32 research outputs found

    First Steps Towards an Intelligent Laser Welding Architecture Using Deep Neural Networks and Reinforcement Learning

    Get PDF
    AbstractTo address control difficulties in laser welding, we propose the idea of a self-learning and self-improving laser welding system that combines three modern machine learning techniques. We first show the ability of a deep neural network to extract meaningful, low-dimensional features from high-dimensional laser-welding camera data. These features are then used by a temporal-difference learning algorithm to predict and anticipate important aspects of the system's sensor data. The third part of our proposed architecture suggests using these features and predictions to learn to deliver situation-appropriate welding power; preliminary control results are demonstrated using a laser-welding simulator. The intelligent laser-welding architecture introduced in this work has the capacity to improve its performance without further human assistance and therefore addresses key requirements of modern industry. To our knowledge, it is the first demonstrated combination of deep learning and Nexting with general value functions and also the first usage of deep learning for laser welding specifically and production engineering in general. This work also provides a unique example of how predictions can be explicitly learned using reinforcement learning to support laser welding. We believe that it would be straightforward to adapt our approach to other production engineering applications

    ER Stress-Mediated Apoptosis in a New Mouse Model of Osteogenesis imperfecta

    Get PDF
    Osteogenesis imperfecta is an inherited disorder characterized by increased bone fragility, fractures, and osteoporosis, and most cases are caused by mutations affecting the type I collagen genes. Here, we describe a new mouse model for Osteogenesis imperfecta termed Aga2 (abnormal gait 2) that was isolated from the Munich N-ethyl-N-nitrosourea mutagenesis program and exhibited phenotypic variability, including reduced bone mass, multiple fractures, and early lethality. The causal gene was mapped to Chromosome 11 by linkage analysis, and a C-terminal frameshift mutation was identified in the Col1a1 (procollagen type I, alpha 1) gene as the cause of the disorder. Aga2 heterozygous animals had markedly increased bone turnover and a disrupted native collagen network. Further studies showed that abnormal proα1(I) chains accumulated intracellularly in Aga2/+ dermal fibroblasts and were poorly secreted extracellularly. This was associated with the induction of an endoplasmic reticulum stress-specific unfolded protein response involving upregulation of BiP, Hsp47, and Gadd153 with caspases-12 and −3 activation and apoptosis of osteoblasts both in vitro and in vivo. These studies resulted in the identification of a new model for Osteogenesis imperfecta, and identified a role for intracellular modulation of the endoplasmic reticulum stress-associated unfolded protein response machinery toward osteoblast apoptosis during the pathogenesis of disease

    Impact of radiotherapy and sequencing of systemic therapy on survival outcomes in melanoma patients with previously untreated brain metastasis: a multicenter DeCOG study on 450 patients from the prospective skin cancer registry ADOREG

    Get PDF
    BACKGROUND: Despite of various therapeutic strategies, treatment of patients with melanoma brain metastasis (MBM) still is a major challenge. This study aimed at investigating the impact of type and sequence of immune checkpoint blockade (ICB) and targeted therapy (TT), radiotherapy, and surgery on the survival outcome of patients with MBM. METHOD: We assessed data of 450 patients collected within the prospective multicenter real-world skin cancer registry ADOREG who were diagnosed with MBM before start of the first non-adjuvant systemic therapy. Study endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS: Of 450 MBM patients, 175 (38.9%) received CTLA-4+PD-1 ICB, 161 (35.8%) PD-1 ICB, and 114 (25.3%) BRAF+MEK TT as first-line treatment. Additional to systemic therapy, 67.3% of the patients received radiotherapy (stereotactic radiosurgery (SRS); conventional radiotherapy (CRT)) and 24.4% had surgery of MBM. 199 patients (42.2%) received a second-line systemic therapy. Multivariate Cox regression analysis revealed the application of radiotherapy (HR for SRS: 0.213, 95% CI 0.094 to 0.485, p1 cm: 1.977, 95% CI 1.117 to 3.500, p=0.019), age (HR for age >65 years: 1.802, 95% CI 1.016 to 3.197, p=0.044), and ECOG performance status (HR for ECOG ≥2: HR: 2.615, 95% CI 1.024 to 6.676, p=0.044) as independent prognostic factors of OS on first-line therapy. The type of first-line therapy (ICB vs TT) was not independently prognostic. As second-line therapy BRAF+MEK showed the best survival outcome compared with ICB and other therapies (HR for CTLA-4+PD-1 compared with BRAF+MEK: 13.964, 95% CI 3.6 to 54.4, p<0.001; for PD-1 vs BRAF+MEK: 4.587 95% CI 1.3 to 16.8, p=0.022 for OS). Regarding therapy sequencing, patients treated with ICB as first-line therapy and BRAF+MEK as second-line therapy showed an improved OS (HR for CTLA-4+PD-1 followed by BRAF+MEK: 0.370, 95% CI 0.157 to 0.934, p=0.035; HR for PD-1 followed by BRAF+MEK: 0.290, 95% CI 0.092 to 0.918, p=0.035) compared with patients starting with BRAF+MEK in first-line therapy. There was no significant survival difference when comparing first-line therapy with CTLA-4+PD-1 ICB with PD-1 ICB. CONCLUSIONS: In patients with MBM, the addition of radiotherapy resulted in a favorable OS on systemic therapy. In BRAF-mutated MBM patients, ICB as first-line therapy and BRAF+MEK as second-line therapy were associated with a significantly prolonged OS

    Messungen der Normsichtweite mit einem Streulichtschreiber während der Atlantischen Expedition 1965 "Meteor"

    No full text
    During the Atlantic Expedition "Meteor" 1965 the standard visibility was measured aboard with an AEG/FFM-Scattered Light Recorder. The working principle, technique and accuracy of this instrument is described. Furthermore some empirical results are discussed, e. g. the errors due to the disturbing influences of the ship and those caused by contamination of the lenses, The measured values are compared with estimated values of visibility by eyeobservation. For certain periods with uniform atmosphericconditions, hourly mean values of visibility have been correlated with air temperature, humidity and wind. The visibility shows a rather weak daily period for pure oceanic aerosol, whereas about 100 miles off the African coast the period appeared more pronounced. Interesting differences have been found in the relative changes of visibility for different origins of the aerosol. 'fhis results into a dependence of visibility on the wavelength of scattered radiation

    Fluctuation pressure of biomembranes in planar confinement

    No full text

    Dynamics of Vesicle Self-Assembly and Dissolution

    Get PDF
    The dynamics of membranes is studied on the basis of a particle-based meshless surface model, which was introduced earlier [Phys. Rev. E 73, 021903 (2006)]. The model describes fluid membranes with bending energy and-in the case of membranes with boundaries-line tension. The effects of hydrodynamic interactions are investigated by comparing Brownian dynamics with a particle-based mesoscale solvent simulation (multiparticle collision dynamics). Particles self-assemble into vesicles via disk-shaped membrane patches. The time evolution of assembly is found to consist of three steps: particle assembly into discoidal clusters, aggregation of clusters into larger membrane patches, and finally vesicle formation. The time dependence of the cluster distribution and the mean cluster size is evaluated and compared with the predictions of Smoluchowski rate equations. On the other hand, when the line tension is suddenly decreased (or the temperature is increased), vesicles dissolve via pore formation in the membrane. Hydrodynamic interactions are found to speed up the dynamics in both cases. Furthermore, hydrodynamics makes vesicle more spherical in the membrane-closure process

    Mathematical Predictive Models for Cooling Ponds and Lakes

    No full text
    Prepared Under the Support of Commonwealth Edison Company Chicago, Illinois; NUS Corporation Rockville, Maryland; Environmental Control Technology Division U.S. Department of Energy, Washington, D.C.; and Electric Power Research Institute Palo Alto, CaliforniaPart B. User's manual and applications of MITEMP / Kathleen Hurley Octavio, Masataka Watanabe, E. Eric Adams, Gerhard H. Jirka, Karl R. Helfrich [and] Donald R.F. Harleman -- Part C. A transient analytical model for shallow cooling ponds / E. Eric Adams, Antonis D. Koussis
    corecore