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Nanoelectromagnetomechanical systems (NEMMS) open up a new path for the development of high speed 
autonomous nanoresonators and signal generators that could be used as actuators, for information processing, as 
elements of quantum computers etc. Those NEMMS that include ferromagnetic layers could be controlled by the 
electric current due to effects related with spin transfer. In the present paper we discuss another situation when 
the current-controlled behavior of nanorod that includes an antiferro- (instead of one of ferro-) magnetic layer. 
We argue that in this case ac spin-polarized current can also induce resonant coupled magnetomechanical oscil-
lations and produce an oscillating magnetization of antiferromagnetic (AFM) layer. These effects are caused by 
i) spin-transfer torque exerted to AFM at the interface with nonmagnetic spacer and by ii) the effective magnetic 
field produced by the spin-polarized free electrons due to sd-exchange. The described nanorod with an AFM 
layer can find an application in magnetometry and as a current-controlled high-frequency mechanical oscillator. 

PACS: 85.75.–d Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated 
magnetic fields; 
75.50.Ee Antiferromagnetics; 
75.47.–m Magnetotransport phenomena; materials for magnetotransport; 
75.47.De Giant magnetoresistance. 

Keywords: antiferromagnetic layer, electromagnetomechanical effects, spin-polarized free electrons. 
 

 
1. Introduction 

Nanoelectromagnetomechanical systems (NEMMS) that 
convert electromagnetic energy into mechanical motion 
and vice versa are now of great interest for several reasons. 
First of all, NEMMS themselves give yet another manife-
station of the coupling between magnetic and mechanical 
degrees of freedom. Up to now magnetomechanical inte-
ractions were the most completely studied for the systems 
with no electric current (we are talking about the orienta-
tional phase transitions, see, e.g. [1], the coupled magnon-
phonon modes [2], formation of a magnetoelastic gap [3] 
etc.). In these cases one can speak about thermodynamic 
equilibrium and describe the system with the time-in-
dependent equations. At the same time in recent years in-
vestigations in physics of magnetic phenomena have 
moved to a new field of spintronics, where not just the 
current, but the spin-polarized electrical current is a critical 

component that forms the magnetic properties of — mainly 
metallic — systems. 

On the other hand, recently increased attention to 
NEMMS is also related with their potential applications. In 
particular, because of small geometrical size, the funda-
mental mechanical modes of NEMMS fall into GHz range 
and corresponding devices could be used as high-fre-
quency actuators and transducers of mechanical motion [4] 
(see also [5] and references therein). Besides, at low tem-
peratures (much smaller than the energy of fundamental 
mode) NEMMS show quantized mechanical behavior and 
thus could be used for the quantum measurements and 
quantum information processing [6–9]. At last, due to high 
sensitivity to the external fields, including electric, magnet-
ic and surface stresses, the NEMMS could be used as the 
effective tools for biological imaging [5], magnetometry 
[10,11], for the measurement of magnetoelastic properties 
and magnetic anisotropy of the materials [12] etc. 



Helen V. Gomonay, Svitlana V. Kondovych, and Vadim M. Loktev 

802 Low Temperature Physics/Fizika Nizkikh Temperatur, 2012, v. 38, No. 7 

An effective way to induce nanomechanical oscillations 
is based on the spin-related phenomena, in particular, on 
spin transferred torque (STT) predicted by Berger [13] and 
Slonczewski [14,15]. Flip of the free electron spin at the 
interfaces between the layers with different magnetic prop-
erties is related with the change of the angular momentum 
and for nanosize objects (like NEMMS) can result in the 
noticeable rotation, torsion or bending of the sample. 

Up to dates, combination of nanomechanics and spin-
tronics is implemented in the devices that include ferro-
mangetic (FM) and nonmagnetic (NM) metallic layers. In 
a nanowire with an only FM/NM interface the FM layer 
serves as a polarizer for an electric current, and spin flip 
processes at the FM/NM interface produce a mechanical 
torque in the sample [16–19]. Another modification of 
NEMMS (see [20–22]) is analogous to spin-valves and 
includes at least two FM layers — one is a polarizer and 
the magnetization of the other is rotated by STT. Oscilla-
tions of magnetization, in turn, induce the mechanical 
movement, due to the presence of spin-lattice coupling. 

In the present paper we propose the NEMMS which in-
cludes at least one antiferromagnetic (AFM) layer (see 
Fig. 1) that could be set into motion by spin-polarized cur-
rent. Our idea is based on the following facts: i) theoretical 
predictions [23–25] and experimental evidence [26–30] of 
STT effects in AFMs; ii) strong (compared to FM) spin-
lattice coupling in AFM that reveals itself, e.g., in the pro-
nounced magnetoelastic effects like an energy gap for 
AFMR frequency [3] and shape-induced magnetic aniso-
tropy [31,32]. In the framework of hydrodynamic-like ap-
proach we analyze the coupled magnetomechanical dy-
namics of nanorod consisting of FM, NM and AFM layers 
and calculate eigen frequencies and current-induced me-
chanical and magnetic responses of the system. We show 
that dissipative and nondissipative components of spin-
polarized ac current contribute differently to magnetome-
chanical motion and thus could be separated experimental-
ly. The proposed device can be also used as a current-
driven nanoresonator that produces no magnetic field. 

The paper is devoted to the 80-th anniversary of the 
prominent Ukrainian experimentalist Prof. V.V. Eremenko 
whose contribution into the field of magnetoelasticity is 
remarkable and is world-wide recognized. 

2. Model 

Let us consider the NEMMS that demonstrates the tor-
sional mechanical oscillations, e.g., doubly clamped nano-
rod (Fig. 1,a). In general case, torsional dynamics can be 
viewed as inhomogeneous (space-dependent) rotation of 
the crystal lattice with respect to some reference state. On 
the other hand, the magnetics with the strong enough ex-
change coupling between the magnetic sublattices have 
another rotational degrees of freedom, namely, those re-
lated with the solid-like rotation of the magnetic sublattices 

[33]. Lattice and magnetic rotations could be coupled due 
to, e.g., magnetic anisotropy, magnetoelastic or/and shape 
effects. Thus, any spin torque transferred to the magnetic 
layer will induce twisting of the crystal lattice and vise 
versa, any mechanical torque will induce rotations/oscil-
lations of the magnetic subsystem. 

In what follows we consider a heterostructure that in-
cludes a thin (thickness )AFMd  metallic AFM layer in-
serted just in the middle between two metallic NM rods 
(each of the length ).AFML d  Spin-polarized electric 
current J  flowing through this system exerts spin torque 
to AFM layer due to spin-flip processes at the NM/AFM 
interface. Thus, the magnetic subsystem serves as a source 
of the magnetic and, as a result, the mechanical torque for 
the whole system. 

The optimal geometry of the magnetic (FM, or polariz-
er, and AFM, or “rotator”) layers can be predicted from 
general principles. Curren-induced STT is parallel to the 
FM magnetization, FMM , so, FMM  should be parallel to 
the axis of nanorod. On the other hand, the most effective 
energy transfer between the magnetic and crystal lattices 
occurs for the modes with the same symmetry. So, an op-
timal orientation of the magnetic vectors should allow 
transversal (with respect to nanorod axis) oscillations with 
the minimal possible frequency. 

It should be noted that spin-polarized current acts on 
AFM layer in three ways. First, STT that is proportional to 
the spin flux transferred to the magnetic layer and is re-
lated with dissipative processes. Second, spin current pro-
duces the effective magnetic field sd FMJ∝H M  parallel 
to the spin polarization. Corresponding torque that acts on 
AFM vector is nondissipative (adiabatic). Third, the cur-
rent itself generates an Oersted field which direction and 

Fig. 1. (Color online) Nanotorsional oscillator. Nanorod made of 
NM metal with thin AFM section is mechanically clamped be-
tween the FM and NM leads (a). The current J that flows from 
FM to NM lead is polarized in FM ZM  direction and gives rise 
to the torques twisting the AFM vector l  in the middle sec-
tion (b). Due to magnetic anisotropy, rotation of the magnetic 
moments through the angle magθ  induces rotation of the crystal 
lattice through the angle latθ . Axes x, y denote the reference 
frame, while X, Y show the instantaneous orientation of the ro-
tated crystal axes. 
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value within an AFM layer depends upon the geometry of 
the system. The last contribution is supposed to produce a 
negligible effect on AFM dynamics and will be disre-
garded in the following consideration*. The value of the 
effective field sdH  depends upon the exchange coupling 
between free and localized spins (so called sd-exchange) 
and thus can be noticeable, especially in the case of ac cur-
rent, as will be shown below. 

Coupled rotational dynamics of the magnetic and crys-
tal lattices can be described phenomenologically in the 
framework of continuius approach in terms of the Gibbs' 
vectors = tan ( / 2)α α αϕ θ e  that parametrize solid-like 
rotation of the crystal lattice ( latα⇒ ) and magnetic sub-
system ( magα ⇒ ) around an instantaneous rotation axis 
αe  through the angle αθ . Vectors ( , )tαϕ r  are the field 

variables that define the state of the crystal and magnetic 
lattices at a moment t  in a point r . In the simplest case 
under consideration (thin nanorod) the rotation axis coin-
sides with the rod axis, so lat mag .Ze e  

Time, αθ� , and space, '
zα αθ ≡ ∇ θ , derivatives of thus in-

troduced generalized coordinates latθ  and magθ  generate 
the rotation frequencies and vorticities, correspondingly**. 

According to Ref. 33, the rotating magnetic frame pro-
duces the dynamic contribution into macroscopic magneti-
zation, AFMM , of AFM. Thus, with account of the effec-
tive magnetic field sd ZH  the magnetization of AFM 
layer is parallel to the nanorod axis Z  and its value is ex-
pressed as 

mag mag ad= ( ) = ( ) ,AFM sd AFM AFMM H S j Sχ χ
θ + γ θ + γβ

γ γ
� �

  (1) 

where AFMS  is the nanorod crossection area within AFM 
layer, χ  is magnetic susceptibility, γ  is gyromagnetic 
ratio. The last expression in (1) includes the material adia-
batic (see below) constant adβ  that defines the relation 
between the effective field ad=sdH jβ  and the the current 
density = / AFMj J S ***. As follows from definition of the 
effective field ,sdH  adβ  is proportional to the constant of 
sd-exchange and to the fraction of free electrons that did 
not flip their spins at NM/AFM interface. Thus, this con-
stant describes the action of nondissipative (adiabatic) 
component of spin-polarized current, as will be discussed 
below. 

The Lagrange function of the system written from the 
general symmetry considerations takes a form: 

 2 2
lat lat

1= ( ) ( )
2

L

L
dz I z

−

⎡ ⎤′θ − κ θ +⎣ ⎦∫ �L   

/2
2

mag ad mag lat2
/2

( ) ( ) .
2

dAFM

AFM
dAFM

S dz j U
−

⎡ ⎤χ
+ θ + γβ − θ −θ⎢ ⎥

γ⎢ ⎥⎣ ⎦
∫ �

  (2) 

Here κ  is a torsion modulus (rigidity) that can be ex-
pressed through the elastic modula and the dimensions of 
the sample once the geometry is known, mag lat( )U θ −θ  is 
the energy of the magnetic anisotropy which depends upon 
the relative orientation of the magnetic moments with re-
spect to crystal lattice (see Fig. 1,b). A specific (per unit 
length) moment of inertia of nanorod, ( )I z ≡

2 2
rod ( )x y dxdy≡ ∫ρ + , is supposed to be different in NM, 

( ) ,NMI z I≡  / 2 | |AFMd z L≤ ≤  and in AFM, ( ) ,AFMI z I≡  
| | / 2AFMz d≤  regions, here rodρ  is the nanorod density. 
In Eq. (2) we have neglected inhomogeneous exchange 
interactions (terms with mag )′θ  that are vanishingly small 
for a thin (below the characteristic domain wall thickness) 
AFM layer. We also assume that κ  is constant along the 
rod, generalization for a more complicated case is straight-
forward. 

Dissipative phenomena within an AFM layer that arise 
from the STT and internal damping are described with the 
help of generalized potential (or Rayleigh dissipation func-
tion) [36] as follows: 

/2
2 dis
mag mag2

/2
= ,

dAFM
AFM

AFM AFM
dAFM

j
S dz

−

⎛ ⎞βγ
χ θ − θ⎜ ⎟⎜ ⎟γγ⎝ ⎠

∫ � �R  

  (3) 

where AFMγ  is a half-width of AFMR that characterizes 
the damping. We have also taken into account that the cur-
rent polarization is parallel to the rod axis, .FM ZM  

The above introduced material constant disβ  that de-
scribes dissipative component of spin-polarized current 
needs some special explanation. The value dis jβ  is equal to 
spin-flux that is transferred to the unit volume of AFM layer 
due to spin-flip scattering of the conduction electrons at 
NM/AFM interface. Thus, two constants, adβ  and dis ,β  
though having different physical dimensions, are in a certain 
sense complementary: the greater is one, the smaller is other. 

* According to Refs. 34 and 35 typical value of current-induced Oersted field is 1 kOe. For FM materials with characteristic fields
of reorientation 0.1–1 kOe the effect of Oersted field can be significant. However, in AFMs with strong exchange coupling and
high Néel temperature (FeMn, IrMn, NiO) the typical value of spin-flop field is higher and falls into 1–10 kOe range. Thus, the ef-
fect of the Oersted field can be neglected, at least in the first approximation. 

** In general case, frequency is a vector and vorticity is a second rank tensor. 

*** Stricktly speaking, current density j  is defined by the effective (Sharvin) crossection which in the case of inhomogeneous rod can
differ from .AFMS  
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Damping of the mechanical oscillations are accounted 
by the corresponding Rayleigh function with the damping 
constant latγ : 

 2
lat lat lat

1= ( ) .
2

L

L
dz I z

−

γ θ∫ �R  (4) 

Functions (2), (3) and (4) together with the boundary 
conditions lat ( ) = 0Lθ ±  (doubly clamped rod) generate the 
system of dynamic equations for the angles latθ , magθ  
that unambiguously describes the nanorod state. Oscillato-
ry behavior of a system implies small deflections of 

lat mag,θ θ  from equilibrium zero values. To this end, mag-
netic anisotropy can be approximated as mag lat( )U θ −θ ≈

2 2 2
mag lat( ) /(2 ),AFMR≈ χΩ θ −θ γ  where AFMRΩ  is AFMR 

frequency of the mode that corresponds to homogeneous* 
(within AFM layer) rotation of the magnetic moments 
around Z-axis. It should be stressed that the constant of 
magnetic anisotropy, 2 2/AFM AFMRK ≡ χΩ γ , is defined by 
spin-orbit or dipole interactions and thus includes contribu-
tion of magnetoelastic nature. 

3. Coupled magnetomechanical dynamics 

Let us consider small oscillations induced by ac current 
0= cosj j tω . Corresponding equations for the space de-

pendent functions lat ( )zθ  and mag ( )zθ  in neglection of 
damping could be reduced to a form: 

 
2 2

2lat
lat2 2 2 2

( )
( )

( )
AFM AFMR

AFMR

d S z
I z

dz

⎡ ⎤θ Θ χΩ
κ +ω + θ =⎢ ⎥

γ Ω −ω⎢ ⎥⎣ ⎦
 

 
2

dis ad
02 2

( )
= ( ) ,

( )
AFMR

AFM
AFMR

i
S z j

β − χβ ω Ω
− Θ

γ Ω −ω
 

 
2

lat dis ad
mag 02 2 2 2

( )
= ( ),

( )
AFMR

AFMR AFMR

i
j z

⎡ ⎤Ω θ γ β − χβ ω
θ + Θ⎢ ⎥

Ω −ω χ Ω −ω⎢ ⎥⎣ ⎦
 (5) 

where form-function ( ) = 1zΘ  inside the AFM layer 
(| | / 2)AFMz d≤  and vanishes outside it ( | | / 2AFMz d≥ ). 

Analysis of Eqs. (5) shows that the spin-polarized cur-
rent produces a mechanical torque (r.h.s. of the first equa-
tion) and thus is a motive force for torsional oscillations. 
The value of the torque is proportional to the magnetic 
anisotropy constant 2

AFM AFMRK ∝ Ω  and the thickness of 
AFM layer (factor ( )zΘ ) and can increase greatly in the 
vicinity of AFMR ( AFMRω→Ω ). Physical interpretation 
of this fact is quite obvious: mechanical torque occurs due 
to spin-lattice coupling within AFM layer and should be 
proportional to its thickness and coupling constant, the 
current acts directly on the magnetic subsystem and indi-
rectly on the mechanical one, thus the largest effect should 
be observed at AFMR frequency. 

* As it was already mentioned above, we consider only long-wave motions of AFM subsystem, so-called macrospin approximation.

Fig. 2. (Color online) Torsional modes and spectrum of AFM-based nanorod. Low-frequency torsional modes, ph= nkω v , = 0,1,2n
induced by STT. Relative amplitude of torsional angle, lat ( )zθ , is frequency dependent. Low panel schematically shows the position of
AFM layer (the thickness = 0.02AFMt L  is slightly exaggerated) (a). Spectrum of eigen modes (schematically). In the absence of
coupling (upper panel) the mechanical modes though smeared (half-width latγ ) are well separated due to the rather high value of quality
factor latQ . The magnetic modes ( = AFMRω Ω ) are degenerated and have a pronounced width ( AFMγ ). Magnetomechanical coupling
(lower panel) results in the (1) (“red” online) shift of the mechanical modes and small (2) (“blue” online) shift of the magnetic modes
(shown by solid vertical lines). While the shifted mechanical modes are still well distinguishable, the spectrum of the shifted magnetic
modes falls completely into the line width (b). 
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3.1. Oscillation modes and spectrum 

The rod under consideration has two types of the tor-
sion eigen modes, symmetric ( lat lat( ) = ( )z zθ θ − ) and anti-
symmetric ( lat lat( ) = ( )z zθ −θ − ) with respect to space in-
version. From Eqs. (5) it follows that in the present 
geometry the spin-polarized current can excite only sym-
metric modes that show maximum deflection latθ  within 
an AFM layer ( 0z ≈ ). 

In the first approximation (taking into account that 
/ 1AFMd L ) the symmetric modes (see Fig. 2,a) could 

be represented as 

 
( )( ) ( )

lat lat( , ) = (0)e cos ,
nn n i t

nz t k zωθ θ  
(6)

 

 
2 ( )( )( )

mag lat2 2
( )

( , ) = (0)e ,
nnn i tAFMR

AFMR

z
z t ωΩ Θ

θ θ
Ω −ω

 

were the allowed wave vector = (2 1) / (2 )nk n Lπ +  is cal-
culated from the boundary conditions. Corresponding ei-
gen frequencies ( )nω  calculated from Eqs. (5) are the fol-
lowing: 

 {( ) 2 2 2
ph

1= (1 )
2

n
AFMR n nk±ω Ω + +λ ±v   

 
1/21/22 2 2 2 2 2 2

ph ph( (1 ) ) 4 ,AFMR n n n n AFMRk k ⎫⎡ ⎤± Ω − +λ + λ Ω ⎬⎣ ⎦ ⎭
v v  

  (7) 

where 1/2
ph = ( / )Iκv  is the phonon velocity and I ≡

(1/ 2 ) ( )L
LL I z dz−≡ ∫  is the averaged moment of inertia. 

Following the notions of Ref. 20, we have introduced in 
Eq. (7) the coupling coefficient 

 2 2
ph2

AFM AFM
n

n

K V
LI k

λ ≡
v

 (8) 

which is proportional to the magnetic anisotropy of the 
whole AFM layer (with the volume AFM AFM AFMV d S≡ ). 
Expression (7) for eigen frequencies is analogous to one 
obtained in Ref. 20 for a nanorod with the FM layer. 

The expression (7) confirms quite obvious conclusion 
that the spectrum of nanorod consists of two branches — 
high-frequency quasimagnetic, ( )n

+ω , and low-frequency 
quasimechanical (torsional), ( )n

−ω . In the limit 0nλ →  the 
quasimagnetic frequency ( )n

AFMR+ω →Ω  and quasime-
chanical one ( )

ph
n

nk−ω → v . 
Further analysis of current-induced dynamics can be 

simplified due to specification of “small” and “large” 
quantities. The frequency of the torsional fundamental, 
“zero”, mode for a nanosized rod ( 30–100L ∝  nm, 

3
ph 5 10∝ ⋅v  m/s) is ph 0 10 100k ∝ ÷v  GHz. Characteristic 

AFMR frequency for a bulk sample of a typical AFM with 

high Néel temperature (FeMn, IrMn, NiO) is noticeably 
greater, / 2 150–1000AFMR AFMRν ≡ Ω π ∝  GHz*, depend-
ing on the mode type [38–40]. So, in contrast to FM, where 
the fundamental frequency of the mechanical oscillations is 
close to the FMR frequency [20], for the nanorods with 
AFM layer ph 0AFMR kΩ v . However, for higher har-
monics (with 10–100)n ∝  the crossing of frequencies 

ph( n AFMRk ∝Ωv ) is possible. 
The coupling constants 1 0< < < 1n n−λ λ λ… . For 

example, for a typical AFM Ir 20 Mn 80  the anisotropy 
constant 510AFMK ∝  J/m 3  [37], so, for the 50 50 2× ×  
nm AFM layer 2

0 10−λ ∝ . However, it should be stressed 
that the constant 0λ  in AFM is substantially larger than for 
analogous FM layer (e.g., for Fe the value 3

0 10−λ ∝  
[20]), due to the difference in magnetic anisotropy. 

The quality factor of the mechanical oscillations, 
lat ph 0 lat= / (2 )Q k γv , strongly depends upon the surface 

effects but even in the worst case is as large as 310  [10]. 
The quality factor of the metallic magnetic subsystem, 

mag = / (2 )AFMR AFMQ Ω γ , is much smaller, e.g., for the 
metallic FM the quality factor 2

mag 10Q ∝  [20]. 
Thus, the spectrum of the mechanical and magnetic ex-

citations (Eq. (7)) for a typical AFM-based nanorod has the 
following features (see Fig. 2,b): 

— in the absence of coupling ( = 0λ ) the spectrum of 
the mechanical modes consists of thin ( lat 1Q ) well-
separated lines. The spectrum of the magnetic modes is 
degenerated ( = AFMRω Ω ), corresponding line is rather 
thick; 

— far from the crossing the coupling-induced shift of 
the frequencies, ( ) 2 2 2

ph ph= (1 / 2 )n
n n n AFMRk k−ω −λ Ωv v , ( ) =n

+ω
2 2 2
ph= (1 / 2 ),AFMR n n AFMRkΩ +λ Ωv

 
 is vanishingly small. 

So, “mechanical” modes are still well separated, while the 
splitting of the “magnetic” modes is below the line width; 

— in the vicinity of crossing the splitting of the me-
chanical and magnetic modes is substantially greater, 

( ) = (1 /2).n
AFMR n±ω Ω ± λ  Damping processes are defined 

mainly by the magnetic subsystem, so, corresponding qual-
ity factor is close to magQ . Thus, the magnetic and me-
chanical modes could be resolved providing mag > 1.nQλ  

3.2. Current-induced oscillations 

From the properties of oscillation spectrum it follows 
that current-induced behavior of nanorod is different in 
the low-frequency ( AFMRω Ω ) and high-frequency 
( )AFMRω∝ Ω  ranges. Let us consider them separately. 

In the low-frequency range the last term in the l.h.s. of 
the first of Eqs. (5) is small (∝ λ ) and can be neglected. 
To this end, torsion angle of mechanical oscillations is 
expressed as 

* For the small samples AFMRν  can be smaller due to the size effects, see, e.g. [37]. 
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 0
lat

ph 0
( ; ) =

4
AFMV j

z
kIL

π
θ ω ×

ωγ v
  

 dis ad
22 2

lat

( ) sin [( | |) / ]
e ,

( / ) ( / 4 ) ( / )cos sin

ii L z c

L c Q L c
φβ − χβ ω − ω

×
ω + π ω

 (9) 

where φ  is the frequency dependent phase shift with re-
spect to j , in the vicinity of resonance / 2φ→ π . 

It can be easily seen from Eq. (9) that the current-
induced torsional oscillations have clearly defined reson-
ance character at ( )

ph= n
nk−ω ω ≈ v . Space dependence of 

lat ( )zθ  at a given ω  (see Fig. 2,a) is close to the mechani-
cal eigen modes. The resonant amplitude obtained from 
Eq. (9) is 

 ( ) lat 0 dis
ad ph 0lat 2 2

ph 0
(res) =

2 1
n AFMQ V j i

k
nIL k
β⎛ ⎞θ + χβ =⎜ ⎟+⎝ ⎠γ

v
v

 

 0 lat 0 dis
ad ph 02

2
= .

2 1AFMR

Q j i
k

n
λ γ β⎛ ⎞+ χβ⎜ ⎟+⎝ ⎠Ω χ

v  (10) 

Here the factor i  reflects the phase shift of the torsion an-
gle with respect to current. 

As seen from Eq. (10), rotation of lattice results from 
two effects induced by spin-polarized current, namely, 
dissipative STT ( dis∝β ) and adiabatic effective spin-
induced field ( ad∝ β ). The first contribution diminishes 
with the frequency ( n∝ ) growth, while the second one is 
frequency independent (at least, for AFMRω Ω ). More-
over, STT-induced term is phase-shifted with respect to 
current, while adiabatic term is in phase with current. This 
opens a way to separate these contributions by measuring 
current dependence of resonant torsional oscillations. 

An amplitude of the corresponding magnetic oscilla-
tions differs from ( )

lat (res)nθ  by the factor 0 lat(1 2 ),i Q+ λ  as 
seen from the following 

( ) 0 dis
mag 0 lat ad ph 02(res) = (1 2 ) .

2 1
n

AFMR

j
i Q i k

n
γ β⎛ ⎞θ + λ − χβ⎜ ⎟+⎝ ⎠χΩ

v

  (11) 

It also depends upon both dissipative and nondissipa-
tive current-induced contributions, however, phase shift 
with respect to current is much more complicated due to 
the term with 0 latQλ . Time derivative ( )

mag (res) =nθ�
( )

ph mag= (res)n
ni k θv  is proportional to magnetization of 

AFM layer (see Eq. (1) and thus can be detected experi-
mentally. 

In the high-frequency range the magnetic modes with 
different n  are almost degenerated. So, the current induces 
mechanical, 

 ( )0
lat dis ad2

15
(res) = ,

16
AFM AFM

AFMR
AFMR

Q V j
i

IL
θ β + χβ Ω

γ Ω
(12) 

and magnetic, 

 ( )0
mag dis ad2(res) = AFM

AFMR
AFMR

Q j
i

γ
θ − β + χβ Ω ×

χΩ
  

 
2 2
ph 0

02

15
1

8
AFM

AFMR

k
Q

⎛ ⎞
⎜ ⎟× + λ
⎜ ⎟Ω⎝ ⎠

v
 (13) 

oscillations with the frequency AFMRω ≈ Ω . 

4. Conclusions 

In the present paper we considered new aspect of mag-
netoelastic interactions and studied magnetomechanical 
oscillations induced by spin-polarized current for the sim-
plest case of twisting nanorod. Our calculations demon-
strate that ac spin-polarized current can excite quasime-
chanical (torsional) as well as quasimagnetical modes. 

It is interesting to note that the ac spin-polarized current 
affects the AFM layer in the case of strong scattering at 
NM/AFM interface (due to STT effect) and in the case of 
weak scattering as well (due to the effective sd -exchange 
field “injected” with free electrons into AFM layer). Ratio 
between dissipative and nondissipative contribution is pro-
portional to the phase shift between mechanical oscilla-
tions and current and thus can be measured experimentally 
in the low frequency range. 

An amplitude of quasimechanical mode depends upon 
the geometry of the sample (see Eq. (10)) and can be en-
hanced by diminishing the moment of intertia (e.g., by us-
ing carbon nanotubes [41]) and by enlarging AFM volume 

.AFMV  However, if the thickness of AFM layer, ,AFMd  
becomes greater than the free path of spin-polarized elec-
trons, contribution of dissipative (STT) part will be reduced. 

The effectiveness of the described electric-through-
magnetic-to-mechanical energy conversion can be increas-
ed by using nanorod with periodical FM/NM/AFM struc-
ture, however this system needs additional treatment and is 
out of scope of this paper. 

In this work we considered torsional oscillations of the 
effectively one dimensional structure. Analogous results 
could be obtained for nanobeams that show flexional oscil-
lations. 
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