1,841 research outputs found

    The unbinding transition of mixed fluid membranes

    Full text link
    A phenomenological model for the unbinding transition of multi-component fluid membranes is proposed, where the unbinding transition is described using a theory analogous to Flory-Huggins theory for polymers. The coupling between the lateral phase separation of inclusion molecules and the membrane-substrate distance explains the phase coexistence between two unbound phases as observed in recent experiments by Marx et al. [Phys. Rev. Lett. 88, 138102 (2002)]. Bellow a critical end-point temperature, we find that the unbinding transition becomes first-order for multi-component membranes.Comment: 7 pages, 3 eps figure

    Thermal Casimir drag in fluctuating classical fields

    Full text link
    A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field is shown to experience a drag force which depends on the dynamics of the field. It is shown that in a number of cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form. Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible ones such as polymers and membranes.Comment: 4 pages RevTex, 2 figure

    A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers

    Full text link
    The tensile force along a cylindrical lipid bilayer tube is proportional to the membrane's bending modulus and inversely proportional to the tube radius. We show that this relation, which is experimentally exploited to measure bending rigidities, can be applied with even greater ease in computer simulations. Using a coarse-grained bilayer model we efficiently obtain bending rigidities that compare very well with complementary measurements based on an analysis of thermal undulation modes. We furthermore illustrate that no deviations from simple quadratic continuum theory occur up to a radius of curvature comparable to the bilayer thickness.Comment: 7 pages, 5 figures, 1 tabl

    Crumpling transition of the triangular lattice without open edges: effect of a modified folding rule

    Full text link
    Folding of the triangular lattice in a discrete three-dimensional space is investigated by means of the transfer-matrix method. This model was introduced by Bowick and co-workers as a discretized version of the polymerized membrane in thermal equilibrium. The folding rule (constraint) is incompatible with the periodic-boundary condition, and the simulation has been made under the open-boundary condition. In this paper, we propose a modified constraint, which is compatible with the periodic-boundary condition; technically, the restoration of translational invariance leads to a substantial reduction of the transfer-matrix size. Treating the cluster sizes L \le 7, we analyze the singularities of the crumpling transitions for a wide range of the bending rigidity K. We observe a series of the crumpling transitions at K=0.206(2), -0.32(1), and -0.76(10). At each transition point, we estimate the latent heat as Q=0.356(30), 0.08(3), and 0.05(5), respectively

    The Effect of Thermal Fluctuations on Schulman Area Elasticity

    Full text link
    We study the elastic properties of a two-dimensional fluctuating surface whose area density is allowed to deviate from its optimal (Schulman) value. The behavior of such a surface is determined by an interplay between the area-dependent elastic energy, the curvature elasticity, and the entropy. We identify three different elastic regimes depending on the ratio Ap/AsA_p/A_s between the projected (frame) and the saturated areas. We show that thermal fluctuations modify the elastic energy of stretched surfaces (Ap/As>1A_p/A_s> 1), and dominate the elastic energy of compressed surfaces (Ap/As<1A_p/A_s< 1). When ApAsA_p\sim A_s the elastic energy is not much affected by the fluctuations; the frame area at which the surface tension vanishes becomes smaller than AsA_s and the area elasticity modulus increases.Comment: 12 pages, to appear in Euro. Phys. J.

    Fluctuation induced interactions between domains in membranes

    Full text link
    We study a model lipid bilayer composed of a mixture of two incompatible lipid types which have a natural tendency to segregate in the absence of membrane fluctuations. The membrane is mechanically characterized by a local bending rigidity κ(ϕ)\kappa(\phi) which varies with the average local lipid composition ϕ\phi. We show, in the case where κ\kappa varies weakly with ϕ\phi, that the effective interaction between lipids of the same type can either be everywhere attractive or can have a repulsive component at intermediate distances greater than the typical lipid size. When this interaction has a repulsive component, it can prevent macro-phase separation and lead to separation in mesophases with a finite domain size. This effect could be relevant to certain experimental and numerical observations of mesoscopic domains in such systems.Comment: 9 pages RevTex, 1 eps figur

    Folding of the triangular lattice in a discrete three-dimensional space: Crumpling transitions in the negative-bending-rigidity regime

    Full text link
    Folding of the triangular lattice in a discrete three-dimensional space is studied numerically. Such ``discrete folding'' was introduced by Bowick and co-workers as a simplified version of the polymerized membrane in thermal equilibrium. According to their cluster-variation method (CVM) analysis, there appear various types of phases as the bending rigidity K changes in the range -infty < K < infty. In this paper, we investigate the K<0 regime, for which the CVM analysis with the single-hexagon-cluster approximation predicts two types of (crumpling) transitions of both continuous and discontinuous characters. We diagonalized the transfer matrix for the strip widths up to L=26 with the aid of the density-matrix renormalization group. Thereby, we found that discontinuous transitions occur successively at K=-0.76(1) and -0.32(1). Actually, these transitions are accompanied with distinct hysteresis effects. On the contrary, the latent-heat releases are suppressed considerably as Q=0.03(2) and 0.04(2) for respective transitions. These results indicate that the singularity of crumpling transition can turn into a weak-first-order type by appreciating the fluctuations beyond a meanfield level

    Compression modulus of macroscopic fiber bundles

    Full text link
    We study dense, disordered stacks of elastic macroscopic fibers. These stacks often exhibit non-linear elasticity, due to the coupling between the applied stress and the internal distribution of fiber contacts. We propose a theoretical model for the compression modulus of such systems, and illustrate our method by studying the conical shapes frequently observed at the extremities of ropes and other fiber structures. studying the conical shapes frequently observed at theextremities of ropes and other fiber structures

    Rigid Chiral Membranes

    Get PDF
    Statistical ensembles of flexible two-dimensional fluid membranes arise naturally in the description of many physical systems. Typically one encounters such systems in a regime of low tension but high stiffness against bending, which is just the opposite of the regime described by the Polyakov string. We study a class of couplings between membrane shape and in-plane order which break 3-space parity invariance. Remarkably there is only {\it one} such allowed coupling (up to boundary terms); this term will be present for any lipid bilayer composed of tilted chiral molecules. We calculate the renormalization-group behavior of this relevant coupling in a simplified model and show how thermal fluctuations effectively reduce it in the infrared.Comment: 11 pages, UPR-518T (This replaced version has fonts not used removed.

    Swelling of particle-encapsulating random manifolds

    Full text link
    We study the statistical mechanics of a closed random manifold of fixed area and fluctuating volume, encapsulating a fixed number of noninteracting particles. Scaling analysis yields a unified description of such swollen manifolds, according to which the mean volume gradually increases with particle number, following a single scaling law. This is markedly different from the swelling under fixed pressure difference, where certain models exhibit criticality. We thereby indicate when the swelling due to encapsulated particles is thermodynamically inequivalent to that caused by fixed pressure. The general predictions are supported by Monte Carlo simulations of two particle-encapsulating model systems -- a two-dimensional self-avoiding ring and a three-dimensional self-avoiding fluid vesicle. In the former the particle-induced swelling is thermodynamically equivalent to the pressure-induced one whereas in the latter it is not.Comment: 8 pages, 6 figure
    corecore