11 research outputs found

    The lack of the TetR-like repressor gene BCG_2177c (Rv2160A) may help mycobacteria overcome intracellular redox stress and survive longer inside macrophages when surrounded by a lipid environment

    Get PDF
    Mycobacteria, like other microorganisms, survive under different environmental variations by expressing an efficient adaptive response, oriented by regulatory elements, such as transcriptional repressors of the TetR family. These repressors in mycobacteria also appear to be related to cholesterol metabolism. In this study, we have evaluated the effect of a fatty acid (oleic–palmitic–stearic)/cholesterol mixture on some phenotypic and genotypic characteristics of a tetR-mutant strain (BCG_2177c mutated gene) of M. bovis BCG, a homologous of Rv2160A of M. tuberculosis. In order to accomplish this, we have analyzed the global gene expression of this strain by RNA-seq and evaluated its neutral-lipid storage capacity and potential to infect macrophages. We have also determined the macrophage response by measuring some pro- and anti-inflammatory cytokine expressions. In comparison with wild-type microorganisms, we showed that the mutation in the BCG_2177c gene did not affect the growth of M. bovis BCG in the presence of lipids but it probably modified the structure/composition of its cell envelope. Compared to with dextrose, an overexpression of the transcriptome of the wild-type and mutant strains was observed when these mycobacteria were cultured in lipids, mainly at the exponential phase. Twelve putative intracellular redox balance maintenance genes and four others coding for putative transcriptional factors (including WhiB6 and three TetR-like) were the main elements repeatedly overexpressed when cultured in the presence of lipids. These genes belonged to the central part of what we called the “genetic lipid signature” for M. bovis BCG. We have also found that all these mycobacteria genotypic changes affected the outcome of BCG-infected macrophages, being the mutant strain most adapted to persist longer inside the host. This high persistence result was also confirmed when mutant-infected macrophages showed overexpression of the anti-inflammatory cytokine TGF-ß versus pro-inflammatory cytokines. In summary, the lack of this TetR-like repressor expression, within a lipid environment, may help mycobacteria overcome intracellular redox stress and survive longer inside their host

    First insights into the genetic diversity of Mycobacterium tuberculosis isolates from HIV-infected Mexican patients and mutations causing multidrug resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of infections with <it>Mycobacterium tuberculosis </it>(MTb) and nontuberculous mycobacteria (NTM) species in HIV-infected patients in Mexico is unknown. The aims of this study were to determine the frequency of MTb and NTM species in HIV-infected patients from Mexico City, to evaluate the genotypic diversity of the <it>Mycobacterium tuberculosis </it>complex strains, to determine their drug resistance profiles by colorimetric microplate Alamar Blue assay (MABA), and finally, to detect mutations present in <it>kat</it>G, <it>rpo</it>B and <it>inh</it>A genes, resulting in isoniazid (INH) and rifampin (RIF) resistance.</p> <p>Results</p> <p>Of the 67 mycobacterial strains isolated, 48 were identified as MTb, 9 as <it>M. bovis</it>, 9 as <it>M. avium </it>and 1 as <it>M. intracellulare</it>. IS<it>6110</it>-RFLP of 48 MTb strains showed 27 profiles. Spoligotyping of the 48 MTb strains yielded 21 patterns, and 9 <it>M. bovis </it>strains produced 7 patterns. Eleven new spoligotypes patterns were found. A total of 40 patterns were produced from the 48 MTb strains when MIRU-VNTR was performed. Nineteen (39.6%) MTb strains were resistant to one or more drugs. One (2.1%) multidrug-resistant (MDR) strain was identified. A novel mutation was identified in a RIF-resistant strain, GAG → TCG (Glu → Ser) at codon 469 of <it>rpo</it>B gene.</p> <p>Conclusions</p> <p>This is the first molecular analysis of mycobacteria isolated from HIV-infected patients in Mexico, which describe the prevalence of different mycobacterial species in this population. A high genetic diversity of MTb strains was identified. New spoligotypes and MIRU-VNTR patterns as well as a novel mutation associated to RIF-resistance were found. This information will facilitate the tracking of different mycobacterial species in HIV-infected individuals, and monitoring the spread of these microorganisms, leading to more appropriate measures for tuberculosis control.</p

    Occurrence of potentially pathogenic nontuberculous mycobacteria in Mexican household potable water : a pilot study

    Get PDF
    BACKGROUND: Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the “main house faucet” and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. RESULTS: AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as “good quality” potable water. CONCLUSION: Household potable water may be a potential source of NTM infection in Mexico City

    Placental Tissue Destruction and Insufficiency from COVID-19 Causes Stillbirth and Neonatal Death from Hypoxic-Ischemic Injury: A Study of 68 Cases with SARS-CoV-2 Placentitis from 12 Countries

    No full text
    International audienceCONTEXT.—: Perinatal death is an increasingly important problem as the COVID-19 pandemic continues, but the mechanism of death has been unclear. OBJECTIVE.—: To evaluate the role of the placenta in causing stillbirth and neonatal death following maternal infection with COVID-19 and confirmed placental positivity for SARS-CoV-2. DESIGN.—: Case-based retrospective clinico-pathological analysis by a multinational group of 44 perinatal specialists from 12 countries of placental and autopsy pathology findings from 64 stillborns and 4 neonatal deaths having placentas testing positive for SARS-CoV-2 following delivery to mothers with COVID-19. RESULTS.—: All 68 placentas had increased fibrin deposition and villous trophoblast necrosis and 66 had chronic histiocytic intervillositis, the three findings constituting SARS-CoV-2 placentitis. Sixty-three placentas had massive perivillous fibrin deposition. Severe destructive placental disease from SARS-CoV-2 placentitis averaged 77.7% tissue involvement. Other findings included multiple intervillous thrombi (37%; 25/68) and chronic villitis (32%; 22/68). The majority (19, 63%) of the 30 autopsies revealed no significant fetal abnormalities except for intrauterine hypoxia and asphyxia. Among all 68 cases, SARS-CoV-2 was detected from a body specimen in 16 of 28 cases tested, most frequently from nasopharyngeal swabs. Four autopsied stillborns had SARS-CoV-2 identified in internal organs. CONCLUSIONS.—: The pathology abnormalities composing SARS-CoV-2 placentitis cause widespread and severe placental destruction resulting in placental malperfusion and insufficiency. In these cases, intrauterine and perinatal death likely results directly from placental insufficiency and fetal hypoxic-ischemic injury. There was no evidence that SARS-CoV-2 involvement of the fetus had a role in causing these deaths

    Placental Tissue Destruction and Insufficiency From COVID-19 Causes Stillbirth and Neonatal Death From Hypoxic-Ischemic Injury : A Study of 68 Cases With SARS-CoV-2 Placentitis From 12 Countries

    Get PDF
    Context: Perinatal death is an increasingly important problem as the coronavirus disease 2019 (COVID-19) pandemic continues, but the mechanism of death has been unclear. Objective: To evaluate the role of the placenta in causing stillbirth and neonatal death following maternal infection with COVID-19 and confirmed placental positivity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Design: Case-based retrospective clinicopathologic analysis by a multinational group of 44 perinatal specialists from 12 countries of placental and autopsy pathology findings from 64 stillborns and 4 neonatal deaths having placentas testing positive for SARS-CoV-2 following delivery to mothers with COVID-19. Results: Of the 3 findings constituting SARS-CoV-2 placentitis, all 68 placentas had increased fibrin deposition and villous trophoblast necrosis and 66 had chronic histiocytic intervillositis. Sixty-three placentas had massive perivillous fibrin deposition. Severe destructive placental disease from SARS-CoV-2 placentitis averaged 77.7% tissue involvement. Other findings included multiple intervillous thrombi (37%; 25 of 68) and chronic villitis (32%; 22 of 68). The majority (19; 63%) of the 30 autopsies revealed no significant fetal abnormalities except for intrauterine hypoxia and asphyxia. Among all 68 cases, SARS-CoV-2 was detected from a body specimen in 16 of 28 cases tested, most frequently from nasopharyngeal swabs. Four autopsied stillborns had SARS-CoV-2 identified in internal organs. Conclusions: The pathology abnormalities composing SARS-CoV-2 placentitis cause widespread and severe placental destruction resulting in placental malperfusion and insufficiency. In these cases, intrauterine and perinatal death likely results directly from placental insufficiency and fetal hypoxic-ischemic injury. There was no evidence that SARS-CoV-2 involvement of the fetus had a role in causing these deaths
    corecore