF
    A multitemporal LANDSAT spectral data set was created. The data set is over five 5 nm-by-6 nm areas over Argentina and contains by field, the spectral data, vegetation type and cloud cover information

    T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1

    Get PDF
    T Cell Leukemia/Lymphoma 1A is expressed during B-cell differentiation and, when overexpressed, acts as an oncogene in mouse (Tcl1a) and human (TCL1A) B-cell chronic lymphocytic leukemia (B-CLL) and T-cell prolymphocytic leukemia (T-PLL). Furthermore, in the murine system Tcl1a is expressed in the ovary, testis and in pre-implantation embryos, where it plays an important role in blastomere proliferation and in embryonic stem cell (ESC) proliferation and self-renewal. We have also observed that Tcl1-/-adult mice exhibit alopecia and deep ulcerations. This finding has led us to investigate the role of TCL1 in mouse skin and hair follicles. We have found that TCL1 is expressed in the proliferative structure (i.e.The secondary hair germ) and in the stem cell niche (i.e.The bulge) of the hair follicle during regeneration phase and it is constitutively expressed in the basal layer of epidermis where it is required for the correct proliferative-differentiation program of the keratinocytes (KCs). Taking advantage of the murine models we have generated, including the Tcl1-/-and the K14-TCL1 transgenic mouse, we have analysed the function of TCL1 in mouse KCs and the molecular pathways involved. We provide evidence that in the epidermal compartment TCL1 has a role in the regulation of KC proliferation, differentiation, and apoptosis. In particular, the colony-forming efficiency (CFE) and the insulin-like growth factor 1 (IGF1)-induced proliferation are dramatically impaired, while apoptosis is increased, in KCs from Tcl1-/-mice when compared to WT. Moreover, the expression of differentiation markers such as cytokeratin 6 (KRT6), filaggrin (FLG) and involucrin (IVL) are profoundly altered in mutant mice (Tcl1-/-). Importantly, by over-expressing TCL1A in basal KCs of the K14-TCL1 transgenic mouse model, we observed a significant rescue of cell proliferation, differentiation and apoptosis of the mutant phenotype. Finally, we found TCL1 to act, at least in part, via increasing phospho-ERK1/2 and decreasing phospho-P38 MAPK. Hence, our data demonstrate that regulated levels of Tcl1a are necessary for the correct proliferation and differentiation of the interfollicular KC

    Quantized spin wave modes in magnetic tunnel junction nanopillars

    Full text link
    We present an experimental and theoretical study of the magnetic field dependence of the mode frequency of thermally excited spin waves in rectangular shaped nanopillars of lateral sizes 60x100, 75x150, and 105x190 nm2, patterned from MgO-based magnetic tunnel junctions. The spin wave frequencies were measured using spectrally resolved electrical noise measurements. In all spectra, several independent quantized spin wave modes have been observed and could be identified as eigenexcitations of the free layer and of the synthetic antiferromagnet of the junction. Using a theoretical approach based on the diagonalization of the dynamical matrix of a system of three coupled, spatially confined magnetic layers, we have modeled the spectra for the smallest pillar and have extracted its material parameters. The magnetization and exchange stiffness constant of the CoFeB free layer are thereby found to be substantially reduced compared to the corresponding thin film values. Moreover, we could infer that the pinning of the magnetization at the lateral boundaries must be weak. Finally, the interlayer dipolar coupling between the free layer and the synthetic antiferromagnet causes mode anticrossings with gap openings up to 2 GHz. At low fields and in the larger pillars, there is clear evidence for strong non-uniformities of the layer magnetizations. In particular, at zero field the lowest mode is not the fundamental mode, but a mode most likely localized near the layer edges.Comment: 16 pages, 4 figures, (re)submitted to PR

    Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe

    Get PDF
    The filamentous bacteriophages are flexible rods about 1 to 2 microns long and 6 nm in diameter, with a helical shell of protein subunits surrounding a DNA core. The approximately 50-residue coat protein subunit is largely alpha-helix and the axis of the alpha-helix makes a small angle with the axis of the virion. The protein shell can be considered in three sections: the outer surface, occupied by the N-terminal region of the subunit, rich in acidic residues that interact with the surrounding solvent and give the virion a low isoelectric point; the interior of the shell, including a 19-residue stretch of apolar side-chains, where protein subunits interact mainly with each other; and the inner surface, occupied by the C-terminal region of the subunit, rich in basic residues that interact with the DNA core. The fact that virtually all protein side-chain interactions are between different subunits in the coat protein array, rather than within subunits, makes this a useful model system for studies of interactions between alpha-helix subunits in a macromolecular assembly. We describe molecular models of the class I filamentous bacteriophages. This class includes strains fd, f1, M13 (these 3 very similar strains are members of the Ff group), If1 and IKe. Our model of fd has been refined to fit quantitative X-ray fibre diffraction data to 30 A resolution in the meridional direction and 7 A resolution in the equatorial direction. A simulated 3.3 A resolution diffraction pattern from this model has the same general distribution of intensity as the experimental diffraction pattern. The observed diffraction data at 7 A resolution are fitted much better by the calculated diffraction pattern of our molecular model than by that of a model in which the alpha-helix subunit is represented by a rod of uniform density. The fact that our fd model explains the fd diffraction data is only part of our structure analysis. The atomic details of the model are supported by non-diffraction data, in part previously published and in part newly reported here. These data include information about permitted or forbidden side-chain replacements, about the effect of chemical modification, and about spectroscopic experiments.(ABSTRACT TRUNCATED AT 400 WORDS

    A haptic guidance tool for CT-directed percutaneous interventions

    Get PDF

    Melt-Extrusion-Based Additive Manufacturing of Transparent Fused Silica Glass

    Get PDF
    In recent years, additive manufacturing (AM) of glass has attracted great interest in academia and industry, yet it is still mostly limited to liquid nanocomposite-based approaches for stereolithography, two-photon polymerization, or direct ink writing. Melt-extrusion-based processes, such as fused deposition modeling (FDM), which will allow facile manufacturing of large thin-walled components or simple multimaterial printing processes, are so far inaccessible for AM of transparent fused silica glass. Here, melt-extrusion-based AM of transparent fused silica is introduced by FDM and fused feedstock deposition (FFD) using thermoplastic silica nanocomposites that are converted to transparent glass using debinding and sintering. This will enable printing of previously inaccessible glass structures like high-aspect-ratio (>480) vessels with wall thicknesses down to 250 µm, delicate parts including overhanging features using polymer support structures, as well as dual extrusion for multicolored glasses

    Adjusting for sex and anti-CCP levels in linkage analysis of rheumatoid arthritis

    Get PDF
    We incorporate population effects of sex and antibodies directed against cyclic citrullinated peptides (anti-CCP) into the linkage analysis of rheumatoid arthritis (RA) with microsatellites data provided by the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 15
    • …
    corecore