52 research outputs found

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype–phenotype correlations based on available evidence

    Pooled extracellular receptor-ligand interaction screening using CRISPR activation.

    Get PDF
    Extracellular interactions between cell surface receptors are necessary for signaling and adhesion but identifying them remains technically challenging. We describe a cell-based genome-wide approach employing CRISPR activation to identify receptors for a defined ligand. We show receptors for high-affinity antibodies and low-affinity ligands can be unambiguously identified when used in pools or as individual binding probes. We apply this technique to identify ligands for the adhesion G-protein-coupled receptors and show that the Nogo myelin-associated inhibitory proteins are ligands for ADGRB1. This method will enable extracellular receptor-ligand identification on a genome-wide scale

    Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine

    Get PDF
    In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites

    Expression of endoglin (CD105) in cervical cancer

    Get PDF
    In this study, we have investigated the role of endoglin (CD105), a regulator of transforming growth factor (TGF)-β1 signalling on endothelial cells, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor-A (VEGF-A) in cervical cancer. We have measured the number and determined the location of both newly formed (CD105-positive) and the overall number of (CD31-positive) blood vessels, and bFGF and VEGF-A expression using immunohistochemistry in 30 cervical carcinoma specimens. Vascular endothelial growth factor-A mRNA expression was determined using RNA-in situ hybridisation. CD105- and CD31-positive vessels and bFGF- and VEGF-A-positive cells were predominantly present in the stroma. The presence of CD105- and CD31-positive vessels in the stroma did neither correlate with the number of VEGF-A-positive cells nor the number of bFGF-positive cells. However, the number of CD105- and CD31-positive vessels was associated with the expression of VEGF-A mRNA in the epithelial cell clusters (P=0.013 and P=0.005, respectively). The presence of CD105-positive and CD31-positive vessels was associated with the expression of αvβ6 (a TGF-β1 activator; P=0.013 and P=0.006, respectively). Clinically, the number of CD105-positive vessels associated with the number of lymph node metastasis (P<0.001). Furthermore, the presence of CD105-positive vessels within the epithelial cell clusters associated with poor disease-free survival (P=0.007)

    Epigenetics Offer New Horizons for Colorectal Cancer Prevention

    Get PDF
    In recent years, colorectal cancer (CRC) incidence has been increasing to become a major cause of morbidity and mortality worldwide from cancers, with high rates in westernized societies and increasing rates in developing countries. Epigenetic modifications including changes in DNA methylation, histone modifications, and non-coding RNAs play a critical role in carcinogenesis. Epidemiological data suggest that, in comparison to other cancers, these alterations are particularly common within the gastrointestinal tract. To explain these observations, environmental factors and especially diet were suggested to both prevent and induce CRC. Epigenetic alterations are, in contrast to genetic modifications, potentially reversible, making the use of dietary agents a promising approach in CRC for the development of chemopreventive strategies targeting epigenetic mechanisms. This review focuses on CRC-related epigenetic alterations as a rationale for various levels of prevention strategies and their potential modulation by natural dietary compounds

    Recent developments in genetics and medically assisted reproduction : from research to clinical applications

    Get PDF
    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.Peer reviewe

    Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies

    Get PDF
    Cutaneous melanoma is a very aggressive neoplasia of melanocytic origin with constantly growing incidence and mortality rates world-wide. Epigenetic modifications (i.e., alterations of genomic DNA methylation patterns, of post-translational modifications of histones, and of microRNA profiles) have been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, cell signalling, differentiation, DNA repair, apoptosis, invasion and immune recognition. In this scenario, pharmacologic inhibition of DNA methyltransferases and/or of histone deacetylases were demonstrated to efficiently restore the expression of aberrantly-silenced genes, thus re-establishing pathway functions. In light of the pleiotropic activities of epigenetic drugs, their use alone or in combination therapies is being strongly suggested, and a particular clinical benefit might be expected from their synergistic activities with chemo-, radio-, and immuno-therapeutic approaches in melanoma patients. On this path, an important improvement would possibly derive from the development of new generation epigenetic drugs characterized by much reduced systemic toxicities, higher bioavailability, and more specific epigenetic effects

    Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor

    Get PDF
    Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.We acknowledge National Health Service funding to the National Institute for Health Research Biomedical Research Centre. Genotyping of the OncoArray was funded by the US National Institutes of Health (NIH) (U19 CA 148537 for Elucidating Loci Involved in Prostate cancer Susceptibility (ELLIPSE) project and X01HG007492 to the Center for Inherited Disease Research (CIDR) under contract number HHSN268201200008I). Additional analytical support was provided by NIH NCI U01 CA188392. The PRACTICAL consortium was supported by Cancer Research UK Grants C5047/A7357, C1287/A10118, C1287/A16563, C5047/A3354, C5047/A10692 and C16913/A6135; the European Commission’s Seventh Framework Programme grant agreement 223175 (HEALTH-F2-2009-223175) (D.F.E., R.E. and Z.K.-J.); and the NIH Cancer Post-Cancer GWAS initiative grant 1 U19 CA 148537-01 (the GAME-ON initiative). We thank the following for funding support: the Institute of Cancer Research and the Everyman Campaign, the Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), the Orchid Cancer Appeal, the National Cancer Research Network UK and the National Cancer Research Institute (NCRI) UK. We are grateful for NIHR funding to the Biomedical Research Centre at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust. We acknowledge funding from the Swedish Cancer Society (CAN2011/484 and CAN2012/823), the Norwegian Cancer Society (grants 418975-71081-PR-2006-0387 and PK01-2007- 0375) and the Nordic Cancer Union (grant S-12/07). This study was supported by the Movember Foundation and the Institute of Cancer Research. K.L. is supported by a PhD fellowship from Cancer Research UK. R.S.H. and P.B. are supported by Cancer Research UK (C1298/A8362 Bobby Moore Fund for Cancer Research UK)
    • …
    corecore