11 research outputs found
Setting up a Support Group for Children, Adolescents and their Well Carers who have a Significant Adult with a Life-Threatening Illness
St Richard’s Hospice provides care and support for adults with a life-threatening illness and their families. As part of our work we often encounter children and adolescents who are facing the loss of a significant adult. Whereas in the past we have supported these children and young people primarily through one-to-one interactions after the adult has died, the expansion of our facilities has recently enabled us to provide an increasing degree of pre-death support, including the launch of a pre-death Child and Family Support Group. This article reflects on the benefits and challenges of setting up and running such a group and the journey we have gone through so far. It is our hope that by sharing our experiences we can demonstrate some of the benefits of group work for children and adolescents facing the loss of a significant adult and encourage others in the worldwide palliative care community who are considering running or are already providing such a service
Large closed queueing networks in semi-Markov environment and its application
The paper studies closed queueing networks containing a server station and
client stations. The server station is an infinite server queueing system,
and client stations are single-server queueing systems with autonomous service,
i.e. every client station serves customers (units) only at random instants
generated by a strictly stationary and ergodic sequence of random variables.
The total number of units in the network is . The expected times between
departures in client stations are . After a service completion
in the server station, a unit is transmitted to the th client station with
probability , and being processed in the th client
station, the unit returns to the server station. The network is assumed to be
in a semi-Markov environment. A semi-Markov environment is defined by a finite
or countable infinite Markov chain and by sequences of independent and
identically distributed random variables. Then the routing probabilities
and transmission rates (which are expressed via
parameters of the network) depend on a Markov state of the environment. The
paper studies the queue-length processes in client stations of this network and
is aimed to the analysis of performance measures associated with this network.
The questions risen in this paper have immediate relation to quality control of
complex telecommunication networks, and the obtained results are expected to
lead to the solutions to many practical problems of this area of research.Comment: 35 pages, 1 figure, 12pt, accepted: Acta Appl. Mat
Holstein polarons in a strong electric field: delocalized and stretched states
The coherent dynamics of a Holstein polaron in strong electric fields is
considered under different regimes. Using analytical and numerical analysis, we
show that even for small hopping constant and weak electron-phonon interaction,
the original discrete Wannier-Stark (WS) ladder electronic states are each
replaced by a semi-continuous band if a resonance condition is satisfied
between the phonon frequency and the ladder spacing. In this regime, the
original localized WS states can become {\em delocalized}, yielding both
`tunneling' and `stretched' polarons. The transport properties of such a system
would exhibit a modulation of the phonon replicas in typical tunneling
experiments. The modulation will reflect the complex spectra with
nearly-fractal structure of the semi-continuous band. In the off-resonance
regime, the WS ladder is strongly deformed, although the states are still
localized to a degree which depends on the detuning: Both the spacing between
the levels in the deformed ladder and the localization length of the resulting
eigenfunctions can be adjusted by the applied electric field. We also discuss
the regime beyond small hopping constant and weak coupling, and find an
interesting mapping to that limit via the Lang-Firsov transformation, which
allows one to extend the region of validity of the analysis.Comment: 10 pages, 13 figures, submitted to PR
Donor states in modulation-doped Si/SiGe heterostructures
We present a unified approach for calculating the properties of shallow
donors inside or outside heterostructure quantum wells. The method allows us to
obtain not only the binding energies of all localized states of any symmetry,
but also the energy width of the resonant states which may appear when a
localized state becomes degenerate with the continuous quantum well subbands.
The approach is non-variational, and we are therefore also able to evaluate the
wave functions. This is used to calculate the optical absorption spectrum,
which is strongly non-isotropic due to the selection rules. The results
obtained from calculations for Si/SiGe quantum wells allow us to
present the general behavior of the impurity states, as the donor position is
varied from the center of the well to deep inside the barrier. The influence on
the donor ground state from both the central-cell effect and the strain arising
from the lattice mismatch is carefully considered.Comment: 17 pages, 10 figure