20 research outputs found

    Titrating complex mass cytometry panels

    Get PDF
    We describe here a simple and efficient antibody titration approach for cell‐surface markers and intracellular cell signaling targets for mass cytometry. The iterative approach builds upon a well‐characterized backbone panel of antibodies and analysis using bioinformatic tools such as SPADE. Healthy peripheral blood and bone marrow cells are stained with a pre‐optimized “backbone” antibody panel in addition to the progressively diluted (titrated) antibodies. Clustering based on the backbone panel enables the titration of each antibody against a rich hematopoietic background and assures that nonspecific binding and signal spillover can be quantified accurately. Using a slightly expanded backbone panel, antibodies quantifying changes in transcription factors and phosphorylated antigens are titrated on ex vivo stimulated cells to optimize sensitivity and evaluate baseline expression. Based on this information, complex panels of antibodies can be thoroughly optimized for use on healthy whole blood and bone marrow and are easily adaptable to the investigation of samples from for example clinical studies.publishedVersio

    Multi-parametric single cell evaluation defines distinct drug responses in healthy hematologic cells that are retained in corresponding malignant cell types

    Get PDF
    Innate drug sensitivity in healthy cells aids identification of lineage specific anti-cancer therapies and reveals off-target effects. To characterize the diversity in drug responses in the major hematopoietic cell types, we simultaneously assessed their sensitivity to 71 small molecules utilizing a multi-parametric flow cytometry assay and mapped their proteomic and basal signaling profiles. Unsupervised hierarchical clustering identified distinct drug responses in healthy cell subsets based on their cellular lineage. Compared to other cell types, CD19+/B and CD56+/NK cells were more sensitive to dexamethasone, venetoclax and midostaurin, while monocytes were more sensitive to trametinib. Venetoclax exhibited dose dependent cell selectivity that inversely correlated to STAT3 phosphorylation. Lineage specific effect of midostaurin was similarly detected in CD19+/B cells from healthy, acute myeloid leukemia and chronic lymphocytic leukemia samples. Comparison of drug responses in healthy and neoplastic cells showed that healthy cell responses are predictive of the corresponding malignant cell response. Taken together, understanding drug sensitivity in the healthy cell-of-origin provides opportunities to obtain a new level of therapy precision and avoid off-target toxicity.Peer reviewe

    Sex disparity in acute myeloid leukaemia with FLT3 internal tandem duplication mutations: implications for prognosis

    Get PDF
    Incidence, molecular presentation and outcome of acute myeloid leukaemia (AML) are influenced by sex, but little attention has been directed at untangling sex-related molecular and phenotypic differences between female and male patients. While increased incidence and poor risk are generally associated with a male phenotype, the poor prognostic FLT3 internal tandem duplication (FLT3-ITD) mutation and co-mutations with NPM1 and DNMT3A are overrepresented in female AML. Here, we have investigated the relationship between sex and FLT3-ITD mutation status by comparing clinical data, mutational profiles, gene expression and ex vivo drug sensitivity in four cohorts: Beat AML, LAML-TCGA and two independent HOVON/SAKK cohorts, comprising 1755 AML patients in total. We found prevalent sex-associated molecular differences. Co-occurrence of FLT3-ITD, NPM1 and DNMT3A mutations was overrepresented in females, while males with FLT3-ITDs were characterized by additional mutations in RNA splicing and epigenetic modifier genes. We observed diverging expression of multiple leukaemia-associated genes as well as discrepant ex vivo drug responses, suggestive of discrete functional properties. Importantly, significant prognostication was observed only in female FLT3-ITD-mutated AML. Thus, we suggest optimization of FLT3-ITD mutation status as a clinical tool in a sex-adjusted manner and hypothesize that prognostication, prediction and development of therapeutic strategies in AML could be improved by including sex-specific considerations.publishedVersio

    Sex disparity in acute myeloid leukaemia with FLT3 internal tandem duplication mutations: implications for prognosis

    No full text
    Incidence, molecular presentation and outcome of acute myeloid leukaemia (AML) are influenced by sex, but little attention has been directed at untangling sex-related molecular and phenotypic differences between female and male patients. While increased incidence and poor risk are generally associated with a male phenotype, the poor prognostic FLT3 internal tandem duplication (FLT3-ITD) mutation and co-mutations with NPM1 and DNMT3A are overrepresented in female AML. Here, we have investigated the relationship between sex and FLT3-ITD mutation status by comparing clinical data, mutational profiles, gene expression and ex vivo drug sensitivity in four cohorts: Beat AML, LAML-TCGA and two independent HOVON/SAKK cohorts, comprising 1755 AML patients in total. We found prevalent sex-associated molecular differences. Co-occurrence of FLT3-ITD, NPM1 and DNMT3A mutations was overrepresented in females, while males with FLT3-ITDs were characterized by additional mutations in RNA splicing and epigenetic modifier genes. We observed diverging expression of multiple leukaemia-associated genes as well as discrepant ex vivo drug responses, suggestive of discrete functional properties. Importantly, significant prognostication was observed only in female FLT3-ITD-mutated AML. Thus, we suggest optimization of FLT3-ITD mutation status as a clinical tool in a sex-adjusted manner and hypothesize that prognostication, prediction and development of therapeutic strategies in AML could be improved by including sex-specific considerations

    Sex disparity in acute myeloid leukaemia with FLT3 internal tandem duplication mutations: implications for prognosis

    No full text
    Incidence, molecular presentation and outcome of acute myeloid leukaemia (AML) are influenced by sex, but little attention has been directed at untangling sex-related molecular and phenotypic differences between female and male patients. While increased incidence and poor risk are generally associated with a male phenotype, the poor prognostic FLT3 internal tandem duplication (FLT3-ITD) mutation and co-mutations with NPM1 and DNMT3A are overrepresented in female AML. Here, we have investigated the relationship between sex and FLT3-ITD mutation status by comparing clinical data, mutational profiles, gene expression and ex vivo drug sensitivity in four cohorts: Beat AML, LAML-TCGA and two independent HOVON/SAKK cohorts, comprising 1755 AML patients in total. We found prevalent sex-associated molecular differences. Co-occurrence of FLT3-ITD, NPM1 and DNMT3A mutations was overrepresented in females, while males with FLT3-ITDs were characterized by additional mutations in RNA splicing and epigenetic modifier genes. We observed diverging expression of multiple leukaemia-associated genes as well as discrepant ex vivo drug responses, suggestive of discrete functional properties. Importantly, significant prognostication was observed only in female FLT3-ITD-mutated AML. Thus, we suggest optimization of FLT3-ITD mutation status as a clinical tool in a sex-adjusted manner and hypothesize that prognostication, prediction and development of therapeutic strategies in AML could be improved by including sex-specific considerations

    Sex disparity in acute myeloid leukaemia with FLT3 internal tandem duplication mutations

    No full text
    Incidence, molecular presentation and outcome of acute myeloid leukaemia (AML) are influenced by sex, but little attention has been directed at untangling sex-related molecular and phenotypic differences between female and male patients. While increased incidence and poor risk are generally associated with a male phenotype, the poor prognostic FLT3 internal tandem duplication (FLT3-ITD) mutation and co-mutations with NPM1 and DNMT3A are overrepresented in female AML. Here, we have investigated the relationship be

    Modulation of phospho-proteins by interferon-alpha and valproic acid in acute myeloid leukemia

    Get PDF
    Purpose. Valproic acid (VPA) is suggested to be therapeutically beneficial in combination with interferon-alpha (IFNα) in various cancers. Therefore, we examined IFNα and VPA alone and in combinations in selected AML models, examining immune regulators and intracellular signaling mechanisms involved in phospho-proteomics. Methods. The anti-leukemic effects of IFNα and VPA were examined in vitro and in vivo. We mapped the in vitro phosphoprotein modulation by IFNα-2b and human IFNα-Le in MOLM-13 cells by IMAC/2D DIGE/MS analysis and phospho-flow cytometry, and in primary healthy and AML patient-derived PBMCs by CyTOF. In vivo, IFNα-Le and VPA efficacy were investigated in the immunodeficient NOD/Scid IL2γ−/− MOLM-13Luc+ mouse model and the syngeneic immunocompetent BNML rat model. Results IFNα-2b and IFNα-Le differed in the modulation of phospho-proteins involved in protein folding, cell stress, cell death and p-STAT6 Y641, whereas VPA and IFNα-Le shared signaling pathways involving phosphorylation of Akt (T308), ERK1/2 (T202/T204), p38 (T180/Y182), and p53 (S15). Both IFNα compounds induced apoptosis synergistically with VPA in vitro. However, in vivo, VPA monotherapy increased survival, but no benefit was observed by IFNα-Le treatment. CyTOF analysis of primary human PBMCs indicated that lack of immune-cell activation could be a reason for the absence of response to IFNα in the animal models investigated. Conclusions IFNα-2b and IFNα-Le showed potent and synergistic anti-leukemic effects with VPA in vitro but not in leukemic mouse and rat models in vivo. The absence of IFNα immune activation in lymphocyte subsets may potentially explain the limited in vivo anti-leukemic effect of IFNα-monotherapy in AML

    Titrating complex mass cytometry panels

    No full text
    We describe here a simple and efficient antibody titration approach for cell‐surface markers and intracellular cell signaling targets for mass cytometry. The iterative approach builds upon a well‐characterized backbone panel of antibodies and analysis using bioinformatic tools such as SPADE. Healthy peripheral blood and bone marrow cells are stained with a pre‐optimized “backbone” antibody panel in addition to the progressively diluted (titrated) antibodies. Clustering based on the backbone panel enables the titration of each antibody against a rich hematopoietic background and assures that nonspecific binding and signal spillover can be quantified accurately. Using a slightly expanded backbone panel, antibodies quantifying changes in transcription factors and phosphorylated antigens are titrated on ex vivo stimulated cells to optimize sensitivity and evaluate baseline expression. Based on this information, complex panels of antibodies can be thoroughly optimized for use on healthy whole blood and bone marrow and are easily adaptable to the investigation of samples from for example clinical studies

    FLT3-ITD mutations in acute myeloid leukaemia – molecular characteristics, distribution and numerical variation

    Get PDF
    Recurrent somatic internal tandem duplications (ITD) in the FMS-like tyrosine kinase 3 (FLT3) gene characterise approximately one third of patients with acute myeloid leukaemia (AML), and FLT3-ITD mutation status guides risk-adapted treatment strategies. The aim of this work was to characterise FLT3-ITD variant distribution in relation to molecular and clinical features, and overall survival in adult AML patients. We performed two parallel retrospective cohort studies investigating FLT3-ITD length and expression by cDNA fragment analysis, followed by Sanger sequencing in a subset of samples. In the two cohorts, a total of 139 and 172 mutant alleles were identified in 111 and 123 patients, respectively, with 22% and 28% of patients presenting with more than one mutated allele. Further, 15% and 32% of samples had a FLT3-ITD total variant allele frequency (VAF) < 0.3, while 24% and 16% had a total VAF ≥ 0.7. Most of the assessed clinical features did not significantly correlate to FLT3-ITD numerical variation nor VAF. Low VAF was, however, associated with lower white blood cell count, while increasing VAF correlated with inferior overall survival in one of the cohorts. In the other cohort, ITD length above 50 bp was identified to correlate with inferior overall survival. Our report corroborates the poor prognostic association with high FLT3-ITD disease burden, as well as extensive inter- and intrapatient heterogeneity in the molecular features of FLT3-ITD. We suggest that future use of FLT3-targeted therapy could be accompanied with thorough molecular diagnostics and follow-up to better predict optimal therapy responders
    corecore