23 research outputs found

    Migraine, inflammatory bowel disease and celiac disease: A Mendelian randomization study

    Full text link
    Objective: To assess whether migraine may be genetically and/or causally associated with inflammatory bowel disease (IBD) or celiac disease. Background: Migraine has been linked to IBD and celiac disease in observational studies, but whether this link may be explained by a shared genetic basis or could be causal has not been established. The presence of a causal association could be clinically relevant, as treating one of these medical conditions might mitigate the symptoms of a causally linked condition. Methods: Linkage disequilibrium score regression and two-sample bidirectional Mendelian randomization analyses were performed using summary statistics from cohort-based genome-wide association studies of migraine (59,674 cases; 316,078 controls), IBD (25,042 cases; 34,915 controls) and celiac disease (11,812 or 4533 cases; 11,837 or 10,750 controls). Migraine with and without aura were analyzed separately, as were the two IBD subtypes Crohn's disease and ulcerative colitis. Positive control analyses and conventional Mendelian randomization sensitivity analyses were performed. Results: Migraine was not genetically correlated with IBD or celiac disease. No evidence was observed for IBD (odds ratio [OR] 1.00, 95% confidence interval [CI] 0.99-1.02, p = 0.703) or celiac disease (OR 1.00, 95% CI 0.99-1.02, p = 0.912) causing migraine or migraine causing either IBD (OR 1.08, 95% CI 0.96-1.22, p = 0.181) or celiac disease (OR 1.08, 95% CI 0.79-1.48, p = 0.614) when all participants with migraine were analyzed jointly. There was some indication of a causal association between celiac disease and migraine with aura (OR 1.04, 95% CI 1.00-1.08, p = 0.045), between celiac disease and migraine without aura (OR 0.95, 95% CI 0.92-0.99, p = 0.006), as well as between migraine without aura and ulcerative colitis (OR 1.15, 95% CI 1.02-1.29, p = 0.025). However, the results were not significant after multiple testing correction. Conclusions: We found no evidence of a shared genetic basis or of a causal association between migraine and either IBD or celiac disease, although we obtained some indications of causal associations with migraine subtypes. Keywords: Mendelian randomization; celiac disease; gastrointestinal disease; genetic correlation; inflammatory bowel disease; migraine

    Effect of worry, depression, and sensitivity to environmental stress owing to neurotic personality on risk of cardiovascular disease : A Mendelian randomization study

    No full text
    Objective This study investigated the putative causal link between neuroticism (using three genetically distinct subclusters namely depressed affect, worry, and sensitivity to environmental stress and adversity [SESA]) and cardiovascular disease (CVD). Method A two-sample bi-directional Mendelian randomization (MR) approach was used. Genetic instruments were extracted from publically available GWAS summary statistics. Results In forward MR analyses with neuroticism subclusters as exposures, no causal associations between worry or SESA cluster and any of the CVD traits were observed (p > .05 for all). However, a higher risk of having heart failure (odds ratio (95% confidence interval):1.32(1.12 to 1.56); p = .0011) and myocardial infarction (1.47[1.18 to 1.83]; p = 6.3 × 10-4) associated with depressed affect cluster was observed. In reverse MR analyses with CVD traits as exposures, no significant associations were observed (p > .05 for all). Conclusions Individuals with high neuroticism who are more susceptible to depressive symptoms are at higher risk for developing heart failure and myocardial infarction and should be more carefully evaluated for CVD risk in clinical settings. These individuals can potentially benefit from interventions aimed at reducing depressive symptoms to decrease CVD risk. There is no evidence to suggest that being sensitive to environmental stressors or being more worried can increase the risk for CVD

    Volumetric Differences in Cerebellum and Brainstem in Patients with Migraine: A UK Biobank Study

    No full text
    Background: The cerebellum and the brainstem are two brain structures involved in pain processing and modulation that have also been associated with migraine pathophysiology. The aim of this study was to investigate possible associations between the morphology of the cerebellum and brainstem and migraine, focusing on gray matter differences in these brain areas. Methods: The analyses were based on data from 712 individuals with migraine and 45,681 healthy controls from the UK Biobank study. Generalized linear models were used to estimate the mean gray matter volumetric differences in the brainstem and the cerebellum. The models were adjusted for important biological covariates such as BMI, age, sex, total brain volume, diastolic blood pressure, alcohol intake frequency, current tobacco smoking, assessment center, material deprivation, ethnic background, and a wide variety of health conditions. Secondary analyses investigated volumetric correlation between cerebellar sub-regions. Results: We found larger gray matter volumes in the cerebellar sub-regions V (mean difference: 72 mm3, 95% CI [13, 132]), crus I (mean difference: 259 mm3, 95% CI [9, 510]), VIIIa (mean difference: 120 mm3, 95% CI [0.9, 238]), and X (mean difference: 14 mm3, 95% CI [1, 27]). Conclusions: Individuals with migraine show larger gray matter volumes in several cerebellar sub-regions than controls. These findings support the hypothesis that the cerebellum plays a role in the pathophysiology of migraine

    A debate on current eating disorder diagnoses in light of neurobiological findings : is it time for a spectrum model?

    No full text
    Background: Sixty percent of eating disorders do not meet criteria for anorexia- or bulimia nervosa, as defined by the Diagnostic and Statistical Manual version 4 (DSM-IV). Instead they are diagnosed as 'eating disorders not otherwise specified' (EDNOS). Discrepancies between criteria and clinical reality currently hampering eating disorder diagnoses in the DSM-IV will be addressed by the forthcoming DSM-V. However, future diagnoses for eating disorders will rely on current advances in the fields of neuroimaging and genetics for classification of symptoms that will ultimately improve treatment. Discussion: Here we debate the classification issues, and discuss how brain imaging and genetic discoveries might be interwoven into a model of eating disorders to provide better classification and treatment. The debate concerns: a) current issues in the classification of eating disorders in the DSM-IV, b) changes proposed for DSM-V, c) neuroimaging eating disorder research and d) genetic eating disorder research. Summary: We outline a novel evidence-based 'impulse control' spectrum model of eating disorders. A model of eating disorders is proposed that will aid future diagnosis of symptoms, coinciding with contemporary suggestions by clinicians and the proposed changes due to be published in the DSM-V

    A debate on current eating disorder diagnoses in light of neurobiological findings : is it time for a spectrum model?

    Get PDF
    Background: Sixty percent of eating disorders do not meet criteria for anorexia- or bulimia nervosa, as defined by the Diagnostic and Statistical Manual version 4 (DSM-IV). Instead they are diagnosed as 'eating disorders not otherwise specified' (EDNOS). Discrepancies between criteria and clinical reality currently hampering eating disorder diagnoses in the DSM-IV will be addressed by the forthcoming DSM-V. However, future diagnoses for eating disorders will rely on current advances in the fields of neuroimaging and genetics for classification of symptoms that will ultimately improve treatment. Discussion: Here we debate the classification issues, and discuss how brain imaging and genetic discoveries might be interwoven into a model of eating disorders to provide better classification and treatment. The debate concerns: a) current issues in the classification of eating disorders in the DSM-IV, b) changes proposed for DSM-V, c) neuroimaging eating disorder research and d) genetic eating disorder research. Summary: We outline a novel evidence-based 'impulse control' spectrum model of eating disorders. A model of eating disorders is proposed that will aid future diagnosis of symptoms, coinciding with contemporary suggestions by clinicians and the proposed changes due to be published in the DSM-V

    One-night sleep deprivation induces changes in the DNA methylation and serum activity indices of stearoyl-CoA desaturase in young healthy men

    Get PDF
    Background: Sleep deprivation has been associated with obesity among adults, and accumulating data suggests that stearoyl-CoA desaturase 1 (SCD1) expression has a relevant impact on fatty acid (FA) composition of lipid pools and obesity. The aim of this study was to investigate the effect of one-night total sleep deprivation (TSD) on DNA methylation in the 5'-prime region of SCD1, and whether detected changes in DNA methylation are associated with SCD activity indices (product to precursor FA ratios; 16:In-7/16:0 and 18:IN-9/18:0) derived from serum phospholipids (PL). Methods: Sixteen young, normal-weight, healthy men completed two study sessions, one with one-night TSD and one with one-night normal sleep (NS). Sleep quality and length was assessed by polysomnography, and consisted of electroencephalography, electrooculography, and electromyography. Fasting whole blood samples were collected on the subsequent morning for analysis of DNA methylation and FA5 in serum PL. Linear regression analyses were performed to assess the association between changes in DNA methylation and SCD activity indices. Results: Three CpG sites close to the transcription start site (TSS) of SCD1 (cg00954566, cg24503796, cg14089512) were significantly differentially methylated in dependency of sleep duration (-log(10)P-value > 1.3). Both SCD-16 and SCD-18 activity indices were significantly elevated (P < 0.05) following one-night TSD, and significantly associated with DNA methylation changes of the three mentioned probes in the 5' region of SCD1. Conclusion: Our results suggest a relevant link between TSD, hepatic SCD1 expression and de-novo fatty acid synthesis via epigenetically driven regulatory mechanisms

    Memory impairment induced by IL-1beta is reversed by alpha-MSH through central melanocortin-4 receptors

    No full text
    Interleukin-1beta (IL-1beta) significantly influences memory consolidation. Treatments that raise the level of IL-1beta in the brain, given after training, impair contextual fear conditioning. The melanocortin alpha-MSH exerts potent anti-inflammatory actions by physiologically antagonizing the effect of pro-inflammatory cytokines. Five subtypes of melanocortin receptors (MC1R-MC5R) have been identified, with MC3R and MC4R predominating in the central nervous system. The present experiments show that injection of IL-1beta (5ng/0.25mul) in dorsal hippocampus up to 15min after training decreased freezing during the contextual fear test. The treatment with IL-1beta (5ng/0.25mul) 12h after conditioning cause amnesia when animals were tested 7days post training. Thus, our results also demonstrated that IL-1beta can influence persistence of long-term memory. We determined that animals previously injected with IL-1beta can acquire a new contextual fear memory, demonstrating that the hippocampus was not damaged. Treatment with alpha-MSH (0.05mug/0.25mul) blocked the effect of IL-1beta on contextual fear memory. Administration of the MC4 receptor antagonist HS014 (0.5mug/0.25mul) reversed the effect of alpha-MSH. However, treatment with gamma-MSH (0.5mug/0.25mul), an MC3 agonist, did not affect IL-1beta-induced impairment of memory consolidation. These results suggest that alpha-MSH, through central MC4R can inhibit the effect of IL-1beta on memory consolidation.Fil: Gonzalez, Patricia Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Schiöth, Helgi Birgir. Uppsala Universitet.; SueciaFil: Lasaga, Mercedes Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Biología Celular e Histología. Centro de Investigación en Reproducción; ArgentinaFil: Scimonelli, Teresa Nieves. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentin
    corecore