92 research outputs found

    Yam bean (Pachyrhizus erosus) tuber processing in Benin: production and evaluation of the quality of yam bean-gari and yam bean-fortified gari

    Get PDF
    Yam bean (Pachyrhyzus erosus) tubers were processed singly and mixed with cassava into different types of gari (100% yam bean gari, 75% yam bean gari, 50% yam bean gari and 25% yam bean gari) following the traditional gari processing method. Conventional gari from cassava was processed following the same approach and used as control. Physical characteristics, proximate composition and sensory quality of the garis obtained were assessed. Results showed that low and medium (25% and 50%) yam bean fortified gari processing yielded better than 75% and 100% yam bean gari processing. Low and medium yam bean gari were the closest to conventional gari regarding the brown index (18.0 and 18.3 respectively), had good swelling capacity (≥ 3) and had higher relative bulk density (0.57 and 0.53 respectively). The proteins content of the processed yam bean garis increased with increasing incorporation rate of yam bean but, similarly, the crude fibres content increased going beyond the recommended level of 2% maximum. The processed garis were used to cook èba which were submitted to panellists’ appreciation. Panellists scored better low and medium yam bean fortified garis and the resulting èba. Combining the results, the highest suggested incorporation rate was 50% yam bean tubers. © 2013 International Formulae Group. All rights reserved.Keywords: Legume tuber-root crop, quality, physical characteristics, chemical composition, sensory evaluation

    Surgical and conservative treatment of patients with congenital scoliosis: α search for long-term results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In view of the limited data available on the conservative treatment of patients with congenital scoliosis (CS), early surgery is suggested in mild cases with formation failures. Patients with segmentation failures will not benefit from conservative treatment. The purpose of this review is to identify the mid- or long-term results of spinal fusion surgery in patients with congenital scoliosis.</p> <p>Methods</p> <p>Retrospective and prospective studies were included, reporting on the outcome of surgery in patients with congenital scoliosis. Studies concerning a small numbers of cases treated conservatively were included too. We analyzed mid-term (5 to 7 years) and long-term results (7 years or more), both as regards the maintenance of the correction of scoliosis and the safety of instrumentation, the early and late complications of surgery and their effect on quality of life.</p> <p>Results</p> <p>A small number of studies of surgically treated patients were found, contained follow-up periods of 4-6 years that in the most cases, skeletal maturity was not yet reached, and few with follow-up of 36-44 years. The results of bracing in children with congenital scoliosis, mainly in cases with failure of formation, were also studied.</p> <p>Discussion</p> <p>Spinal surgery in patients with congenital scoliosis is regarded in short as a safe procedure and should be performed. On the other hand, early and late complications are also described, concerning not only intraoperative and immediate postoperative problems, but also the safety and efficacy of the spinal instrumentation and the possibility of developing neurological disorders and the long-term effect these may have on both lung function and the quality of life of children.</p> <p>Conclusions</p> <p>Few cases indicate the long-term results of surgical techniques, in the natural progression of scoliosis. Similarly, few cases have been reported on the influence of conservative treatment.</p> <p>In conclusion, patients with segmentation failures should be treated surgically early, according to the rate of deformity formation and certainly before the pubertal growth spurt to try to avoid cor- pulmonale, even though there is lack of evidence for that in the long-term. Furthermore, in patients with formation failures, further investigation is needed to document where a conservative approach would be necessary.</p

    Bacterial diversity in snow on North Pole ice floes

    Get PDF
    The microbial abundance and diversity in snow on ice floes at three sites near the North Pole was assessed using quantitative PCR and 454 pyrosequencing. Abundance of 16S rRNA genes in the samples ranged between 43 and 248 gene copies per millilitre of melted snow. A total of 291,331 sequences were obtained through 454 pyrosequencing of 16S rRNA genes, resulting in 984 OTUs at 97 % identity. Two sites were dominated by Cyanobacteria (72 and 61 %, respectively), including chloroplasts. The third site differed by consisting of 95 % Proteobacteria. Principal component analysis showed that the three sites clustered together when compared to the underlying environments of sea ice and ocean water. The Shannon indices ranged from 2.226 to 3.758, and the Chao1 indices showed species richness between 293 and 353 for the three samples. The relatively low abundances and diversity found in the samples indicate a lower rate of microbial input to this snow habitat compared to snow in the proximity of terrestrial and anthropogenic sources of microorganisms. The differences in species composition and diversity between the sites show that apparently similar snow habitats contain a large variation in biodiversity, although the differences were smaller than the differences to the underlying environment. The results support the idea that a globally distributed community exists in snow and that the global snow community can in part be attributed to microbial input from the atmosphere. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00792-014-0660-y) contains supplementary material, which is available to authorized users

    Reproducibility of different screening classifications in ultrasonography of the newborn hip

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasonography of the hip has gained wide acceptance as a primary method for diagnosis, screening and treatment monitoring of developmental hip dysplasia in infants. The aim of the study was to examine the degree of concordance of two objective classifications of hip morphology and subjective parameters by three investigators with different levels of experience.</p> <p>Methods</p> <p>In 207 consecutive newborns (101 boys; 106 girls) the following parameters were assessed: bony roof angle (α-angle) and cartilage roof angle (β-angle) according to Graf's basic standard method, "femoral head coverage" (FHC) as described by Terjesen, shape of the bony roof and position of the cartilaginous roof. Both hips were measured twice by each investigator with a 7.5 MHz linear transducer (SONOLINE G60S<sup>® </sup>ultrasound system, SIEMENS, Erlangen, Germany).</p> <p>Results</p> <p>Mean kappa-coefficients for the subjective parameters shape of the bony roof (0.97) and position of the cartilaginous roof (1.0) demonstrated high intra-observer reproducibility. Best results were achieved for α-angle, followed by β-angle and finally FHC. With respect to limits of agreement, inter-observer reproducibility was calculated less precisely.</p> <p>Conclusions</p> <p>Higher measurement differences were evaluated more in objective scorings. Those variations were observed by every investigator irrespective of level of experience.</p

    Preservation of large-scale chromatin structure in FISH experiments

    Get PDF
    The nuclear organization of specific endogenous chromatin regions can be investigated only by fluorescence in situ hybridization (FISH). One of the two fixation procedures is typically applied: (1) buffered formaldehyde or (2) hypotonic shock with methanol acetic acid fixation followed by dropping of nuclei on glass slides and air drying. In this study, we compared the effects of these two procedures and some variations on nuclear morphology and on FISH signals. We analyzed mouse erythroleukemia and mouse embryonic stem cells because their clusters of subcentromeric heterochromatin provide an easy means to assess preservation of chromatin. Qualitative and quantitative analyses revealed that formaldehyde fixation provided good preservation of large-scale chromatin structures, while classical methanol acetic acid fixation after hypotonic treatment severely impaired nuclear shape and led to disruption of chromosome territories, heterochromatin structures, and large transgene arrays. Our data show that such preparations do not faithfully reflect in vivo nuclear architecture. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00412-006-0084-2 and is accessible for authorized users

    Monitoring the Size and Lateral Dynamics of ErbB1 Enriched Membrane Domains through Live Cell Plasmon Coupling Microscopy

    Get PDF
    To illuminate the role of the spatial organization of the epidermal growth factor receptor (ErbB1) in signal transduction quantitative information about the receptor topography on the cell surface, ideally on living cells and in real time, are required. We demonstrate that plasmon coupling microscopy (PCM) enables to detect, size, and track individual membrane domains enriched in ErbB1 with high temporal resolution. We used a dendrimer enhanced labeling strategy to label ErbB1 receptors on epidermoid carcinoma cells (A431) with 60 nm Au nanoparticle (NP) immunolabels under physiological conditions at 37°C. The statistical analysis of the spatial NP distribution on the cell surface in the scanning electron microscope (SEM) confirmed a clustering of the NP labels consistent with a heterogeneous distribution of ErbB1 in the plasma membrane. Spectral shifts in the scattering response of clustered NPs facilitated the detection and sizing of individual NP clusters on living cells in solution in an optical microscope. We tracked the lateral diffusion of individual clusters at a frame rate of 200 frames/s while simultaneously monitoring the configurational dynamics of the clusters. Structural information about the NP clusters in their membrane confinements were obtained through analysis of the electromagnetic coupling of the co-confined NP labels through polarization resolved PCM. Our studies show that the ErbB1 receptor is enriched in membrane domains with typical diameters in the range between 60–250 nm. These membrane domains exhibit a slow lateral diffusion with a diffusion coefficient of  = |0.0054±0.0064| µm2/s, which is almost an order of magnitude slower than the mean diffusion coefficient of individual NP tagged ErbB1 receptors under identical conditions

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi

    Cancer stem cell drugs target K-ras signaling in a stemness context

    Get PDF
    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC.Peer reviewe
    corecore