24 research outputs found

    An assessment of the performance of the PLUS+ tool in supporting the evaluation of Water Framework Directive compliance in Scottish standing waters

    Get PDF
    Phosphorus is one of the main causes of waterbodies in Scotland being at less than good ecological status (GES) in terms of the water framework directive (WFD). In Scotland, there are more than 8000 standing waters, defined as lakes and reservoirs that have a surface area of more than 1 hectare. Only about 330 of these are monitored routinely to assess compliance with the WFD. The export coefficient tool PLUS+ (phosphorus land use and slope) has been developed to estimate total phosphorus (TP) concentrations in the unmonitored sites; modelled values are then compared to WFD target concentrations for high, good, moderate, poor, and bad status to assess compliance. These type-specific or site-specific targets are set by the regulatory authority and form part of a suite of physical, chemical, and ecological targets that are used to assess GES, all of which must be met. During development, the PLUS+ tool was applied to 323 monitored catchments and 7471 unmonitored catchments. The efficacy of the tool was assessed against TP concentrations observed in 2014 and found to perform well in the rural catchments. 51% of standing waters had the same modelled and observed WFD class (i.e., High, Good, Moderate, Poor, Bad), and a further 40% of standing waters had a modelled WFD class that was within one class of observed water quality. The tool performed less well in catchments with larger inputs of TP from urban sources (e.g., sewage). The greatest deviations between measured and modelled classes were explained by the shortage of information on wastewater treatment works, fish farms, migratory birds, levels of uncertainty in TP measurements, and the amount of in-lake re-cycling of P. The limitations of the tool are assessed using data from six well documented case study sites and recommendations for improving the model performance are propose

    Dependence of ombrotrophic peat nitrogen on phosphorus and climate

    Get PDF
    Nitrogen (N) is a key, possibly limiting, nutrient in ombrotrophic peat ecosystems, and enrichment by pollutant N in atmospheric deposition (Ndep, g m-2 a-1) is of concern with regard to peatland damage. We collated data on the N content of surface (depth ≤ 25 cm, mean 15 cm) ombrotrophic peat (Nsp) for 215 sites in the UK and 62 other sites around the world, including boreal, temperate and tropical locations (wider global data), and found Nsp to range from 0.5 % to 4%. We examined the dependences of Nsp on surface peat phosphorus (P) content (Psp), mean annual precipitation (MAP), mean annual temperature (MAT) and Ndep. Linear regression on individual independent variables showed highly significant (p < 0.001) correlations of Nsp with Psp (r2 = 0.23) and MAP (r2 = 0.14), and significant (p < 0.01) but weaker correlations with MAT (r2 = 0.03) and Ndep (r2 = 0.03). A multiple regression model using log-transformed values explained 36% of the variance of the UK data, 84% of the variance of the wider global data, and 47% of the variance of the combined data, all with high significance (p < 0.001). In all three cases, most of the variance was explained by Psp and MAP, but in view of a positive correlation between MAP and MAT for many of the sites, a role for MAT in controlling Nsp cannot be ruled out. There is little evidence for an effect of Ndep on Nsp. The results point to a key role of P in N fixation, and thereby C fixation, in ombrotrophic peats

    Relationships between riverine and terrestrial dissolved organic carbon: Concentration, radiocarbon signature, specific UV absorbance

    Get PDF
    The transfer of dissolved organic carbon (DOC) from land to watercourses plays a major role in the carbon cycle, and in the transport and fate of associated organic and inorganic contaminants. We investigated, at global scale, how the concentrations and properties of riverine DOC depend upon combinations of terrestrial source solutions. For topsoil, subsoil, groundwater and river solutions in different Köppen-Geiger climatic zones, we compiled published and new values of DOC concentration ([DOC]), radiocarbon signature (DO14C), and specific UV absorbance (SUVA). The average value of each DOC variable decreased significantly in magnitude from topsoil to subsoil to groundwater, permitting the terrestrial sources to be distinguished. We used the terrestrial data to simulate the riverine distributions of each variable, and also relationships between pairs of variables. To achieve good matches between observed and simulated data, it was necessary to optimise the distributions of water fractions contributed by each of the three terrestrial sources, and also to reduce the mean input terrestrial [DOC] values, to about 60% of the measured ones. One possible explanation for the required lowering of the modelled terrestrial [DOC] values might be unrepresentative sampling of terrestrial DOC, including dilution effects; another is the loss of DOC during riverine transport. High variations in simulated riverine DOC variables, which match observed data, are due predominantly to variations in source solution values, with a lesser contribution from the different combinations of source waters. On average, most DOC in rivers draining catchments with forest and/or grass-shrub land cover comes in similar amounts from topsoil and subsoil, with about 10% from groundwater. In rivers draining croplands, subsoil and groundwater solutions are the likely dominant DOC sources, while in wetland rivers most DOC is from topsoil

    Modelling hydrochemical and ecological trends in acid sensitive surface waters in the Scottish Highlands

    No full text
    The dynamic model MAGIC is used to predict the future response of surface waters to reductions in S deposition as stipulated by the recently agreed emission protocol (the 1999 Gothenburg Protocol). MAGIC was calibrated to 30 sites in the Scottish mountains with the best available soil and deposition data derived from large scale spatial datasets, and surface water chemistry from a regional loch survey conducted in October 2000. A comparison of input parameters and model responses are made at Lochnagar, a site for which detailed, high resolution spatial/temporal data exist. The model is capable of reproducing observed trends in non-marine SO4 2-, however simulated NO3 - from 1990 to 2000 is lower than the observed trends at Lochnagar due to possible hydrological controls and in-lake processes, rather than terrestrial processes. The Scottish Highlands are remote from emission sources and consequently peak deposition inputs of S in the 1980s are relatively low (33 kg S ha-1 y-1) compared to other regions in Europe. Nonetheless the amount of deposition appears sufficient to cause environmental damage in this acid sensitive region. During the 1980s, simulated Acid Neutralising Capacity (ANC) of 13% of the modelled lakes was <20 μeq l-1, a chemical condition that potentially can cause damage to freshwater ecology. Regional and site simulations captured the recovery to 2000 in response to the existing emission reductions. Predictions to 2016 indicates the potential for biological recovery and a return to 'good status' as required by the EU Water Framework Directive, although the hydrochemistry of some sites remain some way from simulated pre-acidification conditions

    Linking monitoring and modelling: can long-term datasets be used more effectively as a basis for large-scale prediction?

    Get PDF
    Data from long-term monitoring sites are vital for biogeochemical process understanding, and for model development. Implicitly or explicitly, information provided by both monitoring and modelling must be extrapolated in order to have wider scientific and policy utility. In many cases, large-scale modelling utilises little of the data available from long-term monitoring, instead relying on simplified models and limited, often highly uncertain, data for parameterisation. Here, we propose a new approach whereby outputs from model applications to long-term monitoring sites are upscaled to the wider landscape using a simple statistical method. For the 22 lakes and streams of the UK Acid Waters Monitoring Network (AWMN), standardised concentrations (Z scores) for Acid Neutralising Capacity (ANC), dissolved organic carbon, nitrate and sulphate show high temporal coherence among sites. This coherence permits annual mean solute concentrations at a new site to be predicted by back-transforming Z scores derived from observations or model applications at other sites. The approach requires limited observational data for the new site, such as annual mean estimates from two synoptic surveys. Several illustrative applications of the method suggest that it is effective at predicting long-term ANC change in upland surface waters, and may have wider application. Because it is possible to parameterise and constrain more sophisticated models with data from intensively monitored sites, the extrapolation of model outputs to policy relevant scales using this approach could provide a more robust, and less computationally demanding, alternative to the application of simple generalised models using extrapolated input data

    3'-Azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta

    No full text
    The anti-HIV drug 3′-azido-3′-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, β-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, β-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier. © 2003 Elsevier Inc. All rights reserved
    corecore