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Abstract 

Data from long-term monitoring sites are vital for biogeochemical process understanding, and 

for model development. Implicitly or explicitly, information provided by both monitoring and 

modelling must be extrapolated in order to have wider scientific and policy utility. In many 

cases, large-scale modelling utilises little of the data available from long-term monitoring, 

instead relying on simplified models and limited, often highly uncertain, data for 

parameterisation. Here, we propose a new approach whereby outputs from model 

applications to long-term monitoring sites are upscaled to the wider landscape using a simple 

statistical method. For the 22 lakes and streams of the UK Acid Waters Monitoring Network 

(AWMN), standardised concentrations (Z scores) for Acid Neutralising Capacity (ANC), 

dissolved organic carbon, nitrate and sulphate show high temporal coherence among sites. 

This coherence permits annual mean solute concentrations at a new site to be predicted by 

back-transforming Z scores derived from observations or model applications at other sites. 

The approach requires limited observational data for the new site, such as annual mean 

estimates from two synoptic surveys. Several illustrative applications of the method suggest 

that it is effective at predicting long-term ANC change in upland surface waters, and may 

have wider application. Because it is possible to parameterise and constrain more 

sophisticated models with data from intensively monitored sites, the extrapolation of model 

outputs to policy relevant scales using this approach could provide a more robust, and less 

computationally demanding, alternative to the application of simple generalised models using 

extrapolated input data. 

 

Keywords: Modelling, Long-term monitoring, Catchments, Upscaling, Acid Neutralising 

Capacity, Dissolved Organic Carbon, Sulphate, Nitrate 



Introduction 

 

Headwater catchments incorporate a major proportion of the total stream length of many river 

systems (Bishop et al., 2008), and are intimately linked to the landscapes they drain. 

Monitoring in headwater systems thus provides a uniquely long-term insight into the 

biogeochemical and ecological processes that govern natural ecosystems, their condition, and 

their response to anthropogenically imposed change. Long-term monitoring is, however, 

challenging to maintain in the face of uncertain funding, changing policy priorities, and 

reliance on the sustained commitment of small numbers of individuals (Nisbet, 2007). While 

the importance of monitoring is increasingly recognised by scientists and policymakers, there 

is often little connection between information obtained from detailed catchment studies, and 

the whole-landscape (national or international) scale at which policy decisions must be taken. 

This problem is accentuated where catchment studies have developed on an individual, ad 

hoc basis, often at scientifically interesting but atypical locations, and without consistency of 

measurements or methods between sites. Recognition of this issue has led, in some countries, 

to the establishment of centrally coordinated national monitoring networks. In the UK, 22 

existing and new monitoring catchments were combined into the UK Acid Waters 

Monitoring Network (Monteith and Evans, 2005), with standardised measurements and 

protocols, consistent sampling dates, and centralised analyses providing a greater degree of 

representivity and comparability (Patrick et al, 1991). Similar networks have been established 

in other countries, such as the 14 sites of the GEOMON network in the Czech Republic 

(Fottová, 1995). At the international level, data from sites within national monitoring 

programmes have been combined into international programmes, with the aim of providing 

scientific support to decision-making at this scale. For example, the UNECE Convention on 

Long-Range Transboundary Air Pollution (CLRTAP, Sliggers and Kakebeeke, 2004), which 

is responsible for international agreements to abate atmospheric sulphur, nitrogen, ozone and 

particulates, established a number of International Cooperative Programmes (ICPs) to collate 

national monitoring data, including (for catchments) the ICP on Integrated Monitoring and 

ICP Waters (e.g. Skjelkvåle et al., 2005).  

 

Despite these drives towards integration and aggregation of monitoring, the gap between 

monitoring and decision-making remains. Taking both the UK and CLRTAP examples, 

decisions on pollution abatement are ultimately made on the basis of mapped estimates of 

ecosystem sensitivity and exposure to damaging pollutant levels. These are derived from 



calculated (static) critical loads models, or more recently from dynamic biogeochemical 

models (Hettelingh et al., 2008). In either case, the approach used is to combine limited 

measurement data with extrapolated parameter values, and then to apply the model to very 

large numbers of locations. In the UK, for example, freshwater critical loads are calculated 

for 1752 surface waters where a chemical measurement exists, and terrestrial critical loads 

are calculated for 1-8 habitats within approximately 240,000 1 km grid squares, based on 

default parameter sets (Hall et al., 2004). Dynamic model applications have followed the 

same general structure, using the MAGIC model (Cosby et al., 2001) for surface waters, and 

the VSD model (Posch and Reinds, 2009) for soils.  

 

Thus, policy decisions are made based on very limited and often highly extrapolated input 

parameters for critical loads or dynamic models. Opportunities for evaluating predictions 

against observations are limited, and even where (as for surface water MAGIC simulations) 

models have been calibrated against observations, these are often single time points (e.g. 

from synoptic surveys), so that it is not possible to gauge whether the simulated trajectory of 

historic change adequately reproduces observations. 

 

In this context, long-term monitoring performs several roles. Firstly, intensive catchment 

studies have in many cases provided the process insight and detailed measurements to 

support model development (e.g. Cosby et al., 1985; Tipping, 1996; Gbondo-Tugbawa et al., 

2001). Secondly, they have been used to test the outputs from models applied at large spatial 

scales against the small subset of sites with long-term observations (e.g. Forsius et al., 1998; 

Jenkins et al., 2001; Ouhlehle et al., 2007; Reinds et al., 2009). Thirdly, monitoring sites have 

been used to undertake more complex simulations, for example incorporating additional 

environmental drivers and scenarios for land management and climate (e.g. Evans, 2005; 

Beier et al, 2003; Aherne et al., 2008; Sjøeng et al., 2009; Futter et al., 2009); detailed carbon 

and nitrogen cycles (e.g. Belyazid et al., 2006; Futter et al., 2009); and more sophisticated 

methods for parameter and uncertainty estimation such as Bayesian calibration (Larssen et 

al., 2007; Reinds et al., 2008). While much of this work has appeared in the scientific 

literature, and may indirectly have supported the development and application of models at 

larger scales, the higher data demands of more complex model applications preclude their 

parameterisation to a wider set of data-poor locations. In other words, there is currently little 

direct linkage between the detailed time series datasets obtained from catchment monitoring 



studies, and the simplified catchment models that ultimately underpin national and 

international-level policy development. 

 

We propose that this disconnection between small-scale monitoring and large-scale 

modelling could potentially be removed, via an alternative approach to the use of monitoring 

data in models. Rather than attempt to use monitoring data to estimate the parameters of 

detailed process models, recent approaches have empirically related monitoring data to 

simple readily available regional scale data, such as catchment characteristics (Cooper et al., 

2004). Simple relationships between water quality and landscape class have then been used 

for spatial extrapolation. This approach relies on the spatial coherence of hydrochemical 

response for locations with the same landscape. A similar approach may be taken to temporal 

interpolation; just as hydrochemical conditions are dependent on spatially varying catchment 

characteristics, they are also dependent on temporally varying external drivers such as 

climate and deposition. Long term monitoring datasets provide local measurements of 

temporal variability over time, but extrapolation to regional scales represents a significant 

challenge. 

 

Since critical loads based methods to support pollution abatement policies first evolved in the 

1980s, long-term monitoring datasets have increased greatly in number and duration. 

Furthermore, comparisons of these datasets have often shown remarkable temporal coherence 

among sites across wide gradients of geographical location, catchment characteristics, 

exposure to air pollutants, climate and land management (Evans and Monteith, 2001; 

Watmough et al, 2004; Davies et al., 2005; Monteith et al., 2007). The implication is that 

headwater catchments are responding in a consistent fashion to a set of external 

environmental drivers, whose effect can be inferred from responses even if not explicitly 

identified. Here, we utilise this observed temporal coherence as the basis of a method for 

analysing and predicting chemical change at one site, based on observed change at other sites. 

We then extend this approach, in order to extrapolate modelled changes from a small number 

of monitoring sites to predict changes at unmonitored sites, as an alternative to modelling 

these sites directly. We present examples of the application of this approach, discuss its 

advantages and disadvantages compared to direct modelling, and consider its potential utility 

for upscaling from a limited set of monitoring catchments to larger and more policy-relevant 

spatial scales.  

 



Methods 

 

Site description 

 

We based our study on the 22 catchments of the UK Acid Waters Monitoring Network 

(AWMN, Figure 1). The network comprises 11 lakes and 11 streams, distributed across 

upland areas of the UK, which was initiated in 1988. The sites span a wide range of 

anthropogenic and marine ion deposition, land cover (5 catchments contain plantation conifer 

forest, the remainder comprise acid grassland and/or heathland and blanket bog), soil type 

(including peats, podzols, gleys and rankers), climate (range of mean temperatures 3 to 10 

C, mean annual rainfall 0.87 to 3.5 m), and topographic position (altitude of sampling site 10 

to 785 m) (Patrick et al., 1991; Monteith and Evans, 2000). Lakes are sampled at a consistent 

quarterly frequency, and streams monthly to reflect their greater short-term variability. 

Analyses follow strict protocols to ensure intra- and inter-site comparability (Patrick et al, 

1991) and have been subjected to rigorous analytical quality control comparisons (Gardner, 

2008). All samples are now analysed at either the Centre for Ecology and Hydrology, 

Lancaster, or at the Freshwater Fisheries Laboratory, Pitlochry. Analysis is based on 19 years 

of full chemical data, from 1989 to 2007. 

 

Time series standardisation 

 

Previous time series analyses of the AWMN dataset (e.g. Evans and Monteith, 2001; Davies 

et al., 2005) have shown that, despite substantial differences in the mean and variance of most 

chemical variables between sites, underlying patterns of temporal variation in rescaled (or 

standardised) data often show strong similarities. To demonstrate these underlying patterns, 

measured concentrations at each sampling site s and date t (
stC ) were standardised over time, 

by subtracting the site mean for the whole time series (
sC ) and dividing by the site standard 

deviation (
s
) so that  
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The time series of standardised concentrations (
stZ referred to as ‘Z scores’) thus has a mean 

of zero and a standard deviation of 1. Exploratory analysis suggests that this standardisation 

leads to new series which show temporal consistency following an approximate model  

 

 
st t stZ x  (2) 

 

where 
tx is a temporal effect which is independent of location and 

st
is a zero mean 

uncorrelated error term with variance independent of both location and time. Such a model 

implies that temporal effects are essentially multiplicative, so that sites with generally high 

concentrations will tend to have high variability over time in absolute but not in relative 

terms. This effect is to some extent moderated by the presence of a sample mean in the 

definition of the standardised variable. 

 

The behaviour of 
tx might be further modelled as, for example 

 

 
t tx a bt  (3) 

 

Equation (3) might be appropriate if the time effect were following a linear trend. The 

combination of equations (2) and (3) constitutes a hierarchical linear model which could be 

formally analysed as such. The model description presented here is intended to provide a 

general view of methodology, rather than focusing on a detailed statistical analysis. For this 

study, we simplified the chemical time series further, by first taking an annual mean of all 

samples collected within each year (so that t in equation (2) represents years), and then 

undertaking the standardisation procedure as above based on annual rather than individual 

sample values. The resulting time series of annual mean Z scores permits direct comparison 

between quarterly-sampled lakes and monthly-sampled streams, and is directly comparable to 

the annual time step at which many biogeochemical models, such as MAGIC and VSD, 

typically operate.  

 

Finally, we calculated median annual Z scores for each year across a set of sites (either the all 

sites, or a defined subset). Again, this approach was used previously by Evans and Monteith 

(2001) and Davies et al. (2005), but based on individual sampling dates and for lake and 



stream subsets. 10
th

 and 90
th

 percentile Z scores were also calculated, providing evidence of 

the stability of the variance of 
st

 between years.  

 

For this study, we focused on a key water quality variable, Acid Neutralising Capacity 

(ANC), which is widely used for modelling and monitoring assessments. While alternative 

formulations exist, the preferred method for calculating ANC in the AWMN is based on 

measured (Gran) alkalinity (Alk), inorganic Al concentration (Alinorg) and an estimate organic 

acid concentration (OA) based on a conversion from dissolved organic carbon (DOC) 

concentration (Evans et al., 2001; Equation (4)). 

 

 inorgANC =  Gran Alkalinity + OA - Al  (4) 

    

The same methodology was also applied to calculate Z scores for DOC, sulphate (SO4), and 

nitrate (NO3). Median annual Z scores were calculated for all 22 AWMN sites, and for 

subsets of lakes/streams, and moorland/forest catchments.  

 

Extrapolating from monitored to unmonitored sites 

 

The fundamental assumption in extrapolating to a new site is that it follows a coherent 

temporal pattern to another site, or set of sites as indicated in equation (2). The time series of 

Z scores for this site, or group median Z score for a set of sites, can thus be directly back-

transformed to give estimates of 
stC  for the new site according to equation (5), and following 

the notation of equation (1). 

 

 ( )st st s sC Z C  (5) 

 

In the case that 
sC  and 

s
are known, this calculation is straightforward (where Z scores are 

calculated for annual mean data, 
sC and 

s
 are the mean and standard deviation of the annual 

means, rather than the raw data). At most unmonitored sites, however, it is unlikely that these 

statistics will be known, and they must therefore be estimated At many sites in the UK 

Freshwater Critical Loads dataset, water quality data exist from two or more separate time 

points: for example, the Welsh Acid Water Survey of over 100 surface waters was repeated in 



1985 and 1995 (Stevens et al 1997), while a set of 48 lochs in Galloway, Southwest Scotland, 

has been sampled on seven occasions between 1979 and 1998 (Ferrier et al. 2001). For sites 

such as these for which 
stC  and 

stZ are available at two or more time points 
1 2, ,...t t t  a 

sequence of equations of type (5) can be used to solve for 
sC  and 

s
, either using two 

simultaneous equations, or statistically. We examined heuristically whether we could 

accurately predict long-term ANC mean and standard deviation from samples collected at 

two time points based on the AWMN sites. In general, we found that a good estimate of long-

term mean could be obtained from the mean of any two sampling years (e.g. Figure 2a, for 

the years 2007 and 1992), and that a reasonable estimate of the standard deviation could be 

obtained from a regression of the variance against the squared difference between the two 

samples (e.g. Figure 2b). We assumed that the regression equations obtained by this method 

were applicable to other sites where samples had been collected in the same years. 

 

Extrapolating from modelled to unmodelled sites 

 

The method described permits the extrapolation of measured water quality data from a 

monitored site to a site at which two sets of synoptic survey data are available. In principle, 

the same approach may be applied to modelled data, by substituting measured annual means 

with output values from a biogeochemical model applied to the monitored site. The potential 

advantages of this approach over direct application of the same model to the unmonitored site 

are i) that data rich monitoring sites can support a more accurate and/or sophisticated model 

parameterisation, and ii) that model outputs can be tested or constrained (e.g. Larssen et al., 

2007) against observed time series, rather than simply calibrated to a single point in time. 

 

For this study, we undertook two illustrative model output extrapolations based on previous, 

well-parameterised and tested applications of the MAGIC model to monitoring sites. For the 

first example, we used a calibration of MAGIC to the Afon Gwy, a Mid-Wales stream that 

has been monitored by the Centre for Ecology and Hydrology since 1980. MAGIC was 

applied with a two soil layer structure, detailed parameterisation using local measurements, 

and calibration against both soil solution and stream chemical data (Evans et al., 2008). 

Outputs from the model were used to predict ANC change at Llyn Llagi, an AWMN lake 

catchment located 65 km to the north, in the Snowdonia region of North Wales. Predicted 

ANC changes at Llyn Llagi were compared both to observations from the site, and to 



predictions from a simpler direct calibration of MAGIC to Llyn Llagi as part of a regional 

suite of MAGIC applications. This application was based on a single soil layer, 

parameterisation data extrapolated from national or regional datasets and calibration to a 

single year of water chemistry data (Evans et al., 2007). 

 

Secondly, we took a recent two soil layer calibration of MAGIC to the River Etherow 

catchment in the South Pennines, England (Helliwell et al., in prep.) and used this to predict 

ANC change for a suite of 27 sites within the region which were sampled in 1998 (Evans et 

al, 2000) and again in 2001-02 (Helliwell et al., 2007). Predictions were again compared 

against direct MAGIC simulations to all sites, which formed part of the regional model 

application described above. 

 

Results 

 

Standardised annual time series 

 

Untransformed annual mean ANC, SO4, NO3 and DOC time series for the individual AWMN 

sites (Figure 3) highlight the extent of between-site heterogeneity in terms of mean 

concentrations, rates of change, and short-term variability. Standardisation, on the other hand 

(Figure 4), highlights the degree of underlying temporal coherence across the network. For 

SO4, there was a very pronounced decline in concentrations during the late 1990s, and high 

coherence between sites (mean annual 10
th

-90
th

 percentile range 1.03 standardised units). 

ANC showed a consistent increase, with the fastest rate of change coinciding with the period 

of SO4 decrease, and a reasonable level of coherence (mean 10
th

-90
th

 percentile range 1.54). 

In contrast, there has been no clear trend in NO3 concentrations, and relatively high 

variability among sites (mean 10
th

-90
th

 percentile range 2.04). However, all sites showed a 

clear NO3 peak in 1996. DOC has increased at all sites, with low variability between sites 

(mean 10
th

-90
th

 percentile range 1.25). There was some indication of a reversal in the rising 

trend from 2001-04, but concentrations subsequently rose to unprecedented levels during 

2006-07. 

 

To a large extent, these observations reinforce previous inferences from analyses of monthly 

stream and quarterly lake data, namely that reduced S inputs to UK upland surface waters 

have led to a large reduction in runoff SO4 concentrations, partial recovery from acidification 



as evidenced by rising ANC (e.g. Davies et al., 2005), and an apparently associated increase 

in the leaching of DOC (e.g. Evans et al., 2006). Temporal variations in NO3 leaching appear 

to be mainly linked to climate fluctuations, such as occurrence of soil freezing, rather than 

directly to deposition (Monteith et al., 2000; Cooper, 2005). The relatively low temporal 

coherence in NO3 between sites suggests that local factors such as land-management (notably 

tree maturation, felling and replanting in forested catchments), as well as N saturation status, 

may also have influenced NO3 leaching. 

 

Reducing time series to annual mean values tends to highlight underlying trends rather than 

short-term variations, particularly for streams (cf. Figure 1 of Davies et al. 2005). It also 

permits direct comparisons among sites sampled at different frequencies, and between 

different site types. Here, we compared lakes and streams, and forested and moorland 

catchments. Studies in North American and Scandinavian lakes have shown a substantial role 

of lakes in the processing of carbon and nutrients (e.g. Dillon and Molot, 2005; Algesten et 

al., 2003). UK lakes in high rainfall upland areas typically have shorter residence times than 

those in continental areas, and here their impact on long-term trends is less clear. On the other 

hand, there is strong evidence that catchment afforestation of parts ot the UK (primarily 

exotic conifer plantation on moorland during the post-war period) significantly amplified the 

effects of acid deposition, due to increased base cation uptake and pollutant scavenging from 

the atmosphere by the forest canopy (NEGTAP , 2001). Evidence of intensified current 

damage has led to predictions that afforested catchments may not respond to reduced acid 

deposition in the same way as moorland catchments, resulting in suppressed recovery or even 

ongoing acidification (e.g. Jenkins et al., 1990; Helliwell et al., 2001). 

 

Our analysis shows, for all variables analysed, a tight correlation between median annual Z 

scores for the two pairs of catchment subsets (Figure 5). No clear deviation is apparent 

between ANC Z scores for forested and moorland catchments that might support the 

conclusion that forests are stopping recovery from acidification. However, because Z scores 

do not permit comparison of the magnitude of change at individual sites, this observation 

does not exclude the possibility that moorland and forest catchments are recovering at 

different rates. Similarly, neither the presence of lakes or forests appears to have influenced 

the trajectory of DOC or NO3 leaching, although differences in rate of change again cannot 

be discounted on this basis alone. Overall, the data do not support the subdivision of the 

AWMN sites according to catchment or surface water type. We were also unable to detect 



sufficient evidence of geographical clustering in the pattern of Z score variations to justify 

subdividing data into regional subgroups (see below).  

 

Extrapolating from monitored to unmonitored sites 

 

Based on the analysis above, suggesting no strong geographic or typological clustering of Z 

score variations among the sites, we henceforth treated all AWMN sites as a single group. 

For ANC, we then attempted to predict annual ANC concentrations at each site, based on 

back-transformation of median annual Z scores for the remaining 21 sites. Equation (5) was 

applied, firstly based on known mean and standard deviation values, and then on values 

estimated from only two years of data, 1992 and 2007 (Figure 2).  

 

Predictions of ANC based on known mean and standard deviation had root mean square error 

(RMSE) values ranging from 3.3 to 22.6 eq l
-1

 (Figures 6,7). With the exception of the few 

sites showing little overall ANC trend (e.g. Loch Coire nan Arr, Narrator Brook), annual 

ANC predictions captured the underlying trend at most sites. The method was most 

successful at capturing inter-annual trends at sites in Southwest Scotland (Round Loch of 

Glenhead, Loch Grannoch, Dargall Lane), Northwest England (Scoat Tarn, Burnmoor Tarn), 

North Wales (Llyn Llagi) and the Eastern part of Northern Ireland (Beaghs Burn, Bencrom 

River). These sites, all of which are clustered around the Irish Sea (Figure 1), show 

particularly coherent behaviour and thus dominate the median Z score calculation for the 

dataset as a whole. Prediction of inter-annual variations becomes poorer with distance from 

this central cluster, as might be expected given the increasing heterogeneity of short-term 

climatic and depositional patterns across larger spatial scales. We were unable to identify 

other clear regional clusters, although it is likely that these would emerge given additional 

monitoring datasets in (for example) Northern Scotland or Southern England. 

 

The second method, in which mean and standard deviation were estimated from two 

observation years, provides a more meaningful test of the utility of this method for 

extrapolating from monitored to unmonitored sites. ANC predictions based on 1992 and 2007 

‘survey’ years (Figure 6) resulted in only small increases in RMSE at most sites (Figure 7). 

With few exceptions, this method thus remained effective in reproducing the trend in annual 

mean ANC. 



 

Extrapolating from modelled to unmodelled sites 

 

Upscaling to a single site: For the Llyn Llagi AWMN site, ANC was modelled directly in 

MAGIC based on regional-scale parameter data (Figure 8a), and indirectly based on annual Z 

scores derived from a site-specific MAGIC application to the Afon Gwy (Figure 8b), which 

were back-transformed using known (Figure 8c) and estimated (Figure 8d) mean and 

standard deviation values. The direct regional MAGIC application to Llyn Llagi captures the 

approximate trend in ANC, but (since the model application did not incorporate short-term 

variations in driving variables) does not reproduce the short-term variation. RMSE over the 

period of observations is 7.0 eq l
-1

. Modelling the site indirectly using the Z score approach 

gave no discernable reduction in model performance (RMSE 7.3 and 6.4 eq l
-1

 based on 

known and estimated mean and standard deviation respectively), and appeared to capture 

both the trend and some of the between-year variation in ANC. Comparing long-term 

simulations, the indirect simulations suggest a slightly greater responsiveness of the site to 

changing atmospheric deposition, with pre-industrial 1850 ANC values of around 70 eq l
-1

 

compared to 56 eq l
-1

 in the direct application, and forecast 2050 ANC of around 45 eq l
-1

 

compared to 37 eq l
-1 

in the direct application.  

 

Upscaling to multiple sites: Simulated ANC for the South Pennine reservoirs is shown in 

Figure 9, modelled directly by mutliple MAGIC applications to all sites, and indirectly by Z 

score transformation from a single site-specific MAGIC application to the River Etherow 

AWMN site. Agreement between the two modelling methods is generally good, apart from at 

the 1970 peak of acid deposition, when the indirect simulation suggests a greater degree of 

acidification. Without historic data against which to compare, the relative accuracy of the two 

hindcast simulations cannot be evaluated. However in forecast, it is notable that the two 

simulations converge; for 2050, median predicted ANC for the regional dataset is 51 eq l
-1

 

based on the Z score approach (11 sites having ANC below the critical limit of 20 eq l
-1

), 

compared to a median of 57 eq l
-1

 based direct MAGIC application (9 sites with ANC < 20 

eq l
-1

). Thus, in this example, the two methods would lead to similar interpretation of future 

regional water quality status. 

 



Discussion 

 

Despite considerable typological and geographical variation, the 22 AWMN sites show high 

temporal coherence in a range of key water quality variables, including SO4, DOC, ANC and 

- to a lesser extent - NO3. Standardisation of data to annual mean Z scores appears to be an 

effective method for comparing the behaviour of sites with contrasting absolute 

concentrations, short-term variability and sampling frequency. Applications of this approach 

include comparison and differentiation of sites according to typology or location, potentially 

providing insight into the processes controlling water quality variation across the landscape. 

Our analysis suggested little differentiation in water quality variations between sites 

according to catchment type; we found no impact of lake presence on long-term DOC 

variations, or of plantation forests on ANC variations. The Z score approach also has 

potential utility for identifying individual sites showing atypical behaviour (e.g. due to local 

management or pollution factors), and for identifying individual analytical outliers. The 

method has been tested here on data from semi-natural upland ecosystems, and it is doubtful 

whether the same approach would be as effective in more heterogeneous agricultural or 

urban-influenced areas, where diffuse and point-source pollution are likely to be more 

catchment-specific. Nevertheless, analysis of temporal coherence in these systems might help 

in the identification of underlying signals, such as from climate or large-scale land-

management change, which may not be discernable from the analysis of individual sites. 

 

There are several prerequisites to using the Z score approach for model upscaling. Firstly, it 

is vital that long-term monitoring data are available for a sufficient number of sites to identify 

temporal coherence, derive average Z scores, and to allow subdivision according to 

typological or geographical factors where these lead to differing biogeochemical behaviour. 

This is greatly facilitated by consistently operated networks such as the AWMN, although by 

reducing data to annual means it may be possible to combine data from independently 

operated sites and/or multiple networks. Secondly, the method will only be applicable for 

areas or ecosystems within which coherent behaviour can be demonstrated; it will become 

progressively poorer with increasing geographical distance, or typological difference, from 

the sites used to calculate median Z scores. Thirdly, to predict change at an unmonitored site 

it is necessary to have sufficient measurements from which to estimate long-term solute 

concentration means and standard deviations for that site. In this study, we were able to 

derive reasonable estimates of both parameters from two years of ‘survey’ data, a minimum 



data requirement likely to be available for large numbers of surface waters. Finally, long-term 

biogeochemical model simulations are required for representative sites in order to derive 

representative Z scores.  

 

In this respect, this modelling approach has significant potential advantages over previous 

large-scale biogeochemical model applications, which have in general involved repeated 

model application to large numbers of individual sites (e.g. Evans et al., 1998; Moldan et al., 

2004; Wright et al., 2005; Chen and Driscoll, 2005; Hettelingh et al., 2008). At the regional 

and national scale, modelling inevitably has to be undertaken using relatively simple models, 

parameterised with limited and/or extrapolated input data, and making little or no use of 

available long-term datasets. On the other hand, if biogeochemical variations are coherent 

across a range of sites, it may be possible to obtain a more accurate simulation of long-term 

change by extrapolating outputs from more detailed model applications at the smaller number 

of sites for which direct measurements are available. While the examples in this study were 

based on two soil layer site-based MAGIC applications, the upscaling method described 

could equally be based on models with more sophisticated process representations, for 

example taking account of climatic variations. Where long-term data are available, this 

approach could be combined with modelling techniques such as Bayesian parameter 

estimation (Larssen et al., 2005; Reinds at al., 2008) which can be used to constrain 

simulations, and to generate uncertainty ranges on future predictions.  

 

A number of caveats apply to these conclusions. Firstly, in the method presented, individual 

water quality variables can only be extrapolated individually. If applied to the full suite of 

dissolved solutes, this would not ensure maintenance of charge balance constraints. 

Extrapolation to new (survey) sites also assumes that these sites are comparable to those for 

which long-term data exist, and caution is therefore required to ensure that upscaling is 

restricted to sites with similar catchment characteristics, and within a reasonable geographical 

range. Outputs from highly complex site-specific models, for example those that integrate 

biogeochemical processes with vegetation competition and succession (e.g. Wamelink et al., 

2009) are unlikely to be appropriate for upscaling using this method. Finally, application of 

the method in the current study has been limited to a small number of illustrative examples, 

and more rigorous testing is required prior to larger-scale application. Nevertheless, given 

clear evidence of coherence in biogeochemical trends, we believe that there are significant 

potential advantages in terms of both model performance and computational time 



requirement, in extrapolating outputs from a smaller number of more detailed model 

applications to monitoring sites, compared with extrapolating inputs in order to run simple 

models at a larger number of poorly characterised sites. 
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Figure captions 
 

Figure 1. Location of the UK Acid Waters Monitoring Network sites (site names corresponding to the 

numbers shown are given in Figure 6).  

 

Figure 2. Relationship between a) mean annual ANC (1989-2007) and the mean of two years (2007 

and 1992); and b) standard deviation of mean annual ANC and the absolute difference in ANC 

between 2007 and 1992, for all AWMN sites. 

 

Figure 3. Untransformed annual mean time series for ANC, sulphate, nitrate and DOC concentrations 

for all individual sites in the UK Acid Waters Monitoring Network 

 

Figure 4. Standardised annual mean (Z score) time series for ANC, sulphate, nitrate and DOC 

concentrations for all sites in the UK Acid Waters Monitoring Network. Bold central line shows 

median annual Z score for all sites, outer lines show 10
th
 and 90

th
 percentile values.  

 

Figure 5. Comparison of median annual Z scores between lakes and streams, and forested and 

moorland catchments, for ANC, nitrate and DOC. 

 

Figure 6. Observed annual mean ANC for all AWMN sites, compared to predictions derived by back-

transforming median Z scores from the remaining 21 sites. 

 

Figure 7. Root mean squared errors of annual mean ANC predictions obtained by extrapolation from 

mean Z scores at other sites based on 1) known and 2) estimated mean and standard deviation values. 

 

Figure 8. Simulated long-term ANC (line) and observed annual means (circles) for a) Afon Gwy 

based on a previous site-specific model application (Evans et al., 2008); b) Llyn Llagi based on a 

previous regional-scale model application; and for Llyn Llagi based on a Z score transformation of the 

MAGIC simulation for the Afon Gwy for c) known and d) estimated ANC mean and standard 

deviation.  

 

Figure 9. Simulated ANC at four time points for a set of 27 South Pennine reservoirs modelled 

directly using MAGIC, and indirectly by Z score transformation from a site-specific application of 

MAGIC to the River Etherow AWMN site. Boxes show median, lower and upper quartiles, whiskers 

10
th
 and 90

th
 percentile simulated values for all sites. 
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a) Acid Neutralising Capacity
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c) Nitrate
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a) Acid Neutralising Capacity, Lakes vs Streams
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b) Acid Neutralising Capacity, Forest vs Moorland
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c) Nitrate, Lakes vs Streams
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d) Nitrate, Forest vs Moorland
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e) Dissolved organic carbon, Lakes vs Streams
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f) Dissolved organic carbon, Forest vs Moorland
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Figure 7 
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Figure 8 

 

a) Llyn Llagi -  Regional MAGIC simulation
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c) Llyn Llagi -  from Gwy MAGIC simulation
(known mean and standard deviation)
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d) Llyn Llagi -  from Gwy MAGIC simulation 
(estimated mean and standard deviation)
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b) Afon Gwy -  Site-specific 2 box MAGIC simulation
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Figure 9 
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