97 research outputs found

    Subhalo statistics of galactic haloes: beyond the resolution limit

    Get PDF
    We study the substructure population of Milky Way (MW)-mass haloes in the Λ cold dark matter (ΛCDM) cosmology using a novel procedure to extrapolate subhalo number statistics beyond the resolution limit of N-body simulations. The technique recovers the mean and the variance of the subhalo abundance, but not its spatial distribution. It extends the dynamic range over which precise statistical predictions can be made by the equivalent of performing a simulation with 50 times higher resolution, at no additional computational cost. We apply this technique to MW-mass haloes, but it can easily be applied to haloes of any mass. We find up to 20 per cent more substructures in MW-mass haloes than found in previous studies. Our analysis lowers the mass of the MW halo required to accommodate the observation that the MW has only three satellites with a maximum circular velocity Vmax ≥ 30 km s− 1 in the ΛCDM cosmology. The probability of having a subhalo population similar to that in the MW is 20 per cent for a virial mass, M200 = 1 × 1012 M⊙ and practically zero for haloes more massive than M200 = 2 × 1012 M⊙

    The effect of baryons on redshift space distortions and cosmic density and velocity fields in the EAGLE simulation

    Get PDF
    We use the Evolution and Assembly of GaLaxies and their Environments (EAGLE) galaxy formation simulation to study the effects of baryons on the power spectrum of the total matter and dark matter distributions and on the velocity fields of dark matter and galaxies. On scales k ≳ 4 h Mpc−1 the effect of baryons on the amplitude of the total matter power spectrum is greater than 1 per cent. The back-reaction of baryons affects the density field of the dark matter at the level of ∼3 per cent on scales of 1 ≤ k/( h Mpc−1) ≤ 5. The dark matter velocity divergence power spectrum at k ≲ 0.5 h Mpc−1 is changed by less than 1 per cent. The 2D redshift space power spectrum is affected at the level of ∼6 per cent at |k|≳1hMpc−1|k|≳1hMpc−1 (for μ > 0.5), but for |k|≤0.4hMpc−1|k|≤0.4hMpc−1 it differs by less than 1 per cent. We report vanishingly small baryonic velocity bias for haloes: the peculiar velocities of haloes with M200 > 3 × 1011 M⊙ (hosting galaxies with M* > 109 M⊙) are affected at the level of at most 1 km s−1, which is negligible for 1 per cent-precision cosmology. We caution that since EAGLE overestimates cluster gas fractions it may also underestimate the impact of baryons, particularly for the total matter power spectrum. Nevertheless, our findings suggest that for theoretical modelling of redshift space distortions and galaxy velocity-based statistics, baryons and their back-reaction can be safely ignored at the current level of observational accuracy. However, we confirm that the modelling of the total matter power spectrum in weak lensing studies needs to include realistic galaxy formation physics in order to achieve the accuracy required in the precision cosmology era

    Planes of satellite galaxies: when exceptions are the rule

    Get PDF
    The detection of planar structures within the satellite systems of both the Milky Way (MW) and Andromeda (M31) has been reported as being in stark contradiction to the predictions of the standard cosmological model (Λ cold dark matter – ΛCDM). Given the ambiguity in defining a planar configuration, it is unclear how to interpret the low incidence of the MW and M31 planes in ΛCDM. We investigate the prevalence of satellite planes around galactic mass haloes identified in high-resolution cosmological simulations. We find that planar structures are very common, and that ∼10 per cent of ΛCDM haloes have even more prominent planes than those present in the Local Group. While ubiquitous, the planes of satellite galaxies show a large diversity in their properties. This precludes using one or two systems as small-scale probes of cosmology, since a large sample of satellite systems is needed to obtain a good measure of the object-to-object variation. This very diversity has been misinterpreted as a discrepancy between the satellite planes observed in the Local Group and ΛCDM predictions. In fact, ∼10 per cent of ΛCDM galactic haloes have planes of satellites that are as infrequent as the MW and M31 planes. The look-elsewhere effect plays an important role in assessing the detection significance of satellite planes and accounting for it leads to overestimating the significance level by a factor of 30 and 100 for the MW and M31 systems, respectively

    Nexus of the cosmic web.

    Get PDF
    One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics

    Nexus of the Cosmic Web

    Get PDF
    One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics

    Effect of Chemical Thinning Season Using Metamitron on Peaches 'Sensação' Quality.

    Get PDF
    Made available in DSpace on 2018-01-23T18:01:35Z (GMT). No. of bitstreams: 1 CarlosRobertoMartins1962017JEAI385221.pdf: 156898 bytes, checksum: 82a5197daf386a1007ab41882e0c93cc (MD5) Previous issue date: 2018-01-23bitstream/item/171568/1/Carlos-Roberto-Martins-1962017JEAI38522-1.pd

    Quantum Computer with Mixed States and Four-Valued Logic

    Full text link
    In this paper we discuss a model of quantum computer in which a state is an operator of density matrix and gates are general quantum operations, not necessarily unitary. A mixed state (operator of density matrix) of n two-level quantum systems is considered as an element of 4^n-dimensional operator Hilbert space (Liouville space). It allows to use a quantum computer model with four-valued logic. The gates of this model are general superoperators which act on n-ququat state. Ququat is a quantum state in a four-dimensional (operator) Hilbert space. Unitary two-valued logic gates and quantum operations for an n-qubit open system are considered as four-valued logic gates acting on n-ququat. We discuss properties of quantum four-valued logic gates. In the paper we study universality for quantum four-valued logic gates.Comment: 17 page
    corecore