2,141 research outputs found

    Wigner transform and pseudodifferential operators on symmetric spaces of non-compact type

    Full text link
    We obtain a general expression for a Wigner transform (Wigner function) on symmetric spaces of non-compact type and study the Weyl calculus of pseudodifferential operators on them

    Topological Insulators and Superconductors from String Theory

    Full text link
    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and supercondutors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K-theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K-theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ\theta-term in various dimensions. This sheds light on topological insulators and superconductors beyond non-interacting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).Comment: 13 pages, 3 figures;references update

    Searching for a trail of evidence in a maze

    Full text link
    Consider a graph with a set of vertices and oriented edges connecting pairs of vertices. Each vertex is associated with a random variable and these are assumed to be independent. In this setting, suppose we wish to solve the following hypothesis testing problem: under the null, the random variables have common distribution N(0,1) while under the alternative, there is an unknown path along which random variables have distribution N(μ,1)N(\mu,1), μ>0\mu> 0, and distribution N(0,1) away from it. For which values of the mean shift μ\mu can one reliably detect and for which values is this impossible? Consider, for example, the usual regular lattice with vertices of the form {(i,j):0i,ijiandjhastheparityofi}\{(i,j):0\le i,-i\le j\le i and j has the parity of i\} and oriented edges (i,j)(i+1,j+s)(i,j)\to (i+1,j+s), where s=±1s=\pm1. We show that for paths of length mm starting at the origin, the hypotheses become distinguishable (in a minimax sense) if μm1/logm\mu_m\gg1/\sqrt{\log m}, while they are not if μm1/logm\mu_m\ll1/\log m. We derive equivalent results in a Bayesian setting where one assumes that all paths are equally likely; there, the asymptotic threshold is μmm1/4\mu_m\approx m^{-1/4}. We obtain corresponding results for trees (where the threshold is of order 1 and independent of the size of the tree), for distributions other than the Gaussian and for other graphs. The concept of the predictability profile, first introduced by Benjamini, Pemantle and Peres, plays a crucial role in our analysis.Comment: Published in at http://dx.doi.org/10.1214/07-AOS526 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the Solvability of the Transvection group of Extrinsic Symplectic Symmetric Spaces

    Get PDF
    Let MM be a symplectic symmetric space, and let ı:MV\imath : M \to V be an extrinsic symplectic symmetric immersion, i.e., (V,Ω)(V, \Omega) is a symplectic vector space and ı\imath is an injective symplectic immersion such that for each point pMp \in M, the geodesic symmetry in pp is compatible with the reflection in the affine normal space at ı(p)\imath(p). We show that the existence of such an immersion implies that the transvection group of MM is solvable.Comment: 15 page

    Lightlike simultaneity, comoving observers and distances in general relativity

    Full text link
    We state a condition for an observer to be comoving with another observer in general relativity, based on the concept of lightlike simultaneity. Taking into account this condition, we study relative velocities, Doppler effect and light aberration. We obtain that comoving observers observe the same light ray with the same frequency and direction, and so gravitational redshift effect is a particular case of Doppler effect. We also define a distance between an observer and the events that it observes, that coincides with the known affine distance. We show that affine distance is a particular case of radar distance in the Minkowski space-time and generalizes the proper radial distance in the Schwarzschild space-time. Finally, we show that affine distance gives us a new concept of distance in Robertson-Walker space-times, according to Hubble law.Comment: 17 pages, 5 figures. Since "lightlike distance" is in fact the known "affine distance", the notation has been change

    Large-N Solution of the Heterotic CP(N-1) Model with Twisted Masses

    Full text link
    We address a number of unanswered questions in the N=(0,2)-deformed CP(N-1) model with twisted masses. In particular, we complete the program of solving CP(N-1) model with twisted masses in the large-N limit. In hep-th/0512153 nonsupersymmetric version of the model with the Z_N symmetric twisted masses was analyzed in the framework of Witten's method. In arXiv:0803.0698 this analysis was extended: the large-N solution of the heterotic N=(0,2) CP(N-1) model with no twisted masses was found. Here we solve this model with the twisted masses switched on. Dynamical scenarios at large and small m are studied (m is the twisted mass scale). We found three distinct phases and two phase transitions on the m plane. Two phases with the spontaneously broken Z_N-symmetry are separated by a phase with unbroken Z_N. This latter phase is characterized by a unique vacuum and confinement of all U(1) charged fields ("quarks"). In the broken phases (one of them is at strong coupling) there are N degenerate vacua and no confinement, similarly to the situation in the N=(2,2) model. Supersymmetry is spontaneously broken everywhere except a circle |m|=\Lambda in the Z_N-unbroken phase. Related issues are considered. In particular, we discuss the mirror representation for the heterotic model in a certain limiting case.Comment: 69 pages, 14 figures; typos corrected, final version to appear in PRD; v Jan. 2014 Erratum added on p. 50, two references added and two references update

    Reconstructing emission from pre-reionization sources with cosmic infrared background fluctuation measurements by the JWST

    Full text link
    We present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at 10<z<30 from a JWST/NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.5--5 micron. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and Akari data at 2--5 micron, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over 10<z<30 as the Universe comes out of the 'Dark Ages'. We apply the proposed tomography to the current Spitzer/IRAC measurements at 3.6 and 4.5 micron, to find that it already leads to interestingly low upper limit on emissions at z>30.Comment: ApJ, in press. Minor revisions/additions to match the version in proof

    Structure and magnetic properties of the cubic oxide fluoride BaFeO2F

    Get PDF
    Fluorination of the parent oxide, BaFeO3- δ, with polyvinylidine fluoride gives rise to a cubic compound with a = 4.0603(4) Å at 298K. 57Fe Mössbauer spectra confirmed that all the iron is present as Fe3+. Neutron diffraction data showed complete occupancy of the anion sites indicating a composition BaFeO2F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as TN = 645±5K. Neutron diffraction data at 4.2K established G-type antiferromagnetism with a magnetic moment per Fe3+ ion of 3.95μB. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment which is assigned to the canting of the antiferromagnetic structure. 57Fe Mössbauer spectra in the temperature range 10 to 300K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cel
    corecore