696 research outputs found

    Optimal control of strong-field ionization with time-dependent density-functional theory

    Get PDF
    We show that quantum optimal control theory (OCT) and time-dependent density-functional theory (TDDFT) can be combined to provide realistic femtosecond laser pulses for an enhanced ionization yield in many-electron systems. Using the H2_2-molecule as a test case, the optimized laser pulse from the numerically exact scheme is compared to pulses obtained from OCT+TDDFT within the TD exact-exchange (TDEXX) and the TD local-density approximation (TDLDA). We find that the TDDFT-pulses produces an ionization yield of up to 50% when applied to the exact system. In comparison, pulses with a single frequency but the same fluence typically reach to yields around 5-15%, unless the frequency is carefully tuned into a Fano-type resonance that leads to 30\sim 30% yield. On the other hand, optimization within the exact system alone leads to yields higher than 80%, demonstrating that correlation effects beyond the TDEXX and TDLDA can give rise to even more efficient ionization mechanisms

    Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation

    Full text link
    Self-consistent correlation potentials for H2_2 and LiH for various inter-atomic separations are obtained within the random phase approximation (RPA) of density functional theory. The RPA correlation potential shows a peak at the bond midpoint, which is an exact feature of the true correlation potential, but lacks another exact feature: the step important to preserve integer charge on the atomic fragments in the dissociation limit. An analysis of the RPA energy functional in terms of fractional charge is given which confirms these observations. We find that the RPA misses the derivative discontinuity at odd integer particle numbers but explicitly eliminates the fractional spin error in the exact-exchange functional. The latter finding explains the accurate total energy in the dissociation limit.Comment: 9 pages, 10 figure

    Local anaesthetic cream for the alleviation of pain during venepuncture in Tanzanian schoolchidren

    Get PDF
    The analgesic effect and the usefulness of EMLA cream 5% in connection with venous blood-sampling was investigated in 42 Tanzanian schoolchildren. Approximately 2.5 g EMLA was applied to the right cubital fossa for a minimum of 120 min. The analgesic effect was pronounced - 93% of the venepunctures were pain-free and no child experienced severe pain. No adverse reactions were observed and the children could continue normal school work during the application time

    Spatial and Temporal Structure of a Mesocarnivore Guild in Midwestern North America

    Get PDF
    Carnivore guilds play a vital role in ecological communities by cascading trophic effects, energy and nutrient transfer, and stabilizing or destabilizing food webs. Consequently, the structure of carnivore guilds can be critical to ecosystem patterns. Body size is a crucial influence on intraguild interactions, because it affects access to prey resources, effectiveness in scramble competition, and vulnerability to intraguild predation. Coyotes (Canis latrans), bobcats (Lynx rufus), gray foxes (Urocyon cinereoargenteus), raccoons (Procyon lotor), red foxes (Vulpes vulpes), and striped skunks (Mephitis mephitis) occur sympatrically throughout much of North America and overlap in resource use, indicating potential for interspecific interactions. Although much is known about the autecology of the individual species separately, little is known about factors that facilitate coexistence and how interactions within this guild influence distribution, habitat use, and temporal activity of the smaller carnivores. To assess how habitat autecology and interspecific interactions affect the structure of this widespread carnivore guild, we conducted a large-scale, non-invasive carnivore survey using an occupancy modeling framework. We deployed remote cameras during 3-week surveys to detect carnivores at 1,118 camera locations in 357 2.6-km2 sections (3–4 cameras/section composing a cluster) in the 16 southernmost counties of Illinois (16,058 km2) during January–April, 2008–2010. We characterized microhabitat at each camera location and landscape-level habitat features for each camera-cluster. In a multi-stage approach, we used information-theoretic methods to evaluate competing models for detection, species-specific habitat occupancy, multi-species co-occupancy, and multi-season (colonization and extinction) occupancy dynamics. We developed occupancy models for each species to represent hypothesized effects of anthropogenic features, prey availability, landscape complexity, and vegetative land cover. We quantified temporal activity patterns of each carnivore species based on their frequency of appearance in photographs. Further, we assessed whether smaller carnivores shifted their diel activity patterns in response to the presence of potential competitors. Of the 102,711 photographs of endothermic animals, we recorded photographs of bobcats (n = 412 photographs), coyotes (n = 1,397), gray foxes (n = 546), raccoons (n = 40,029), red foxes (n = 149), and striped skunks (n = 2,467). Bobcats were active primarily during crepuscular periods, and their activity was reduced with precipitation and higher temperatures. The probability of detecting bobcats decreased after a bobcat photograph was recorded, suggesting avoidance of remote cameras after the first encounter. Across southern Illinois, bobcat occupancy at the camera-location and camera-cluster scale (local = 0.24 ± 0.04, camera-cluster cluster = 0.75 ± 0.06) was negatively influenced by anthropogenic features and infrastructure. Bobcats had high rates of colonization (= 0.86) and low rates of extinction (= 0.07), suggesting an expanding population, but agricultural land was less likely to be colonized. Nearly all camera clusters were occupied by coyotes (cluster = 0.95 ± 0.03). At the local scale, coyote occupancy (local = 0.58 ± 0.03) was higher in hardwood forest stands with open understories than in other areas. Compared to coyotes, gray foxes occupied a smaller portion of the study area (local = 0.13 ± 0.01, cluster = 0.29 ± 0.03) at all scales. At the scale of the camera-cluster, gray fox occupancy was highest in fragmented areas with high proportions of forest, and positively related to anthropogenic features within 100% home-range buffers. Red foxes occupied a similar proportion of the study area as gray foxes (local = 0.12 ± 0.02, cluster = 0.26 ± 0.04) but were more closely associated with anthropogenic features. Only anthropogenic feature models made up the 90% confidence set at all scales of analysis for red foxes. Extinction probabilities at the scale of the camera-cluster were higher for both gray foxes (= 0.57) and red foxes (= 0.35) than their colonization rates (gray fox = 0.16, red fox = 0.06), suggesting both species may be declining in southern Illinois. Striped skunks occupied a large portion of the study area (local = 0.47 ± 0.01, cluster = 0.79 ± 0.03) and were associated primarily with anthropogenic features. Raccoons were essentially ubiquitous within the study area, being photographed in 99% of camera clusters. We observed little evidence for spatial partitioning based on interspecific interactions, with the exception of the gray fox-coyote pairs, and found that habitat preferences were more important in structuring the carnivore community. Habitat had a stronger influence on the occupancy of foxes than did the presence of bobcats. However, the level of red fox activity was negatively correlated with bobcat activity at a camera cluster. Gray fox occupancy and the number of detections within occupied sites were reduced in camera-clusters occupied by coyotes but not bobcat occupancy. Overall, gray fox occupancy was highest at camera locations with fewer hardwood and more conifer trees. However, gray foxes were more likely to occupy camera locations in hardwood stands than conifer stands if coyotes were also present indicating that hardwood stands may enhance gray fox-coyote coexistence. The 2 fox species appeared to co-occur with each other at the local scale more frequently than expected based on their individual selection of habitat. Similarly, occupancy of camera-location by red foxes was higher when coyotes were present. These positive spatial associations among canids may be a response to locally high prey abundance or unmeasured habitat variables. Activity levels of raccoons, bobcats, and coyotes were all positively correlated. Overall, our co-occurrence and activity models indicate competitor-driven adjustments in space use among members of a carnivore community might be the exception rather than the norm. Nevertheless, although our results indicate that gray foxes and red foxes currently coexist with bobcats and coyotes, their distribution appears to be contracting on our study area. Coexistence of foxes with larger carnivores may be enhanced by temporal partitioning of activity and by habitat features that reduce vulnerability of intraguild predation. For instance, hardwood stands may contain trees with structure that enhances tree-climbing by gray foxes, a behavior that probably facilitates coexistence with coyotes. Efforts to enhance gray fox populations in this region would likely benefit from increasing the amount of mature oak-hickory forest. Additionally, the varying results from different scales of analyses underscore the importance of considering multiple spatial scales in carnivore community studies

    Effect of dairy fat on plasma phytanic acid in healthy volunteers - a randomized controlled study

    Get PDF
    BACKGROUND: Phytanic acid produced in ruminants from chlorophyll may have preventive effects on the metabolic syndrome, partly due to its reported RXR and PPAR- α agonist activity. Milk from cows fed increased levels of green plant material, contains increased phytanic acid concentrations, but it is unknown to what extent minor increases in phytanic acid content in dairy fat leads to higher circulating levels of phytanic acid in plasma of the consumers. OBJECTIVE: To investigate if cow feeding regimes affects concentration of plasma phytanic acid and risk markers of the metabolic syndrome in human. DESIGN: In a double-blind, randomized, 4 wk, parallel intervention study 14 healthy young subjects were given 45 g milk fat/d from test butter and cheese with 0.24 wt% phytanic acid or a control diet with 0.13 wt% phytanic acid. Difference in phytanic acid was obtained by feeding roughage with low or high content of chlorophyll. RESULTS: There tended to be a difference in plasma phytanic acid (P = 0.0730) concentration after the dietary intervention. Plasma phytanic acid increased significantly within both groups with the highest increase in control group (24%) compared to phytanic acid group (15%). There were no significant effects of phytanic acid on risk markers for the metabolic syndrome. CONCLUSIONS: The results indicate that increased intake of dairy fat modify the plasma phytanic acid concentration, regardless of cows feeding regime and the minor difference in dietary phytanic acid. Whether the phytanic acid has potential to affects the risk markers of the metabolic syndrome in human still remain to be elucidated

    Discontinuities of the exchange-correlation kernel and charge-transfer excitations in time-dependent density functional theory

    Full text link
    We identify the key property that the exchange-correlation (XC) kernel of time-dependent density functional theory must have in order to describe long-range charge-transfer excitations. We show that the discontinuity of the XC potential as a function of particle number induces a space -and frequency-dependent discontinuity of the XC kernel which diverges as rr\to\infty. In a combined donor-acceptor system, the same discontinuity compensates for the vanishing overlap between the acceptor and donor orbitals, thereby yielding a finite correction to the Kohn-Sham eigenvalue differences. This mechanism is illustrated to first order in the Coulomb interaction.Comment: 6 pages, 3 figures (expanded version, accepted in Phys. Rev. A

    Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia

    Get PDF
    The basal ganglia are considered vital to action selection - a hypothesis supported by several biologically plausible computational models. Of the several subnuclei of the basal ganglia, the globus pallidus externa (GPe) has been thought of largely as a relay nucleus, and its intrinsic connectivity has not been incorporated in significant detail, in any model thus far. Here, we incorporate newly revealed subgroups of neurons within the GPe into an existing computational model of the basal ganglia, and investigate their role in action selection. Three main results ensued. First, using previously used metrics for selection, the new extended connectivity improved the action selection performance of the model. Second, low frequency theta oscillations were observed in the subpopulation of the GPe (the TA or ‘arkypallidal’ neurons) which project exclusively to the striatum. These oscillations were suppressed by increased dopamine activity - revealing a possible link with symptoms of Parkinson’s disease. Third, a new phenomenon was observed in which the usual monotonic relationship between input to the basal ganglia and its output within an action ‘channel’ was, under some circumstances, reversed. Thus, at high levels of input, further increase of this input to the channel could cause an increase of the corresponding output rather than the more usually observed decrease. Moreover, this phenomenon was associated with the prevention of multiple channel selection, thereby assisting in optimal action selection. Examination of the mechanistic origin of our results showed the so-called ‘prototypical’ GPe neurons to be the principal subpopulation influencing action selection. They control the striatum via the arkypallidal neurons and are also able to regulate the output nuclei directly. Taken together, our results highlight the role of the GPe as a major control hub of the basal ganglia, and provide a mechanistic account for its control function
    corecore