8 research outputs found

    Magnetoelastic Coupling and Possibility of Spintronic Electromagnetomechanical Effects

    Get PDF
    Nanoelectromangetomechanical systems (NEMMS) open up a new path for the development of high speed autonomous nanoresonators and signal generators that could be used as actuators, for information processing, as elements of quantum computers etc. Those NEMMS that include ferromagnetic layers could be controlled by the electric current due to effects related with spin transfer. In the present paper we discuss another situation when the current-controlled behaviour of nanorod that includes an antiferro- (instead of one of ferro-) magnetic layer. We argue that in this case ac spin-polarized current can also induce resonant coupled magneto-mechanical oscillations and produce an oscillating magnetization of antiferromagnetic (AFM) layer. These effects are caused by \emph{i}) spin-transfer torque exerted to AFM at the interface with nonmagnetic spacer and by \emph{ii}) the effective magnetic field produced by the spin-polarized free electrons due to sdsd-exchange.The described nanorod with an AFM layer can find an application in magnetometry and as a current-controlled high-frequency mechanical oscillator.Comment: 8 pages, 2 figures, submitted to Low Temp. Physic

    Shape-induced phenomena in the finite size antiferromagnets

    Full text link
    It is of common knowledge that the direction of easy axis in the finite-size ferromagnetic sample is controlled by its shape. In the present paper we show that a similar phenomenon should be observed in the compensated antiferromagnets with strong magnetoelastic coupling. Destressing energy which originates from the long-range magnetoelastic forces is analogous to demagnetization energy in ferromagnetic materials and is responsible for the formation of equilibrium domain structure and anisotropy of macroscopic magnetic properties. In particular, crystal shape may be a source of additional uniaxial magnetic anisotropy which removes degeneracy of antiferromagnetic vector or artificial 4th order anisotropy in the case of a square cross-section sample. In a special case of antiferromagnetic nanopillars shape-induced anisotropy can be substantially enhanced due to lattice mismatch with the substrate. These effects can be detected by the magnetic rotational torque and antiferromagnetic resonance measurements.Comment: 7 pages, 5 figures, to appear in Phys. Rev. B, v.75, N17, 200

    On the theory of magnetization in multiferroics: competition between ferro- and antiferromagnetic domains

    Full text link
    Many technological applications of multiferroics are based on their ability to reconstruct the domain structure (DS) under the action of small external fields. In the present paper we analyze the different scenarios of the DS behavior in a multiferroic that shows simultaneously ferro- and antiferromagnetic ordering on the different systems of magnetic ions. We consider the way to control a composition of the DS and macroscopic properties of the sample by an appropriate field treatment. We found out that sensitivity of the DS to the external magnetic field and the magnetic susceptibility in a low-field region are determined mainly by the destressing effects (that have magnetoelastic origin). In a particular case of Sr2_{2}Cu3_{3}O4_{4}Cl2_{2} crystal we anticipate the peculiarities of the elastic and magnetoelastic properties at T100T\approx 100 K.Comment: 16 pages, 10 figure

    Spin transfer and current-induced switching in antiferromagnets

    Full text link
    We present theoretical description of the precessional switching processes induced by simultaneous application of spin-polarized current and external magnetic field to antiferromagnetic component of the "pinned" layer. We found stability ranges of different static and dynamic regimes. We showed the possibility of steady current-induced precession of antiferromagnetic vector with frequency that linearly depends on the bias current. Furthermore, we found an optimal duration of current pulse required for switching between different orientations of antiferromagnetic vector and current and field dependence of switching time. Our results reveal the difference between dynamics of ferro- and antiferromagnets subjected to spin transfer torques.Comment: 7 pages, 4 figure

    Symmetry and the macroscopic dynamics of antiferromagnetic materials in the presence of spin-polarized current

    Full text link
    Antiferromagnetic (AFM) materials with zero or vanishingly small macroscopic magnetization are nowadays the constituent elements of spintronic devices. However, possibility to use them as active elements that show nontrivial controllable magnetic dynamics is still discussible. In the present paper we extend the theory [A.F.Andreev, V.I.Marchenko, Sov. Phys. --- Uspekhi, 23 (1980), 21] of macroscopic dynamics in AFMs for the cases typical for spin-valve devices. In particular, we consider the solid-like magnetic dynamics of AFMs with strong exchange coupling in the presence of spin-polarized current and give an expression for the current-induced Rayleigh dissipation function in terms of the rotation vector for different types %generalized potential of AFMs. Basing on the analysis of linearized equations of motion we predict the current-induced reorientation and AFM resonance, and found the values of critical currents in terms of AFMR frequencies and damping constants. We show the possibility of current-induced spin-diode effect and second-harmonic generation in AF layer. The proposed approach is generalized for the description of current-related phenomena in inhomogeneous AFMs.Comment: 10 pages, 3 figures, to be submitted to PR

    Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets

    No full text
    Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La0.7Sr0.3MnO3 thin films and LaFeO3/La0.7Sr0.3MnO3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. The data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets
    corecore