18 research outputs found

    Surface Engineering of 3D Gas Diffusion Electrodes for High‐Performance H2 Production with Nonprecious Metal Catalysts

    Get PDF
    In this work, a methodology is demonstrated to engineer gas diffusion electrodes for nonprecious metal catalysts. Highly active transition metal phosphides are prepared on carbon‐based gas diffusion electrodes with low catalyst loadings by modifying the O/C ratio at the surface of the electrode. These nonprecious metal catalysts yield extraordinary performance as measured by low overpotentials (51 mV at −10 mA cm−2), unprecedented mass activities (>800 A g−1 at 100 mV overpotential), high turnover frequencies (6.96 H2 s−1 at 100 mV overpotential), and high durability for a precious metal‐free catalyst in acidic media. It is found that a high O/C ratio induces a more hydrophilic surface directly impacting the morphology of the CoP catalyst. The improved hydrophilicity, stemming from introduced oxyl groups on the carbon electrode, creates an electrode surface that yields a well‐distributed growth of cobalt electrodeposits and thus a well‐dispersed catalyst layer with high surface area upon phosphidation. This report demonstrates the high‐performance achievable by CoP at low loadings which facilitates further cost reduction, an important part of enabling the large‐scale commercialization of non‐platinum group metal catalysts. The fabrication strategies described herein offer a pathway to lower catalyst loading while achieving high efficiency and promising stability on a 3D electrode

    A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser.

    Get PDF
    We demonstrate the translation of a low-cost, non-precious metal cobalt phosphide (CoP) catalyst from 1 cm2 lab-scale experiments to a commercial-scale 86 cm2 polymer electrolyte membrane (PEM) electrolyser. A two-step bulk synthesis was adopted to produce CoP on a high-surface-area carbon support that was readily integrated into an industrial PEM electrolyser fabrication process. The performance of the CoP was compared head to head with a platinum-based PEM under the same operating conditions (400 psi, 50 °C). CoP was found to be active and stable, operating at 1.86 A cm-2 for >1,700 h of continuous hydrogen production while providing substantial material cost savings relative to platinum. This work illustrates a potential pathway for non-precious hydrogen evolution catalysts developed in past decades to translate to commercial applications

    Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes

    Get PDF
    Photoelectrochemical water splitting is a promising route for sustainable hydrogen production. Herein, we demonstrate a photoelectrode motif that enables a nanostructured large-surface area electrocatalyst without requiring a nanostructured semiconductor surface with the goal of promoting electrocatalysis while minimizing surface recombination. We compare the photoelectrochemical H2 evolution activity of two silicon photocathode nanostructuring strategies: (1) direct nanostructuring of the silicon surface and (2) incorporation of nanostructured zinc oxide to increase the electrocatalyst surface area on planar silicon. We observed that silicon photocathodes that utilized nanostructured ZnO supports outperformed nanostructured silicon electrodes by ∼50 mV at open circuit under 1 sun illumination and demonstrated comparable electrocatalytic activity

    The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO<sub>2</sub> Reduction Conditions: An Experimental and Theoretical Study

    Get PDF
    A combination of experiment and theory has been used to understand the relationship between the hydrogen evolution reaction (HER) and CO<sub>2</sub> reduction (CO<sub>2</sub>R) on transition metal phosphide and transition metal sulfide catalysts. Although multifunctional active sites in these materials could potentially improve their CO<sub>2</sub>R activity relative to pure transition metal electrocatalysts, under aqueous testing conditions, these materials showed a high selectivity for the HER relative to CO<sub>2</sub>R. Computational results supported these findings, indicating that a limitation of the metal phosphide catalysts is that the HER is favored thermodynamically over CO<sub>2</sub>R. On Ni-MoS<sub>2</sub>, a limitation is the kinetic barrier for the proton–electron transfer to *CO. These theoretical and experimental results demonstrate that selective CO<sub>2</sub>R requires electrocatalysts that possess both favorable thermodynamic pathways and surmountable kinetic barriers

    The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO_2 Reduction Conditions: An Experimental and Theoretical Study

    Get PDF
    A combination of experiment and theory has been used to understand the relationship between the hydrogen evolution reaction (HER) and CO_2 reduction (CO_2R) on transition metal phosphide and transition metal sulfide catalysts. Although multifunctional active sites in these materials could potentially improve their CO_2R activity relative to pure transition metal electrocatalysts, under aqueous testing conditions, these materials showed a high selectivity for the HER relative to CO_2R. Computational results supported these findings, indicating that a limitation of the metal phosphide catalysts is that the HER is favored thermodynamically over CO_2R. On Ni-MoS_2, a limitation is the kinetic barrier for the proton–electron transfer to *CO. These theoretical and experimental results demonstrate that selective CO_2R requires electrocatalysts that possess both favorable thermodynamic pathways and surmountable kinetic barriers

    Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial

    Get PDF
    Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes
    corecore