5,661 research outputs found
Two-Level Systems in Evaporated Amorphous Silicon
In -beam evaporated amorphous silicon (-Si), the densities of two-level
systems (TLS), and , determined from specific heat
and internal friction measurements, respectively, have been shown to
vary by over three orders of magnitude. Here we show that and
are proportional to each other with a constant of
proportionality that is consistent with the measurement time dependence
proposed by Black and Halperin and does not require the introduction of
additional anomalous TLS. However, and depend strongly
on the atomic density of the film () which depends on both film
thickness and growth temperature suggesting that the -Si structure is
heterogeneous with nanovoids or other lower density regions forming in a dense
amorphous network. A review of literature data shows that this atomic density
dependence is not unique to -Si. These findings suggest that TLS are not
intrinsic to an amorphous network but require a heterogeneous structure to
form
Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO
Although the rutile structure of TiO is stable at high temperatures, the
conventional quasiharmonic approximation predicts that several acoustic phonons
decrease anomalously to zero frequency with thermal expansion, incorrectly
predicting a structural collapse at temperatures well below 1000\,K. Inelastic
neutron scattering was used to measure the temperature dependence of the phonon
density of states (DOS) of rutile TiO from 300 to 1373\,K. Surprisingly,
these anomalous acoustic phonons were found to increase in frequency with
temperature. First-principles calculations showed that with lattice expansion,
the potentials for the anomalous acoustic phonons transform from quadratic to
quartic, stabilizing the rutile phase at high temperatures. In these modes, the
vibrational displacements of adjacent Ti and O atoms cause variations in
hybridization of electrons of Ti and electrons of O atoms. With
thermal expansion, the energy variation in this "phonon-tracked hybridization"
flattens the bottom of the interatomic potential well between Ti and O atoms,
and induces a quarticity in the phonon potential.Comment: 7 pages, 6 figures, supplemental material (3 figures
Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics
The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe
and PbTe are investigated with inelastic neutron scattering (INS) and
first-principles calculations. The experiments show that, surprisingly,
although SnTe is closer to the ferroelectric instability, phonon spectra in
PbTe exhibit a more anharmonic character. This behavior is reproduced in
first-principles calculations of the temperature-dependent phonon self-energy.
Our simulations reveal how the nesting of phonon dispersions induces prominent
features in the self-energy, which account for the measured INS spectra and
their temperature dependence. We establish that the phase-space for
three-phonon scattering processes, rather than just the proximity to the
lattice instability, is the mechanism determining the complex spectrum of the
transverse-optical ferroelectric mode
The Surviving Sepsis Campaign: Basic/Translational Science Research Priorities∗
© 2020 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved. Objectives: Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data Sources: Original paper, search of the literature. Study Selection: By several members of the original task force with specific expertise in basic/translational science. Data Extraction: None. Data Synthesis: None. Conclusions: In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives
Origin of the ϕ ∼ ±9° peaks in YBa2Cu3O7−δ films grown on cubic zirconia substrates
The c-axis oriented YBa2Cu3O7−δ films grown on (001) yttria-stabilized cubic zirconia (YSZ) substrates often contain domains whose in-plane alignment is rotated approximately 9° from the cube-on-cube epitaxial relationship, in addition to the more commonly observed 0° and 45° in-plane rotations. We have investigated the origin of this ∼9° orientation using in situ electron diffraction during growth and ex situ 4-circle x-ray diffraction. Our results indicate that the ∼9° orientation provides the most favorable lattice match between the interfacial (110)-oriented BaZrO3 epitaxial reaction layer, which forms between YBa2Cu3O7−δ and the YSZ substrate. If epitaxy occurs directly between YBa2Cu3O7−δ and the YSZ substrate, i.e., before the BaZrO3 epitaxial reaction layer is formed, the 0° and 45° domains have the most favorable lattice match. However, growth conditions that favor the formation of the BaZrO3 reaction layer prior to the nucleation of YBa2Cu3O7−δ lead to an increase in ∼9° domains. The observed phenomenon, which results from epitaxial alignment between the diagonal of a square surface net and the diagonal of a rectangular surface net, is a general method for producing in-plane misorientations, and has also been observed for the heteroepitaxial growth of other materials, including (Ba, K)BiO3/LaAlO3. The YBa2Cu3O7−δ/YSZ case involves epitaxial alignment between [111]BaZrO3 and [110]YSZ, resulting in an expected in-plane rotation of 11.3° to 9.7° for fully commensurate and for fully relaxed (110)BaZrO3 on (001)YSZ, respectivel
Correlated sampling in quantum Monte Carlo: a route to forces
In order to find the equilibrium geometries of molecules and solids and to
perform ab initio molecular dynamics, it is necessary to calculate the forces
on the nuclei. We present a correlated sampling method to efficiently calculate
numerical forces and potential energy surfaces in diffusion Monte Carlo. It
employs a novel coordinate transformation, earlier used in variational Monte
Carlo, to greatly reduce the statistical error. Results are presented for
first-row diatomic molecules.Comment: 5 pages, 2 postscript figure
- …