15 research outputs found

    Nutrient Cycling in the Mediterranean Sea: The Key to Understanding How the Unique Marine Ecosystem Functions and Responds to Anthropogenic Pressures

    Get PDF
    The Mediterranean Sea is a marine desert: although it receives large nutrient inputs from a rapidly growing coastal population, its offshore waters exhibit extremely low biological productivity. Here, we use a mass balance modelling approach to analyse the sources and fate of the two main nutrients that support marine biomass production: phosphorus (P) and nitrogen (N). Surprisingly, the main source of P and N to the Mediterranean Sea is North Atlantic surface water entering through the Strait of Gibraltar, not emissions from surrounding land. The low biological productivity of the Mediterranean Sea is linked to the switch from less bioavailable nutrients entering the basin to highly bioavailable nutrients leaving it although similar amounts of total P and N enter and leave the Mediterranean Sea. This unique feature is a direct consequence of its unusual anti-estuarine circulation. An important environmental implication of the anti-estuarine circulation is that it efficiently removes excess anthropogenic nutrients entering the Mediterranean Sea, thus protecting offshore waters against eutrophication contrary to other semi-enclosed marine basins. In a similar vein, the “self-cleaning” nature of the Mediterranean Sea may prevent severe oxygen depletion of Mediterranean deep waters should ongoing climate warming lead to a weakening of the thermohaline circulation

    Enhanced river runoff and permafrost thaw affect Arctic shelf processes

    Get PDF
    Enhanced river runoff and coastal erosion are causing greater amounts of terrestrial material supply to Arctic shelf waters. Increasing freshwater export of carbon and nutrient loads from land (terr-OM) together with compositional shifts - due to changing hydrologic flow paths and permafrost thaw, can modify shelf water chemistry and biogeochemical processes. Here, we examine how shifts in land-ocean terr-OM supply may alter shelf primary productivity, respiration and ultimately net regional CO2 air–sea fluxes. Unique insights into terr-OM dynamics and composition during transit through riverine, deltaic and shelf waters were collected through multiple field campaigns on the Lena River and Laptev Sea shelf region. Harnessing these field data, we examine the effects of contemporary and future terr-OM supply to shelf waters using newly developed 1-D and 3-D regional biogeochemical models specifically capable of parameterising terr-OM, composition and degradation. In agreement with prior studies, we find that land-derived nutrients could strengthen coastal production sustaining up to ~50% of primary productivity under current terr-OM conditions. However, we also found that additional terr-OM supply caused increased light limitation in coastal waters, offsetting nutrient fertilization effects and stimulating zooplankton grazing. Model experiments indicate that future increases in terr-OM of between 25-50% and/ or shifts to more biologically reactive coastal OM -such as to be expected with permafrost thaw, will reduce net CO2 uptake and lead to positive CO2 feedback from Arctic shelf waters. Our results question the capacity of the coastal Arctic Ocean to serve as a net sink for atmospheric CO2 with future increasing land-ocean connectivity and terr-OM supply

    Direct Discharges of Domestic Wastewater are a Major Source of Phosphorus and Nitrogen to the Mediterranean Sea

    Get PDF
    Direct discharges of treated and untreated wastewater are important sources of nutrients to coastal marine ecosystems and contribute to their eutrophication. Here, we estimate the spatially distributed annual inputs of phosphorus (P) and nitrogen (N) associated with direct domestic wastewater discharges from coastal cities to the Mediterranean Sea (MS). According to our best estimates, in 2003 these inputs amounted to 0.9 × 10âč mol P yr-1 and 15 × 10âč mol N yr-1, that is, values on the same order of magnitude as riverine inputs of P and N to the MS. By 2050, in the absence of any mitigation, population growth plus higher per capita protein intake and increased connectivity to the sewer system are projected to increase P inputs to the MS via direct wastewater discharges by 254, 163, and 32% for South, East, and North Mediterranean countries, respectively. Complete conversion to tertiary wastewater treatment would reduce the 2050 inputs to below their 2003 levels, but at an estimated additional cost of over €2 billion yr-1. Management of coastal eutrophication may be best achieved by targeting tertiary treatment upgrades to the most affected near-shore areas, while simultaneously implementing legislation limiting P in detergents and increasing wastewater reuse across the entire basin

    Global phosphorus retention by river damming.

    No full text
    More than 70,000 large dams have been built worldwide. With growing water stress and demand for energy, this number will continue to increase in the foreseeable future. Damming greatly modifies the ecological functioning of river systems. In particular, dam reservoirs sequester nutrient elements and, hence, reduce downstream transfer of nutrients to floodplains, lakes, wetlands, and coastal marine environments. Here, we quantify the global impact of dams on the riverine fluxes and speciation of the limiting nutrient phosphorus (P), using a mechanistic modeling approach that accounts for the in-reservoir biogeochemical transformations of P. According to the model calculations, the mass of total P (TP) trapped in reservoirs nearly doubled between 1970 and 2000, reaching 42 Gmol y(-1), or 12% of the global river TP load in 2000. Because of the current surge in dam building, we project that by 2030, about 17% of the global river TP load will be sequestered in reservoir sediments. The largest projected increases in TP and reactive P (RP) retention by damming will take place in Asia and South America, especially in the Yangtze, Mekong, and Amazon drainage basins. Despite the large P retention capacity of reservoirs, the export of RP from watersheds will continue to grow unless additional measures are taken to curb anthropogenic P emissions

    Phosphorus and nitrogen trajectories in the Mediterranean Sea (1950–2030): Diagnosing basin-wide anthropogenic nutrient enrichment

    No full text
    Human activities have significantly modified the inputs of land-derived phosphorus (P) and nitrogen (N) to the Mediterranean Sea (MS). Here, we reconstruct the external inputs of reactive P and N to the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS) over the period 1950–2030. We estimate that during this period the land derived P and N loads increased by factors of 3 and 2 to the WMS and EMS, respectively, with reactive P inputs peaking in the 1980s but reactive N inputs increasing continuously from 1950 to 2030. The temporal variations in reactive P and N inputs are imposed in a coupled P and N mass balance model of the MS to simulate the accompanying changes in water column nutrient distributions and primary production with time. The key question we address is whether these changes are large enough to be distinguishable from variations caused by confounding factors, specifically the relatively large inter-annual variability in thermohaline circulation (THC) of the MS. Our analysis indicates that for the intermediate and deep water masses of the MS the magnitudes of changes in reactive P concentrations due to changes in anthropogenic inputs are relatively small and likely difficult to diagnose because of the noise created by the natural circulation variability. Anthropogenic N enrichment should be more readily detectable in time series concentration data for dissolved organic N (DON) after the 1970s, and for nitrate (NO₃) after the 1990s. The DON concentrations in the EMS are predicted to exhibit the largest anthropogenic enrichment signature. Temporal variations in annual primary production over the 1950–2030 period are dominated by variations in deep-water formation rates, followed by changes in riverine P inputs for the WMS and atmospheric P deposition for the EMS. Overall, our analysis indicates that the detection of basin-wide anthropogenic nutrient concentration trends in the MS is rendered difficult due to: (1) the Atlantic Ocean contributing the largest reactive P and N inputs to the MS, hence diluting the anthropogenic nutrient signatures, (2) the anti-estuarine circulation removing at least 45% of the anthropogenic nutrients inputs added to both basins of the MS between 1950 and 2030, and (3) variations in intermediate and deep water formation rates that add high natural noise to the P and N concentration trajectories

    Evaluation of targeted exome sequencing for 28 protein-based blood group systems, including the homologous gene systems, for blood group genotyping

    No full text
    BACKGROUND: Blood group single nucleotide polymorphism genotyping probes for a limited range of polymorphisms. This study investigated whether massively parallel sequencing (also known as next-generation sequencing), with a targeted exome strategy, provides an extended blood group genotype and the extent to which massively parallel sequencing correctly genotypes in homologous gene systems, such as RH and MNS. STUDY DESIGN AND METHODS: Donor samples (n = 28) that were extensively phenotyped and genotyped using single nucleotide polymorphism typing, were analyzed using the TruSight One Sequencing Panel and MiSeq platform. Genes for 28 protein-based blood group systems, GATA1, and KLF1 were analyzed. Copy number variation analysis was used to characterize complex structural variants in the GYPC and RH systems. RESULTS: The average sequencing depth per target region was 66.2 ± 39.8. Each sample harbored on average 43 ± 9 variants, of which 10 ± 3 were used for genotyping. For the 28 samples, massively parallel sequencing variant sequences correctly matched expected sequences based on single nucleotide polymorphism genotyping data. Copy number variation analysis defined the Rh C/c alleles and complex RHD hybrids. Hybrid RHD*D-CE-D variants were correctly identified, but copy number variation analysis did not confidently distinguish between D and CE exon deletion versus rearrangement. CONCLUSION: The targeted exome sequencing strategy employed extended the range of blood group genotypes detected compared with single nucleotide polymorphism typing. This single-test format included detection of complex MNS hybrid cases and, with copy number variation analysis, defined RH hybrid genes along with the RHCE*C allele hitherto difficult to resolve by variant detection. The approach is economical compared with whole-genome sequencing and is suitable for a red blood cell reference laboratory setting

    Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting

    No full text
    BACKGROUND: We previously demonstrated that targeted exome sequencing accurately defined blood group genotypes for reference panel samples characterized by serology and single-nucleotide polymorphism (SNP) genotyping. Here we investigate the application of this approach to resolve problematic serology and SNP-typing cases. STUDY DESIGN AND METHODS: The TruSight One sequencing panel and MiSeq platform was used for sequencing. CLC Genomics Workbench software was used for data analysis of the blood group genes implicated in the serology and SNP-typing problem. Sequence variants were compared to public databases listing blood group alleles. The effect of predicted amino acid changes on protein function for novel alleles was assessed using SIFT and PolyPhen-2. RESULTS: Among 29 unresolved samples, sequencing defined SNPs in blood group genes consistent with serologic observation: 22 samples exhibited SNPs associated with varied but known blood group alleles and one sample exhibited a chimeric RH genotype. Three samples showed novel variants in the CROM, LAN, and RH systems, respectively, predicting respective amino acid changes with possible deleterious impact. Two samples harbored rare variants in the RH and FY systems, respectively, not previously associated with a blood group allele or phenotype. A final sample comprised a rare variant within the KLF1 transcription factor gene that may modulate DNA-binding activity. CONCLUSION: Targeted exome sequencing resolved complex serology problems and defined both novel blood group alleles (CD55:c.203G>A, ABCB6:c.1118_1124delCGGATCG, ABCB6:c.1656-1G>A, and RHD:c.452G>A) and rare variants on blood group alleles associated with altered phenotypes. This study illustrates the utility of exome sequencing, in conjunction with serology, as an alternative approach to resolve complex cases

    Translational reprogramming following UVB irradiation is mediated by DNA-PKcs and allows selective recruitment to the polysomes of mRNAs encoding DNA repair enzymes

    No full text
    UVB-induced lesions in mammalian cellular DNA can, through the process of mutagenesis, lead to carcinogenesis. However, eukaryotic cells have evolved complex mechanisms of genomic surveillance and DNA damage repair to counteract the effects of UVB radiation. We show that following UVB DNA damage, there is an overall inhibition of protein synthesis and translational reprogramming. This reprogramming allows selective synthesis of DDR proteins, such as ERCC1, ERCC5, DDB1, XPA, XPD, and OGG1 and relies on upstream ORFs in the 5â€Č untranslated region of these mRNAs. Experiments with DNA-PKcs-deficient cell lines and a specific DNA-PKcs inhibitor demonstrate that both the general repression of mRNA translation and the preferential translation of specific mRNAs depend on DNA-PKcs activity, and therefore our data establish a link between a key DNA damage signaling component and protein synthesis
    corecore