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ABSTRACT  

Innate drug sensitivity in healthy cells aids identification of lineage specific anti-cancer therapies and 

reveals off-target effects. To characterize the diversity in drug responses in the major hematopoietic 

cell types, we simultaneously assessed their sensitivity to 71 small molecules utilizing a multi-

parametric flow cytometry assay and mapped their proteomic and basal signaling profiles. 

Unsupervised hierarchical clustering identified distinct drug responses in healthy cell subsets based on 

their cellular lineage. Compared to other cell types, CD19+/B and CD56+/NK cells were more 

sensitive to dexamethasone, venetoclax and midostaurin, while monocytes were more sensitive to 

trametinib. Venetoclax exhibited dose dependent cell selectivity that inversely correlated to STAT3 

phosphorylation. Lineage specific effect of midostaurin was similarly detected in CD19+/B cells from 

healthy, acute myeloid leukemia and chronic lymphocytic leukemia samples. Comparison of drug 

responses in healthy and neoplastic cells showed that healthy cell responses are predictive of the 

corresponding malignant cell response. Taken together, understanding drug sensitivity in the healthy 

cell-of-origin provides opportunities to obtain a new level of therapy precision and avoid off-target 

toxicity. 

 

INTRODUCTION 

 

During hematopoiesis, multipotent stem cells and pluripotent precursors undergo a complex 

differentiation program to generate a diverse set of blood cell types with wide-ranging phenotypes and 

functions1. This process is initiated and driven by distinct signaling pathways linked to the different 

cellular lineages2. It is likely that malignant hematopoietic cells exploit many of the signaling 

pathways essential for maintaining survival and specific functions of normal cells. Identification and 

understanding of normal hematopoietic cell type specific pathways could therefore be leveraged 

therapeutically as anti-cancer strategies against their malignant counterparts. For example, targeting B 

cell antigen receptor (BCR) signaling with ibrutinib or idelalisib has proven highly effective in 

treating chronic lymphocytic leukemia (CLL)3,4. Conversely, modulating molecular targets shared 

between malignant and healthy cells may give rise to untoward effects related to these entities. 

Although seminal studies have contributed to understanding of signaling diversities across blood 

cells5-8, a detailed characterization of cell-type specific vulnerabilities within the hematopoietic 

hierarchy is still lacking.  

 

Cell-based phenotypic screens of primary cells have shown tremendous potential to identify novel 

therapeutics in leukemia and to explore novel indications for approved drugs9,10. However, classical 

drug screening methods assessing the sum of all cellular effects in the bone marrow or blood restrict 

the ability to evaluate drug responses in the rare disease-affected populations and is influenced by the 

more abundant cell types in the sample. Flow cytometry presents a functional platform for dissecting 
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the complexity of hematopoiesis allowing characterization of the diverse cell populations. Applying 

flow cytometry in functional screens allows for a higher throughput (HTS) assessment of 

vulnerabilities to a large set of oncology drugs in leukemic cells with improved precision, and to 

compartmentalize drug responses between malignant and healthy cell subsets. However, preclinical 

flow cytometric-based high throughput functional screens are still limited by numerous washing steps 

and small cell population numbers, which can compromise the robustness of the assay. 

 

In this study, we developed a high throughput no-wash flow cytometry assay that enabled us to 

monitor dose responses of 71 oncology compounds simultaneously on multiple hematopoietic cell 

populations defined by their surface antigen expression. To map the drug responses to the proteome 

and basal signaling profiles of the different cell types, we utilized mass spectrometry (MS) and mass 

cytometry (CyTOF) in both healthy and malignant hematological samples. Finally, we compared 

inhibition profiles for those small molecules in a cohort of 281 primary samples representing a diverse 

set of hematological malignancies to assess whether healthy cell specific responses can be exploited in 

a leukemic context. A graphical overview of the study and cohorts is illustrated in Figure 1. Our 

results strongly suggest that drug responses are highly specific to cell lineages and often linked to 

intrinsic cell signaling present in those cell types. We provide evidence that cell-specific responses 

could potentially be applied to identify new clinical applications of therapies and discover relevant 

non-oncogenic dependent activities of small molecules 

 

 METHODS  

 

Patient specimens and cohorts 

Bone marrow (BM) and peripheral blood (PB) samples from 332 donors were collected after written 

informed consent (Studies: 239/13/03/00/2010, 303/13/03/01/2011, REK2016/253 and 

REK2012/2247) following protocols approved by local institutional review boards (Helsinki 

University Hospital Comprehensive Cancer Center and Haukeland University Hospital) in compliance 

with the Declaration of Helsinki. Samples were allocated to four patient cohorts (I-IV). Cohort I 

included 3 healthy PB used for flow cytometry screening with 71 drugs, plus 3 acute myeloid 

leukemia (AML) and 10 multiple myeloma (MM) samples which were tested with bortezomib, 

clofarabine, dexamethasone, omipalisib, venetoclax and navitoclax. Cohort II included 17 samples 

from two healthy, 8 AML with (n=5) or without FLT3-ITD mutations (n=3) and 7 CLL patients tested 

against midostaurin, trametinib and dasatinib. Cohort III (n=281) included 231 BM aspirates from a 

diverse collection of leukemia and 50 MM patients (CD138+ enriched). Four healthy BM aspirates 

subjected to magnetic bead-based enrichment using EasySep™ human CD138, CD3, CD19, CD14 

and CD34 positive selection kits (StemCell Technologies), served as healthy cell of origin samples for 

comparison against the malignant cell counterparts. Mass cytometry (CyTOF) was performed on 14 
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samples in Cohort IV. PB from healthy donors (n=3), AML (n=6), B-cell acute lymphoblastic 

leukemia (B-ALL) (n=2) and matched BM samples from the same healthy donors were included. An 

overview of the cohorts and experimental design is illustrated in Figure 1. 

 

Proteome Analysis 

10 µg of whole cell protein lysates, prepared from purified CD3, CD19 and CD14 fractions from 

healthy (n=2) and MM (n=4) samples, were digested and loaded (500 ng) on to a Q-Exactive mass 

spectrometer connected to a Dionex Ultimate 3000 (RSLCnano) chromatography system (Thermo 

Scientific). Protein identification and label-free quantification (LFQ) normalization of tandem mass 

spectrometry (MS/MS) data was performed using MaxQuant v1.5.2.8.  

 

Mass cytometry (CyTOF) 

The 14 samples described in cohort IV were fixed, barcoded (Fluidigm), pooled into a single sample 

and stained with the antibody panels (Supplementary Table S1). Acquisition of samples was done 

using a Helios mass cytometer (Fluidigm). Data was analyzed using FlowJo v.10.2 and Cytobank 

(Cytobank Inc.).   

 

High throughput flow cytometry (HTFC) and cell viability assay 

Flow cytometry assays were performed in both 384 well (n=3, 71 drugs, 5 concentrations) and 96 well 

plate formats (n=33) using IntellyCyt®iQueScreener PLUS. A detailed optimization protocol is 

provided in the Supplementary Methods. A list of the antibodies is provided in Supplementary Table 

S1. Data were analyzed using ForeCyt software (Intellicyt). The gating strategy and list of compounds 

are provided in Supplementary Figure S1 and S3. CellTiter-Glo® luminescent viability assay was used 

based on a previously described method9,16,17.    

 

Statistical analysis of drug sensitivity data 

Cell counts (HTFC) or luminescence intensity were used as input for Dotmatics (Dotmatics Ltd.) or 

Graphpad Prism 8.0 to generate dose response graphs, which were subsequently applied to calculate 

drug sensitivity score (DSS) as described by Yadav et al. 201417. Comparison between groups were 

tested with ANOVA and with Tukey’s multiple comparison test to derive significance. A two-tailed p 

value of <0.05 was considered significant.  

 

RESULTS  

 

Distinct drug response profiles in hematological cell subsets are tied to cell lineages 

To simultaneously monitor drug effects on a large collection of (n=71) samples in multiple cell types, 

we applied a multiplexed, no-wash flow cytometry-based assay (detailed in the Supplementary 
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Methods). We first tested ex vivo response to the 71 compounds (Supplementary Figure S3 and 

Supplementary Table S3) in B (CD19+), natural killer (NK, CD56+), T helper cells (THC, 

CD3+CD4+), cytotoxic T lymphocytes (CTL, CD3+CD8+), natural killer T (NK-T, CD3+CD56+) 

and monocytes (CD14+) using three healthy blood samples to generate a global view of response 

profiles. Unsupervised hierarchical clustering of drug sensitivity scores (DSS) of the screened samples 

segregated in three major clusters based on cellular lineages (Figure 2A). Monocytes formed a single 

cluster and displayed selective sensitivity to MEK/ERK inhibitors and the kinase inhibitor dasatinib 

(Figure 2A). The MEK inhibitor trametinib was similarly active in BM derived CD14+ cells from 

healthy and AML samples (Supplementary Figure S4A). However, reduced efficacy of dasatinib in 

BM monocytes was noted compared to those derived from blood (Supplementary Figure S4B). B and 

NK cells showed similar drug response profiles with higher sensitivity to the glucocorticoid 

dexamethasone, BCL2 inhibitor venetoclax and pan-kinase inhibitor midostaurin compared to other 

cell types. Except for NK-T cells from one donor, all T cell subsets formed a distinct cluster.  

 

Based on observations from the primary screen, we focused our in-depth analysis on six compounds 

displaying either non-selective (proteasome inhibitor bortezomib and nucleoside analog clofarabine) 

or cell selective responses (dexamethasone, venetoclax, pan-BCL2 inhibitor navitoclax and 

PI3K/mTOR inhibitor omipalisib). 16 samples (Cohort I) derived from 10 MM, 3 AML and 3 healthy 

donors were tested utilizing two antibody panels (Supplementary Table S1) in 96 well plates to 

provide a direct comparison between cell types derived from healthy donors and those derived from 

patients with identical immunophenotypes. Moreover, this enabled detection of drug responses in rare 

cell subsets, such as plasma cells (CD138+) and progenitor cells (CD34+CD38- or CD34+CD38+).  

 

While ex vivo response to the proteasome inhibitor bortezomib was detected in most cell types (Figure 

2B), CD138+CD38- plasma cells were resistant compared to CD138+CD38+ or other cells 

(Supplementary Figure S5). A higher response to the nucleoside analog clofarabine was noted for 

CD3+CD4- and CD34+CD38+ cells compared to CD3+CD4+ or CD34+CD38- cells. Dexamethasone 

depleted CD19+ and CD56+ cells and induced a dose dependent increase in the CD14+ cell count 

(Figure 2B).  T cell subsets were insensitive to PI3K/mTOR inhibitor omipalisib. A similar effect for 

several molecules targeting the PI3K-mTOR signaling axis was observed in CD3+ enriched cells 

tested with a cell viability assay (Supplementary Figure S6). Surprisingly, an increase in CD3+ cell 

count was noted at concentrations of 10 and 100 nM (Figure 2B).  Apart from individual variations, 

distinct drug efficacies associated with healthy cell lineages were detected equally in all patient 

specimens (Fig. 2B and Supplementary Figure S7).  

 

Venetoclax shows variable dose dependent efficacy on hematopoietic cell types  
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Preclinical and clinical activity of venetoclax has been well documented for several B cell 

malignancies18-21. We measured the response to venetoclax, which is highly selective for BCL2, and 

navitoclax, which targets BCL2, BCL-W and BCL-XL. Both inhibitors were similarly effective 

against lymphocytes (Figure 2B). Within the lymphocyte compartment, the highest sensitivity to 

venetoclax was detected for CD19+ cells (Figure 2B, Figure 3A and Figure 3B) with the majority of 

samples (Cohort I) responding at sub-nanomolar concentrations (IC50, 0.4 to 12 nM). Activity 

towards CD3+CD4- cells was observed at 10 to 100-fold higher concentrations (IC50, 8 to 140 nM). 

A further reduction in response (Figure 3B) was observed for CD56+, CD3+CD4+ and CD3+CD56+ 

cells (IC50, ≅100 nM to 1 μM). Monocytes and granulocytes were sensitive to BCL2 inhibitors only 

at the highest concentration (10 µM) and were considered largely resistant (Figure 2B). This dose 

dependent effect on cell types is particularly relevant when treating elderly patients, with frequent age-

related decline in drug metabolism and excretion22,23, which can result in drug accumulation leading to 

unintended effects on other immune cells. Venetoclax displayed similar cell specific effects in all 

tested samples independently whether healthy or malignant, suggesting the variation in response is 

purely lineage specific. 

 

Lineage specific effect of midostaurin on CD19+ cells is comparable to FLT3-mutated AML cells 

In our primary screen, we observed selective depletion of B and NK cells in PB samples (n=3) treated 

with midostaurin (Figure 2A and Supplementary Figure S8A), which is approved for treating FLT3 

mutated AML and systemic mastocytosis24,25. To evaluate CD19+ cell specificity in malignant cells 

such as in CLL and to compare the response to FLT3-ITD mutated AML cells, we tested midostaurin 

in 17 additional samples (Cohort II) derived from healthy (n=2), CLL (n=7) and AML patients with 

wild type FLT3 (n=3) or harboring the FLT3-ITD mutation (n=5). Variable sensitivity was noted in 

the CD34+CD38- population, presumably leukemic stem cells, from all tested AML samples 

regardless of FLT3 mutation status (Figure 4A). CD34+CD38+/blast cells from all FLT3-ITD mutated 

AML samples were sensitive (median IC50, 554 nM) (Figure 4B). Remarkable sensitivity (IC50, 16 

nM) was detected in the CD34+CD38+ fraction from one of the three WT samples (Supplementary 

Figure S8B). While CD34+CD38- cells from healthy donors were insensitive, CD34+CD38+ cells 

from one healthy individual responded similarly to FLT3-ITD mutated AML samples (Supplementary 

Figure S8B).  Importantly, we observed high efficacy against CD19+ cells in all tested samples 

including those derived from CLL patients (Figure 4C-D) indicating a lineage specific effect. Effect in 

CD19+/B cells (median IC50, 314 nM) was comparable to FLT3-ITD mutated AML CD34+CD38+ 

(blast) cells (Figure 4B-C). Our results suggest a need for further investigation to evaluate midostaurin 

efficacy in diseases affecting B cell lineages such as CLL. 

 

Characterizing protein abundance and basal cell signaling contributing to innate cellular 

response to therapies 
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Having determined lineage specificity of the tested small molecules, we next explored whether protein 

abundance or basal signaling profiles of specific cell populations could explain the innate cellular 

responses. We also investigated whether healthy cells share identical basal activity for signaling 

proteins as patient derived cells or whether basal intracellular signaling was deregulated during 

malignant transformation. To characterize and compare the proteomic background of healthy 

hematopoietic cells, we utilized a mass spectrometry-based quantitative proteomics approach to 

profile B cells (CD19+), T cells (CD3+) and monocytes (CD14+) derived from two healthy donors 

(Figure 5). We then employed mass cytometry (CyTOF) to compare the basal activity of 9 proteins (in 

healthy and leukemic cell subsets) involved in MAPK, JAK-STAT, NF-κB and PI3K-mTOR 

signaling, which are commonly activated in many hematological malignancies26-29(Figure 6). By 

sample barcoding and subsequent pooling prior to antibody staining, CyTOF allows for direct 

comparison of the phosphorylation level of target proteins between multiple donors with high 

fidelity20,21. 

 

i) Monocytes shows higher expression of calprotectin (S100A8/S100A9), which is associated with 

dexamethasone resistance 

By quantitative mass spectrometry-based proteomics, a total of 1060 proteins were detected. Among 

these, 163, 131 and 13 proteins were only identified in CD3, CD14 and CD19 lysates, respectively 

(Figure 5A and Supplementary Table S7). The uniquely expressed proteins were associated with 

biological processes consistent with the functional differences between these cell types 

(Supplementary Figure S9). For instance, the proteome signature in monocytes was enriched in 

biological processes related to phagosome maturation (ATP6V0D1, CTSS, M6PR), autophagy 

(ATG3, LAMP2), PPAR-α/RARα activation (IL1β, p38 MAPK, GPD2, PLCG2) and STAT3 

signaling (IGF2R, RAC1, p38 MAPK). Immunoglobulins (IGLL1, IGHA1) were identified in B cell 

fractions.  T cells expressed proteins related to T cell receptor signaling (CD8A, CD247, LCK, 

ZAP70), granzyme signaling (GZMA, PRF1) and oxidative phosphorylation (ATP5I, NDUFA8, 

NDUFB3, UQCRB). Besides observed differences in the abundance of proteins, variable expression in 

commonly detected proteins was noted (Figure 5B and Figure 5C). Enzymes associated with 

scavenging reactive oxygen species such as catalase (CAT) and glutathione peroxidase 1 (GPX1) were 

expressed at a significantly higher (p < 0.001) level in monocytes (Figure 5B). Additionally, 

monocytes exhibited elevated expression of isocitrate dehydrogenase 1 (IDH1), carboxylesterase 1 

(CES1) and inflammatory protein calprotectin, a heterodimer of two proteins S100A8/S100A9 that 

can mediate dexamethasone resistance in patients30,31. We further compared the protein expression 

profiles for these cell subsets between healthy and four MM patients and found an identical pattern of 

expression for CAT, GPX1 and S100A8/9 proteins (Figure 5D). While expression of 16 proteins 

differed between healthy and MM samples (FDR < 0.05), no significant differences were noted for 

CD14+ and CD3+ lysates (< 3 proteins).  
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ii) Mapping shared signaling activities in healthy and leukemic hematopoietic cell subsets 

NF-κB phosphorylation was detected in most cell types. Compared to other cell types, higher pNF-κB 

was detected in T/CD3 cells (Supplementary Figure S10). Significantly higher mTOR signaling, as 

measured by p4E-BP1 and pPLC-γ1, was observed in healthy CD34+CD38+ cells, monocytes, 

granulocytes (neutrophils) and B cells (Figure 6A-C). These cell types also tended to have elevated 

sensitivity to omipalisib (PI3K/mTOR inhibitor) compared to other cell types in healthy or malignant 

samples (Figure 2B and Figure 7E). T cells lacking sensitivity to PI3K/mTOR inhibitors showed 

reduced mTOR signaling activity (Figure 6A-C). CD34+CD38+ cells also exhibited high levels of 

ERK phosphorylation (Figure 6A-C). ERK phosphorylation status, however, did not correlate to 

increased trametinib sensitivity in monocytes.  An inverse relation between pSTAT3 levels and 

venetoclax sensitivity was observed among the different cell populations. Heightened levels of 

pSTAT3 were detected in monocytes and granulocytes, which lacked sensitivity to venetoclax (Figure 

6A-D). In contrast, a lower level of pSTAT3 was observed in venetoclax sensitive B and natural killer 

(NK) cells. Two related but distinct cell types, CD3+CD4+ and CD3+CD8+ T cells, exhibited a 

difference in the level of pSTAT3 (Figure 6B) that might explain their subtle difference in sensitivity 

to venetoclax (Figure 6D). Comparison of signaling patterns detected in healthy PB or BM cells to 

corresponding leukemic cells expressing identical surface markers revealed remarkable similarity 

(Figure 6A-C), strengthening their association with cellular phenotypes. Furthermore, monitoring 

changes in signaling pattern for these proteins upon treatment with increasing concentrations (0 nM, 

10 nM and 10 μM) of venetoclax in healthy PB (n=3), revealed that the directionality or magnitude of 

signaling changes for some of these proteins (i.e. pPLC-γ1 and pCREB) were also similar across these 

cell types (Supplementary Figure S11).  

 

Innate drug sensitivities in cell subsets are retained in their malignant counterparts in different 

hematological malignancies 

To further confirm the similarity in drug responses between healthy and patient derived cell subsets 

observed using the single cell assay, we compared ex vivo drug responses detected in bead enriched 

healthy cells (CD3+, CD14+, CD19+, CD34+ and CD138+) to a cohort of 281 primary samples 

derived from multiple hematological malignancies. For these analyses, we generated data using the 

CellTiter Glo® viability assay. In agreement with nonselective effects detected on healthy cell types, 

bortezomib activity was detected in a wide range of hematological malignancies (Figure 7A). The 

highest clofarabine efficacy was observed in CD3+ T cells and in the T–cell prolymphocytic leukemia 

(PLL) patient subset (Figure 7B), which is reflective of clinical success observed with other purine 

analogues (fludarabine or cladribine) in T-PLL. Reduced activity of the purine analogue clofarabine 

was detected in both healthy and myeloma derived CD138+ cells. Although dexamethasone was found 
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to be most effective in B-ALL and CLL, modest ex vivo effects were observed in other lymphocytic 

and plasma cell malignancies, including T-ALL, T-PLL, B-PLL and MM (Figure 7C). Disease 

specific acquisition of sensitivity was also noted in a subset of AML patients, which was undetectable 

in healthy CD34+ (Figure 7C) or CD34+CD38+ cells (Figure 4B). T cell malignancies, similar to 

healthy T cells, showed no response to omipalisib. Consistent with responses observed in healthy B 

cells, a higher response to venetoclax was detected in malignant B cell types (Figure 7F). T-PLL 

samples also exhibited sensitivity to venetoclax, which more recently has been tested in two T-PLL 

patients with measurable clinical benefit32. Venetoclax response agreed with navitoclax responses in B 

cell diseases (Figure 7F). Increased sensitivity to navitoclax compared to venetoclax was detected in 

CML, T-ALL and MM samples (Figure 7E-F). B cell specific responses to midostaurin was detected 

in CLL and ALL samples (Figure 4C and Supplementary Figure S12). Collectively, the comparison of 

lineage specific drug responses between healthy individuals and those derived from malignancies 

where the cell of origin is affected shows remarkable similarity. These results also highlight that 

innate drug responses are often retained during cellular transformation, which could guide 

identification of lineage specific anticancer therapies for leukemia. 

 

DISCUSSION  

 

Applying a high throughput, multi-parametric single-cell assay, we aimed to assess the diversity in 

drug effects on multiple cell populations in individual donor samples. Therapeutic efficacy was 

determined ex vivo using complex mixtures of cells to more realistically recapitulate the native 

environment. Our results demonstrate that cell subtypes are drastically different from each other with 

respect to macromolecule abundance, signaling profiles and drug-response patterns against a diverse 

collection of anticancer drugs. As such, this study provides a comprehensive portrait of drug 

sensitivity landscape in hematological cell subsets and reveals drug responses that are tied to specific 

cell lineages. Importantly, cell subset specific sensitivity and resistance mechanisms were clearly 

reflected in their malignant counterpart.  

 

Variation in drug responses can arise in healthy hematological cell subsets due to differences in 

signaling state and transcriptional programs attributed to their cellular function or phenotype. Many of 

the signaling events are tightly regulated in cellular subsets2 and may often determine their innate 

sensitivity to drug treatment. For instance, the basal state of pSTAT3 could explain diversity of ex vivo 

responses to BCL2 inhibitors observed between healthy cell subsets. Relevant to this observation, we 

have previously reported a critical role of the JAK-STAT pathway in venetoclax resistance in AML, 

which could be reversed using a combination of the JAK1/2 inhibitor ruxolitinib, and venetoclax33. 

Although changes in signaling behaviors are commonly detected in malignant cells7, understanding 
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basal signaling in the cell-of-origin is fundamental to identify cancer vulnerabilities or off target 

effects that are lineage specific.   

 

Profiling healthy and malignant cells (from multiple hematological malignancies) revealed that the 

cell-of-origin associated signaling events and drug responses were also retained in the disease context 

of the affected cell type.  Hence, the profiling presented here provides new targeting opportunities in 

previously unexplored disease indications. Venetoclax sensitivity in B cells may reflect its efficacy in 

CLL and other B cell malignancies34, which could also be exploited in diseases where B cell depletion 

is considered, i.e. in rheumatoid arthritis. Similar to other studies35,36, we demonstrated midostaurin 

efficacy in CLL and ALL, which may be ascribed to intrinsic response detected in CD19+ cells. 

Efficacy was also detected in CD34+CD38+ cells from AML (n=1) with WT FLT3. This observation 

may reflect its efficacy reported in AML with wild type FLT325.  Although NK cell malignancies are 

rare, they are often highly aggressive and refractory in nature37. We found that dexamethasone and 

midostaurin targeted NK cells with similar efficacy as B cells, implicating a potential clinical utility of 

these drugs for NK cell malignancies.  

 

Expression of antioxidant enzymes and calprotectin (S100A8/S100A9) is associated with drug 

resistance, including resistance to dexamethasone, which has been documented in both hematological 

and solid tumors30,38-41. We noted that healthy monocytes displaying elevated expression of these 

proteins are intrinsically resistant to dexamethasone. Dexamethasone mediated lymphocytosis is 

attributed to free radical (H2O2-) generation, an effect that can be counteracted by antioxidant enzymes 

such as catalase, and may confer resistance to steroid mediated apoptosis in monocytes31,42. 

Furthermore, monocyte expansion observed with dexamethasone treatment could be explained by its 

ability to mimic IL1B activation of IL1R43, which stimulates their proliferation. This phenomenon has 

previously been observed in murine monocytes44 as well in acute monocytic leukemia (AML, FAB 

subtype M5) where glucocorticoid treatment may further lead to increase in blast population fueling 

disease progression45. Therefore, understanding cytoprotective mechanisms operating in healthy cell 

subsets could also provide crucial insights on drug resistance mechanisms in patients. 

 

Cancer immunotherapies and drugs modulating the immune system are emerging as important 

treatment modalities for hematological and solid tumors46,47. Preserving cytotoxic lymphocytes are 

critical for their efficacy and may have significant consequences on long-lasting anti-tumor adaptive 

immunity, likely responsible for durable clinical responses. In our study, few inhibitors showed a 

selective effect on a single cell type; instead effects were either directed to multiple cell types or in a 

non-selective manner to all exposed cells. For example, dexamethasone and midostaurin depleted 

CD19+ B cells and CD56+ NK cells. Similarly, venetoclax depleted CD3+CD4- cytotoxic T cells, 

among other cell types. Reduction of immune effector cells, mainly cytotoxic T cells and NK cells, are 
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particularly relevant due to their key role in cancer immunosurveillance and immunotherapy48. 

Therefore, profiling unintended effects of small molecules on effector cells, which are used in 

combination with immunotherapies, is fundamental to select rational combination partners and to 

preserve the quality and quantity of immune cells in patients. 

 

In summary, the findings presented in this study suggest that dissecting drug responses in 

hematological cell lineages could serve as an invaluable tool to reveal the full spectrum of cellular 

effects, identify novel drug resistance mechanisms and to predict off target effects of small molecules. 

We envision that incorporating the assessment of cell lineage specific drug responses as a routine in 

preclinical drug development holds great promise in identifying new therapeutic niches of small 

molecules and improve precision in therapies, particularly for hematological malignancies. 
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FIGURE LEGENDS 
 
Figure 1. Overview of the study. Schematic diagram summarizing the study design, datasets and 
analytical framework of the study. Bone marrow and peripheral blood samples from both healthy 
individuals and cancer patients were subjected to drug sensitivity assessment. The single cell drug 
sensitivity assay using the iQue® Screener PLUS flow cytometer was performed in 96 and 384 well 
plates to monitor drug effects on 10 and 6 hematopoietic cell subtypes, respectively. 
Immunophenotypic details and cellular proportions of the analyzed cell types are provided in 
Supplementary Figure S1A-D and Supplementary Table S3, respectively. 71 drugs in 384 well plates 
and 6 drugs in 96 well plates were tested. Proteomic analysis was performed on three cell subsets 
(monocytes, T and B cells) from 2 healthy individuals and 4 myeloma patients. Basal phosphorylation 
of 9 signaling proteins involved in MAPK JAK-STAT, PI3K-AKT-mTOR and NF-κB signaling was 
monitored in 14 samples. Healthy BM samples from four healthy individuals were subjected to CD34, 
CD3, CD14, CD19 and CD138 cell enrichment and tested against 71 small molecules with cell 
viability as the endpoint readout using the CellTiter-Glo® assay. A comparison of ex vivo drug 
response in healthy and corresponding malignant cell types was performed for 6 drugs in 281 primary 
patient samples representing different hematological malignancies. Samples included both published 
and unpublished datasets from chronic myeloid leukemia (CML10,11, n=13), chronic myelomonocytic 
leukemia (CMML, n=11)12, myelodysplastic syndromes (MDS, n=4), acute myeloid leukemia 
(AML9,12, n=145), B-cell acute lymphoblastic leukemia (B-ALL13, n=14), chronic lymphocytic 
leukemia (CLL12, n=4), T-cell prolymphocytic leukemia (T-PLL14, n=40), multiple myeloma (MM15, 
n=50) and other hematologic malignancies (n=6). 
 
 
Figure 2. Distinct drug responses observed in immune subsets are tied to cell lineages. (A) A drug 
sensitivity score (DSS)17, which is a modified form of the area under the curve (AUC) calculation, was 
used to quantitate drug responses among the different detected cell populations. Higher DSS values 
(DSS > 10) indicates higher sensitivity to the individual drug. The heatmap displays a summary view 
of hierarchical clustering analysis with DSS scores for 6 cell subsets in 3 PB samples from healthy 
controls (marked as HC-1, 2 and 3). Immunophenotyping of hematopoietic cell types was done based 
on their known surface antigen expression profiles and as depicted in Supplementary Figure S1A.  



 14

Monocytes and T cell subsets formed two separate clusters. B and NK cells had similar drug response 
patterns. Small molecules that were tested along with their functional classes are displayed in 
Supplementary Figure S2. DSS scores and IC50 values for all 71 drugs are provided in Supplementary 
Table S2. (B) Differential effect of bortezomib, dexamethasone, clofarabine, venetoclax, navitoclax 
and omipalisib on hematopoietic cell subsets presented as mean values from 16 samples derived from 
3 healthy, 3 AML and 10 MM patients (Cohort I). Highest variation was observed for BCL2 inhibitors 
(venetoclax and navitoclax) and dexamethasone between myeloid and lymphoid lineages. Monocytes 
were resistant to both of these drug classes. A concentration dependent increase in numbers of CD3+ 
cells was observed for omipalisib at 10 and 100 nM. The proportion of cells detected in these analyzed 
samples are presented in Supplementary Table S3.  
 
Figure 3. Variable dose dependent activity of venetoclax on leukocytes. (A) Scatter diagram-
displaying dose dependent cytotoxicity of venetoclax (1-10,000 nM) in CD45+ (upper panel) and 
CD45+CD19+ cells (lower panel) for a single patient.  (B)  Averaged dose response graphs generated 
for different immune cell subtypes derived from healthy (n=3), AML (n=3) and MM (n=10) samples 
showed venetoclax sensitivity in CD19+/B cells with an IC50 <1 nM. CD3+CD4- cytotoxic T cells 
were more sensitive compared to CD3+CD4+ T helper cells. Data are presented as mean ± SEM 
responses for the tested samples in each disease group. Mean IC50 values for the analyzed samples are 
listed in Supplementary Table S4. 
 
Figure 4. Effect of midostaurin on the viability of CD34+CD38-, CD34+CD38+ and CD19+ cells 
derived from healthy donors, and AML or CLL patients. Averaged dose response curves for 
disease categories are presented as mean ± SEM. (A) While midostaurin treatment had no effect on 
CD34+CD38- cells from healthy individuals, variable sensitivity was detected in AML samples.  (B)  
CD34+CD38+ cells derived from FLT3-ITD mutated AML samples displayed similar sensitivity 
(median IC50, 554nM). (C)  CD19+ cells derived from healthy donor or patient samples showed 
comparable sensitivity at a median IC50 of 319 nM. Individual dose response curves are provided in 
Supplementary Figure 8B. (D) Scatter plot showing dose responses for midostaurin in CD19+ cells 
from a CLL patient. The percentage of CD19+ live cells present in midostaurin treated wells 
compared to untreated cells is displayed numerically on the plot. Cellular proportions for these 
samples are provided in Supplementary Table S5. Related IC50 values are provided in 
Supplementary Table S6.  
 
Figure 5. Differences in protein expression between hematopoietic cell subsets. (A) Venn diagram 
representation of unique and commonly detected proteins using mass spectrometry across healthy T 
cells, B cells and monocytes. Uniquely detected proteins corresponded to their cellular functions 
shown in the inset boxes. Out of 1060 proteins detected in lysates from 2 healthy and 4 MM samples, 
abundance of 753 commonly detected proteins was compared between the three cell types. A complete 
list of proteins and their corresponding abundance values are provided in Supplementary Table S7. (B)  
Significantly higher expression of S100A8/A9, CAT, IDH1, CES1 and GPX1 was detected in healthy 
monocytes.  (C-D) Heatmap summarizing the expression of proteins that significantly discriminated 
three cell types in healthy control (HC) and MM samples, respectively (FDR < 0.05). The data 
presented here are normalized label-free quantification (LFQ) intensity values for the proteins.  
 
Figure 6. Mass cytometry (CyTOF) profiling of basal signaling patterns in 9 healthy cell subsets. 
(A)  Summary of the basal phosphorylation state of 9 signaling proteins associated with NF-κB, PI3K-
AKT-mTOR (AKT, 4E-BP1, PLCG1 and p70-S6K), JAK-STAT (STAT1 and STAT3), MAPK (ERK 
and CREB) in three healthy individuals. Matched PB and BM from the same healthy donors were 
profiled. Phosphorylation profiles for the indexed phosphoproteins were investigated in corresponding 
cell subsets in leukemic samples (AML and B-ALL). (B)  Box plot representation of population 
medians of p4EBP1, pPLCγ1 and pSTAT in healthy PB and BM (left) and leukemic samples (right). 
Center lines of boxes show medians; box limits indicate the 25th and 75th percentiles as determined 
by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, 
outliers are represented by dots; data points are plotted as open circles. * Indicates significant 
difference (two-way ANOVA, Tukey’s HSD) between all corresponding populations, unless specified 
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as not significant (ns). # Indicates significance between AML and the corresponding healthy 
populations in both PB and BM. There were no significant differences between PB and BM in any 
populations for each of the measured phosphoproteins, *p<0.05, **p<0.005, ***p<0.0005. Healthy 
PB and BM (n=3), AML (n=6), B-ALL (n=2). (C)  Stacked histograms representations of pERK, p4E-
BP1, pSTAT3 and pPLCγ1 phosphorylation status across cell types in an AML patient and healthy 
donor samples (paired BM and PB). Immunophenotype of the presented samples are provided in 
Supplementary Figure 1B. (D) Phosphorylation of STAT3 in five healthy cell types from three healthy 
individuals presented as mean±SE (SEM) arcsinh values derived from mass cytometry analysis. (E) 
Venetoclax response in cell types displayed as SEM of DSS values for 3 healthy donors. A higher 
response to venetoclax correlated with reduced phosphorylation of STAT3. 
 
Figure 7. Systematic comparison of drug responses in healthy cell-of–origin and corresponding 
cell types from hematological malignancies. (A-F) Ex vivo drug responses presented as drug 
sensitivity scores (DSS) of healthy cell types (CD3, n=4; CD14, n=4; CD19, n=2; CD34, n=2; and 
CD138, n=3) were compared to malignant counterparts in a cohort of 281 primary samples for 
bortezomib, clofarabine, dexamethasone, omipalisib, venetoclax and navitoclax. Samples included 
both published and unpublished datasets generated at our facility for CML10,11 (n=13), CMML 
(n=11)12, MDS (n=4), AML9,12 (n=145), B-ALL13 (n=14), CLL12 (n=4), T-PLL14 (n=40), MM15 (n=50) 
and other hematological malignancies (n=6). AML and MM samples were subdivided depending on 
whether they were derived from newly diagnosed (D) and relapsed (R) samples. T-PLL and MM 
samples were tested with enriched CD8+ and CD138+ cells. Results provide evidence that response in 
healthy cell subsets is predictive of responses observed in the malignant cell counterparts. A 
comparison between drug effects on CD14+ and CD34+ cells derived from healthy individuals and 
AML samples are displayed in Supplementary Figures S13 and S14.  
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Supplementary Figure S1. Immunophenotyping of hematopoietic cell types based on their surface 
antigen expression applied in flow cytometry (A) and mass cytometry assay (B) and (C). (A) Gating 
strategy for flow cytometry assay. Briefly, singlet mononuclear cells were subjected to dead and 
apoptotic cell exclusion using DNA staining dye 7-AAD and expression of Annexin-V surface antigens. 
11 cell subsets were detected based on the expression of their core surface antigens (hematopoietic stem 
cells  (HSC/CD34+CD38-), common progenitor cells (CPC/CD34+CD38+), monocytes/CD14+, 
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B/CD45+CD19+, cytotoxic T/CD45+CD3+CD8+ cells, T helper/CD45+CD3+CD4+ cells, NK-T/ 
CD45+CD3+CD56+ cells, NK/ CD45+CD56+CD3-) cells, plasma cell subsets /CD138+CD38+ and 
CD138+CD38- and granulocytes/CD45low, SSC++. (B) Immunophenotype of cell types and their 
corresponding antigen expression in specimens used in mass cytometry. (C) Immunophenotype of blast 
cells in analyzed AML samples. (D) Contour (upper panel) and overlaid scatter plot (lower panel) 
displaying gated cell lineages for Cohort IV samples used in mass cytometry analysis. 
 
 

 
 
 
Supplementary Figure S2. Cellular composition of analyzed healthy and patient samples. Pie 
charts plotting the average proportions of different hematopoietic cell subpopulations detected in the 
analyzed samples with the numbers of each sample type indicated. Data from individual samples are 
provided in Supplemental Tables S3 and S4. The CD56 antibody was not included in the assessment of 
Cohort II samples, so proportions of NK and NK-T cells in healthy BM and CLL samples are not 
reported. 
 

8.86%  Monocyte
0.34%  HSC
1.90%  CPC
44.39%  THC
40.50%  CTL
4.01%  B

3.38%  Monocyte

46.99%  THC
24.60%  CTL
10.05%  B

6.01%  NK-T

8.97%  NK

11.52%  Monocyte
28.17%  HSC
50.20%  CPC
4.99%  THC
2.33%  CTL
0.24%  NK-T
0.72%  NK
1.84%  B

8.04%  Monocyte
0.73%  HSC
1.71%  CPC
15.15%  THC
39.30%  CTL
3.98%  NK-T
15.39%  NK
5.46%  B
10.24%  Plasma

Healthy BM (n=2) Healthy PB (n=3)

AML (n=11) MM (n=10)

0.40%  CPC
1.51%  THC
1.21%  CTL
75.87%  B

CLL (n=7)



	 5	

 
Supplementary Figure S3. Functional classes of 71 small molecules investigated for cell type 
specific activity. The 71 small molecules that were tested are clustered based on Spearman correlation 
of drug sensitivity scores derived from their effect on six hematopoietic cell subsets in three healthy PB 
samples.  Drugs have been highlighted in distinct colors based on their primary mechanism of action. 
Annotations for the drug classes and assigned colors are located in the top right corner of the plot.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S4. Monocyte specific response to trametinib and dasatinib.  Trametinib 
and dasatinib were tested in 14 samples (Cohort II) that included healthy PB (n=3), healthy BM (n=2), 
AML (n=8) and CLL (n=3) samples. No CD14+ cells were detected in CLL samples and excluded from 
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the graph. (A) Trametinib activity on monocytes was detected in all samples. (B) Higher sensitivity to 
dasatinib was noted in blood aspirates compared to BM samples from healthy individuals. CD14+ AML 
cells showed modest sensitivity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S5. Bortezomib response in plasma cell subsets. Sensitivity to bortezomib in 
two plasma cell subsets (CD138+CD38+ and CD138+CD38-) was compared in eight multiple myeloma 
(MM) samples. CD138+CD38- cells are less sensitive to bortezomib compared to CD138+CD38+ cells. 
 
 

 
Supplementary Figure S6. T cell subsets are insensitive to PI3K-AKT-mTOR inhibitors compared 
to other immune cell subsets.  CD34+, CD14+ and CD19+ are more sensitive to mTOR inhibitors. 
Data presented here show a comparison of drug sensitivity scores for temsirolimus (mTORC1 inhibitor), 
AZD-2014 (inhibits mTORC1 and mTORC2) and pictilisib (inhibits both PI3K and mTOR) between 
healthy cell types. Importantly, higher phosphorylation of mTOR signaling proteins (p4E-BP1 and 
pPLC-Υ) was noted (Figure. 6). 
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Supplementary Figure S7. Lineage specificity of small molecules was observed in cells derived 
from healthy, AML and MM patients. The data for six molecules presented here are organized in 
three rows for healthy, AML and MM samples. Viability of cells tested in five concentrations of the 
tested compounds is summarized in the heat maps. Concentrations for the drugs are displayed on the 
left side of the figure panels. HSC/CD34+CD38-, CPC/CD34+CD38+, monocyte/CD14+, natural killer-
T/ CD3+CD56+, helper T/CD3+CD4+, cytotoxic T/CD3+CD4-, B/CD19+, natural killer/CD3-CD56+, 
granulocytes/CD45lowSSC++. 
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Supplementary Figure S8.  Lineage specific activity of midostaurin. (A) B/CD19+ and NK/CD56+ 
cells are sensitive to midostaurin. (B) Response of committed progenitor cells (CPC; CD34+CD38+) to 
midostaurin. (C)  CD19+ response was detected in 17 additional samples including 7 CLL samples (blue 
solid lines), which is also presented in Figure 4C.  
 
 

 
 
Supplementary Figure S9. Pathway enrichment analysis for unique and differentially expressed 
proteins detected in three healthy cell subsets (CD3+, CD14+ and CD19+cells). (A-C) A total of 
163, 131 and 13 proteins were detected only in CD3+, CD14+ and CD19+, respectively. These 
proteins were analyzed using Ingenuity Pathway Analysis (IPA®, Qiagen). Significant pathways for 
CD14+ (A), CD19+ (B) and CD3+ (C) cells are depicted here. The left y axis shows –log(p) values 
for each pathway and right y axis displays the ratio of proteins (proteins in the dataset / total number 
of proteins in the canonical pathway) enriched in those pathways. (D and E) Enrichment of pathways 
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for proteins differentially expressed between CD14+ cells and CD3+ or CD19+ cells. Pathway 
enrichment was done for differentially expressed proteins between CD14+ versus CD3+ cells (D) and 
CD14+ versus CD19+ positive cells (E) (false discovery rate < 0.05). Highlighted red and blue bars 
represent activated or inhibited pathways in CD14+ cells compared to CD3+ or CD19+ cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S10. Higher basal phosphorylation of NF-κB was detected in CD4+ and 
CD8+ T cells compared to other cell types. Phosphorylation was measured by mass cytometry and 
presented as median arcsinh values. Box plot representation of population medians of pNF-κB in healthy 
PB and BM (left) and leukemic samples (right). Center lines of boxes show medians; box limits indicate 
the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile 
range from the 25th and 75th percentiles, outliers are represented by dots; data points are plotted as open 
circles. * Indicates significant difference (two-way ANOVA, Tukey’s HSD) between all corresponding 
populations, unless specified as not significant (ns). # Indicates significance between AML and the 
corresponding healthy populations in both PB and BM. There were no significant differences between 
PB and BM in any populations or phosphorylation levels. *p<0.05, **p<0.005, ***p<0.0005. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S11.  Midostaurin shows efficacy in chronic and acute lymphocytic 
leukemia. Drug responses presented as DSS scores are compared across disease types in a cohort of 
281 primary samples. Midostaurin response was detected in healthy B cells, CLL and ALL samples. 
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Supplementary Figure S12. Changes in signaling patterns across cell types with increasing 
concentrations of venetoclax. To understand how drug treatment might affect the signaling behavior 
at the single cell level we treated three PB MNCs with 0.10 and 10,000 nM of venetoclax and incubated 
for 30 minutes before fixation. Experimental conditions for mass cytometry were consistent with the 
earlier analysis for detection of basal signaling as described in the Methods section and with results 
shown in Figure 6. Antibody panels and immunophenotypic details are similar to what we described in 
Supplementary Table S1 and Supplementary Figure S1B. Results are presented as median arcsinh in the 
y axis and the x axis indicates the different concentrations of venetoclax that were tested. 
 

 
Supplementary Figure S13. Cellular effect of six indexed drugs on healthy and AML derived 
CD14+ cells. Dose response curves presented as mean ± SEM responses indicate similar responses 
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observed for the three drugs shown in the upper panel. In the lower panels, AML CD14+ cells show 
modest sensitivity to venetoclax and navitoclax compared to healthy CD14+ cells. 
 
 

 
 
Supplementary Figure S14. Cellular effect of trametinib and midostaurin on healthy and AML 
derived HSC/CD34+CD38- and CPC/CD34+CD38+ cells. Uncommitted hematopoietic stem cells 
(HSC; CD35+CD38-) and committed progenitor cells (CPC; CD34+CD38+) from healthy donors and 
AML patients show similar responses to trametinib. However, AML derived CD34+CD38- cells 
appeared to be more sensitive to midostaurin compared to healthy HSC. 
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Supplementary Table S1. Antibody panels for flow cytometry and CyTOF assays 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Panel Antibody Clone Fluorophore Channel Catalogue number

CD38 LD38 FITC BL1 CYT-38F
CD34 8G12 PE-Cy7 BL5 348811
CD14 M5E2 BV786 VL6 563698
CD138 MI15 APC RL1 347216
CD9 M-L13 APC-H7 RL1 655409
Annexin V - PE BL2 556422
7-AAD - - BL4 559925
CD38 LD38 FITC BL1 CYT-38F
CD56 REA196 PE-Vio770 BL5 130-100-676
CD3 SK7 APC BL4 345767
CD4 RPA-T4 BV421 VL1 562424
CD19 SJ25C1 BV510 VL2 562947
CD45 HI30 BV786 VL6 563716
Annexin V - PE BL2 556422
7-AAD - - BL4 559925
CD56 REA196 PE-Vio770 BL5 130-100-676
CD3 SK7 APC RL1 345767
CD4 RPA-T4 BV421 VL1 562424
CD19 SJ25C1 BV510 VL2 562947
CD45 HI30 BV605 VL4 564047
CD14 M5E2 BV786 VL6 563698
Annexin V - PE BL2 556422
7-AAD - - BL4 559925
CD38 LD38 FITC BL1 CYT-38F
CD34 8G12  Pe-Cy7 BL5 348811
CD14 APC M5E2 APC RL1 561383
CD4 BV421 SJ25C1 BV21 VL1 562424
CD19 SJ25C1 BV510 VL2 562947
CD3 SK7 BV605 VL4 563219
CD45 HI30 BV786 VL6 563716
Annexin V - PE BL2 556422
7-AAD - - BL4 559925

Panel Antibody Clone Metal tag Vendor Catalogue number

Barcodes
MBC #1
MBC #2
MBC #3
MBC #4
MBC #5
MBC #6

102 Pd
104 Pd
105 Pd
106 Pd
108 Pd
110 Pd

Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm

201060

Surface panel
CD45
CD66b
CD117 (cKit)
CD38
CD4
CD64
CD20 
CD16
CD123 (IL-3R)
CD56 (NCAM)
CD90 (Thy-1)
CD14
CD8a
CD33
CD34
CD25 (IL-2R)
CD3
HLA-DR
CD11b (Mac-1)

Hi30
G10F5
104D2
HIT2
RPA-T4
10.1
2H7
3G8
6H6
B159
5E19
M5E2
RPA-T8
WM53
581
2A3
UCHT1
L243
Mac-1

89 Y
141 Pr
143 Nd
144 Nd
145 Nd
146 Nd
147 Nd
148 Nd
151 Eu
155 Gd
159 Tb
160 Gd
162 Dy
163 Dy
168 Er
169 Tm
170 Er
174 Yb
209 Bi

Fluidigm
BioLegend
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm
Fluidigm

BioLegend
Fluidigm
Fluidigm
Fluidigm
Fluidigm

3089003B
305102

3143001C
3144014C
3145001B
3146006C
3147001B
3148004B
3151001B
3155008B
3159007C
3160001B
3162015C
3163023B

343531
3169003C
3170001B
3174001C
3209003B

Intracellular panel
p-4E-BP1 (T37/46)
pAkt (S473)
pSTAT1 (Y701)
pSTAT3 (Y705)
pCREB (S133)
pNFkB (S529)
pErk1/2 
(T202/Y204)
pS6 (S235/236)
pPLCg1 (Y783)

D3E9
47
D9E
D3F9
713610
87G3
K10-895.12.50
D1314.4E
N7-548
12F4.2

142 Nd
150 Nd
152 Sm
156 Gd
161 Dy
165 Ho
166 Er
167 Er
172 Yb
176 Yb

Fluidigm
Fluidigm
Fluidigm
Fluidigm

R&D Systems
Fluidigm
Fluidigm
Fluidigm
Fluidigm

Millipore Sigma

3142004C
3150005A
3152005C
3156002C

CFNY041609
3165009A
3166006A
3167005C
3172008A
2752567

Cohort IV V

Cohort I

I

II

III

Cohort II IV
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Supplementary Table S3. Cellular proportions of cohort-I samples. Values are presented 
as percentage ratio of count of events for individual populations compared to live cells  
 

 
 
 
Supplementary Table S4. Mean IC50 and R2 (curve fitting) values for venetoclax organized according 
to cell types and disease categories (associated with Figure 3B) 
 

Venetoclax 
Cell Type Samples Mean IC50 (M)  Mean R2  

CD19+ 
Healthy (PB, n=3) 4.228E-09 0.9861 

AML (n=3) 8.469E-10 0.9947 
Myeloma (n=10) 5.67E-09 0.9817 

CD56+ 
Healthy (PB, n=3) 1.324E-07 0.9823 

AML (n=3) 5.73E-09 0.9947 
Myeloma (n=10) 7.118E-09 0.9772 

CD3+CD4+ 
Healthy (PB, n=3) 1.103E-06 0.933 

AML (n=3) 8.33E-09 0.8837 
Myeloma (n=10) 3.062E-08 0.9799 

CD3+CD4- 
Healthy (PB, n=3) 3.422E-08 0.9849 

AML (n=3) 7.405E-09 0.9704 
Myeloma (n=10) 2.131E-08 0.9194 

CD3+CD56+ 
Healthy (PB, n=3) 2.674E-07 0.8481 

AML (n=3) 9.975E-07 0.8514 
Myeloma (n=10) 3.268E-08 0.9507 

 
 
Supplementary Table S5. Cellular proportions of Cohort II samples. Values are presented as 
percentage ratio of count of events for individual populations compared to live cells. *Anti CD56 
antibody was not included in the assay and the proportion could not be measured in those samples.  
 

 
 
 
 
 
 
 
 

HC-1 HC-2 HC-3 MM-1862 MM-933 MM-3821 MM-4296 MM-828 MM-4312 MM-5704 MM-870 MM-3001 AML-5750 AML-4634 AML-4701
Plasma CD138+ 7,07 3,07 14,76 0,83 1,53 12,41 0,70 2,88 3,45
Monocyte CD14+ 2,55 2,56 1,76 12,89 2,48 2,65 5,02 0,97 3,86 1,00 6,28 1,50 2,84 2,52 2,94
HPC CD34+CD38- - 1,68 0,07 0,41 0,11 0,05 0,06 0,33 0,23 0,39 0,42 4,22 3,19
CPC CD34+CD38+ - 4,80 0,14 0,21 0,54 0,13 0,21 0,64 0,69 0,46 79,40 20,51 29,84
THC CD3+CD4+ 36,84 30,77 27,85 2,03 7,49 11,65 8,28 13,60 6,54 11,16 3,48 4,87 0,63 2,16 2,08
CTL CD3+CD8+ 23,02 16,49 10,47 0,95 1,02 26,82 43,37 39,40 39,88 17,14 8,77 1,89 0,81 3,33 2,82
NK-T CD56+CD3+ 0,88 10,73 0,61 0,30 0,60 1,80 0,90 4,50 3,28 4,58 0,30 1,88 0,08 0,20 0,23
NK CD56+CD3- 3,85 8,36 6,01 1,35 2,57 31,06 6,57 6,10 14,18 0,85 7,37 0,16 0,18 1,35 0,03
B CD19+ 8,13 11,97 0,31 0,01 3,32 4,16 4,67 3,30 5,04 3,42 0,17 0,81 0,56 4,47 0,46

Cohort-I

Cell Types
Healthy PB Multiple Myeloma AML

HC-BM-1 HC-BM-2 AML-6641 AML-4654 AML-4361 AML-5237 AML-6545 AML-1886 AML-3853 AML-4453 CLL-4098_2 CLL-4490 CLL-4593 CLL-224 CLL-4098_3 CLL-4375 CLL-1829
Plasma CD138+
Monocyte CD14+ 1,91 6,32 13,73 14,27 15,69 11,56 10,57 3,13 5,17
HPC CD34+CD38- 0,06 0,26 14,28 31,12 16,19 71,39 26,71 12,02 22,08 20,12
CPC CD34+CD38+ 0,29 1,47 36,45 17,90 22,16 13,06 31,29 29,81 52,88 61,79 0,05 0,05 1,16 0,07 0,02 0,28261 0,556242
THC CD3+CD4+ 26,98 14,24 4,84 16,70 5,69 2,43 1,09 1,27 1,39 0,95 1,11 2,22 2,41 1,05 0,67 0,131885 0,605686
CTL CD3+CD8+ 22,25 15,35 1,73 3,45 2,76 0,87 0,36 1,03 0,57 0,59 0,13 0,68 3,53 0,41 0,13 0,27005 1,421508
NK-T* CD56+CD3+
NK* CD56+CD3-
B CD19+ 1,74 1,99 1,25 1,63 2,34 1,17 1,11 0,97 0,12 0,42 95,09 83,97 61,55 76,12 90,35 57,67129 60,35847

Cohort-II

Cell Types
AML-FLT3-WT AML-FLT3-ITD CLLHealthy BM
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Supplementary Table S6: Mean IC50 and R2 (curve fitting) values for midostaurin organized 
according to cell types and disease categories (associated with Figure 4A-C) 
 

Midostaurin 
Cell Type Samples Mean IC50 (M)  Mean R2  

HSC (CD34+CD38-) 

Healthy (BM, n=2) NA 0.7065 
AML-FLT3-WT (n=3) 8.914E-07 0.9931 
AML-FLT3-ITD (n=5) 2.621E-07 0.9813 

CLL (n=7) NA NA 

CPC (CD34+CD38+) 

Healthy  (BM, n=2) 0.000000189 0.811 
AML-FLT3-WT (n=3) 5.116E-08 0.7203 
AML-FLT3-ITD (n=5) 1.255E-07 0.7918 

CLL (n=7) NA NA 

B (CD19+) 

Healthy (BM, n=2) 5.766E-08 0.9914 
AML-FLT3-WT (n=3) 9.65E-08 0.9412 
AML-FLT3-ITD (n=5) 0.000001959 0.9266 

CLL (n=7) 4.504E-08 0.9929 
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SUPPLEMENTARY METHODS 

 

Optimization of the no wash high-throughput flow cytometry assay and antibody panels for drug 

sensitivity and functional assessment of cell subsets 

We have optimized a no wash assay that allowed us to simultaneously monitor drug responses in 

immune subsets using a high throughput (HT) flow cytometer (iQue®Screener PLUS). The assay 

enables screening of small molecules capable of inducing apoptosis, monitoring their immune effects, 

and to predict off target effects due to cell subset selectivity. Assay optimization was carried out with 

human samples to identify optimal cell density, antibody dilutions, incubation time, and finally to 

compare staining performances with and without washing. The cell culture medium used for all assays 

was comprised of RPMI 1640 medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 

penicillin (100 U/ml), streptomycin (100 µg/ml) and 25% conditioned medium from the HS-5 human 

BM stromal cell line. BM samples were seeded at 0.5, 1, 2 and 4 million per ml density to compare 

effect on drug responses for 5 small molecules (Figure A) at 72 hours. A density of 2 million cells/mL 

was selected for the assay. Next, we tested in serial dilutions from the recommended concentration 

(1:24,1:48,1:96,1:192 and 1:384) to identify the optimal signal to noise ratio for each antibody (Figure 

B). 

 
 

Figure A. Effect of cell density on response to specific drugs. The effect of five indexed drugs was 
measured at different cell densities ranging from 0.5-4 million cells/mL. The x axis displays percentage 
of cells viable compared to untreated controls (DMSO) tested in five concentrations as displayed in the 
y axis. 
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Figure B. Assessment of signal to noise ratio to identify the optimum dilutions for each antibody. 
CD38, CD45, CD3, CD4, CD19, CD138 antibodies were tested with BM cells from five myeloma 
patients. The antibodies were diluted in ratios of 1:24, 1:48, 1:96, 1:192 and 1:384 from the original 
antibody stock. The CD56 antibody was tested using a single sample. Concentrations for other 
antibodies were derived from prior experience and optimization experiments, which are not described 
here. 
 

The following mAbs were purchased from BD Biosciences: APC anti-CD3 (clone SK7), BV421 anti-

CD4 (clone RPA-T4), BV510 anti-CD19 (clone SJ25C1), BV786 anti-CD45 (clone HI30), PE-Cy7 anti-

CD34 (clone 8G12), APC anti-CD138 (clone MI15), APC-H7 anti-CD9 (clone M-L13), BV786 anti-

CD14 (clone M5E2), PE Annexin-V and 7-amino-actinomycin (7-AAD). The mAb FITC anti-CD38 

(clone LD38) was purchased from Cytogonos and the mAb PE-Vio770 anti-CD56 (clone REA196) was 

purchased from Miltenyi Biotec. Compensation was carried out with the final titration for the designed 

panels. 
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To compare wash versus no wash methods, we used the brilliant violet dye CD45 BD-786. A 1:1 ratio 

dilution with staining buffer (PBS with 0.5% bovine serum albumin) was able to reasonably discriminate 

positively and negatively stained cell populations in the no wash assay as compared to cells undergoing 

wash steps after the addition of antibodies.  

 

An incubation of one hour was found ideal for the constructed panel (data not shown). Two samples 

were tested with fresh cells and with viable cryopreserved cells to compare the effect of freezing and 

thawing on antigen stability (data not shown). 

 

Flow cytometric analysis of drug response was performed in both 384 well plates (n=4) with 71 drugs 

and 96 well plates (n=15) with 6 drugs. Cellular response was measured after 72 hours incubation.  In 

the 96 well plates, the antibodies were tested in two panels to study the effects of 6 drugs in 5 dilutions 

(1-10000 nM) (clofarabine, bortezomib, dexamethasone, navitoclax, venetoclax and omipalisib) on 11 

cell populations, namely hematopoietic stem cells  (HSCs; CD34+CD38-), common progenitor cells 

(CPCs; CD34+CD38+), monocytes (CD14+), B cells (CD45+CD19+), cytotoxic T cells 

(CD45+CD3+CD8+), T helper cells (CD45+CD3+CD4+), NK-T cells (CD45+CD3+CD56+), NK cells 

(CD45+CD56+CD3-), clonal plasma cells (CD138+CD38+), other plasma cells (CD138+CD38-) and 

granulocytes (CD45low, SSC++). These compounds showed differential response across cell types in the 

primary screen with 71 compounds. Annexin-V and 7AAD were used to distinguish live cell populations 

from apoptotic and dead cells. Additionally, frozen viable cells from FLT3-ITD positive AML (n=3) 

and CLL (n=7) has been tested with midostaurin, dasatinib and trametinib along with fresh BM samples 

from healthy individuals on 7 cell populations. 

 

After 1 h incubation with antibodies, the plates were read with the iQue® Screener PLUS instrument 

(Intellicyt). Data were analyzed using ForeCyt software (Intellicyt). Counts for each population were 

used to generate four parameter nonlinear regression fitted dose response curves with GraphPad Prism 

7.  Three samples were tested in duplicate to assess reproducibility. To assess cell viability or antigen 

stability during 3 days incubation, we compared the normalized count for each cell type relative to live 

cells processed at 0 and 72 hrs.  

 


