6,210 research outputs found
From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition-metal carbides
Adsorption and catalytic properties of the polar (111) surface of
transition-metal carbides (TMC's) are investigated by density-functional
theory. Atomic and molecular adsorption are rationalized with the
concerted-coupling model, in which two types of TMC surface resonances (SR's)
play key roles. The transition-metal derived SR is found to be a single
measurable descriptor for the adsorption processes, implying that the
Br{\o}nsted-Evans-Polanyi relation and scaling relations apply. This gives a
picture with implications for ligand and vacancy effects and which has a
potential for a broad screening procedure for heterogeneous catalysts.Comment: 5 pages, 3 figure
Two-Level Systems in Evaporated Amorphous Silicon
In -beam evaporated amorphous silicon (-Si), the densities of two-level
systems (TLS), and , determined from specific heat
and internal friction measurements, respectively, have been shown to
vary by over three orders of magnitude. Here we show that and
are proportional to each other with a constant of
proportionality that is consistent with the measurement time dependence
proposed by Black and Halperin and does not require the introduction of
additional anomalous TLS. However, and depend strongly
on the atomic density of the film () which depends on both film
thickness and growth temperature suggesting that the -Si structure is
heterogeneous with nanovoids or other lower density regions forming in a dense
amorphous network. A review of literature data shows that this atomic density
dependence is not unique to -Si. These findings suggest that TLS are not
intrinsic to an amorphous network but require a heterogeneous structure to
form
Atlas Data-Challenge 1 on NorduGrid
The first LHC application ever to be executed in a computational Grid
environment is the so-called ATLAS Data-Challenge 1, more specifically, the
part assigned to the Scandinavian members of the ATLAS Collaboration. Taking
advantage of the NorduGrid testbed and tools, physicists from Denmark, Norway
and Sweden were able to participate in the overall exercise starting in July
2002 and continuing through the rest of 2002 and the first part of 2003 using
solely the NorduGrid environment. This allowed to distribute input data over a
wide area, and rely on the NorduGrid resource discovery mechanism to find an
optimal cluster for job submission. During the whole Data-Challenge 1, more
than 2 TB of input data was processed and more than 2.5 TB of output data was
produced by more than 4750 Grid jobs.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear
Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, 3 ps figure
Non-Adiabatic Potential-Energy Surfaces by Constrained Density-Functional Theory
Non-adiabatic effects play an important role in many chemical processes. In
order to study the underlying non-adiabatic potential-energy surfaces (PESs),
we present a locally-constrained density-functional theory approach, which
enables us to confine electrons to sub-spaces of the Hilbert space, e.g. to
selected atoms or groups of atoms. This allows to calculate non-adiabatic PESs
for defined charge and spin states of the chosen subsystems. The capability of
the method is demonstrated by calculating non-adiabatic PESs for the scattering
of a sodium and a chlorine atom, for the interaction of a chlorine molecule
with a small metal cluster, and for the dissociation of an oxygen molecule at
the Al(111) surface.Comment: 11 pages including 7 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Including lateral interactions into microkinetic models of catalytic reactions
In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis. (c) 2007 American Institute of Physics
Parties, promiscuity and politicisation: business-political networks in Poland
Research on post-communist political economy has begun to focus on the interface between business and politics. It is widely agreed that informal networks rather than business associations dominate this interface, but there has been very little systematic research in this area. The literature tends to assume that a politicised economy entails business-political networks that are structured by parties. Theoretically, this article distinguishes politicisation from party politicisation and argues that the two are unlikely to be found together in a post-communist context. Empirically, elite survey data and qualitative interviews are used to explore networks of businesspeople and politicians in Poland. Substantial evidence is found against the popular idea that Polish politicians have business clienteles clearly separated from each other according to party loyalties. Instead, it is argued that these politicians and businesspeople are promiscuous. Since there seems to be little that is unusual about the Polish case, this conclusion has theoretical, methodological, substantive and policy implications for other post-communist countries
Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations ℏω_j(q), phonon densities of states g(ℏω), and isochoric temperature-dependent vibrational heat capacities c_v(T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities c_v(T), computed within the harmonic approximation from ℏω_j(q) values, increase with temperature from 0.4 × 10^(−4) eV/atom K at 100 K to 1.4 × 10^(−4) eV/atom K at 200 K and 1.9 × 10^(−4) eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values c_p(T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ≲θ_c, where θ_c is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲10nm
- …