67 research outputs found

    Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides

    Get PDF
    We describe a novel biosensor based on phospholipid-coated nematic liquid crystal (LC) droplets and demonstrate the detection of Smp43, a model antimicrobial peptide (AMP) from the venom of North African scorpion Scorpio maurus palmatus. Mono-disperse lipid-coated LC droplets of diameter 16.7 ± 0.2 μm were generated using PDMS microfluidic devices with a flow-focusing configuration and were the target for AMPs. The droplets were trapped in a bespoke microfluidic trap structure and were simultaneously treated with Smp43 at gradient concentrations in six different chambers. The disruption of the lipid monolayer by the Smp43 was detected (<6 μM) at concentrations well within its biologically active range, indicated by a dramatic change in the appearance of the droplets associated with the transition from a typical radial configuration to a bipolar configuration, which is readily observed by polarizing microscopy. This suggests the system has feasibility as a drug-discovery screening tool. Further, compared to previously reported LC droplet biosensors, this LC droplet biosensor with a lipid coating is more biologically relevant and its ease of use in detecting membrane-related biological processes and interactions has the potential for development as a reliable, low-cost and disposable point of care diagnostic tool

    Electric-field-induced transport of microspheres in the isotropic and chiral nematic phase of liquid crystals

    Get PDF
    The application of an electric field to microspheres suspended in a liquid crystal, causes particle translation in a plane perpendicular to the applied field direction. Depending on applied electric field amplitude and frequency, a wealth of different motion modes may be observed above a threshold, which can lead to linear, circular or random particle trajectories. We present the stability diagram for these different translational modes of particles suspended in the isotropic and the chiral nematic phase of a liquid crystal, and investigate the angular velocity, circular diameter, and linear velocity as a function of electric field amplitude and frequency. In the isotropic phase a narrow field amplitude-frequency regime is observed to exhibit circular particle motion whose angular velocity increases with applied electric field amplitude, but is independent of applied frequency. The diameter of the circular trajectory decreases with field amplitudes as well as frequency. In the cholesteric phase linear as well as circular particle motion is observed. The former exhibits an increasing velocity with field amplitude, while decreasing with frequency. For the latter, the angular velocity exhibits an increase with field amplitude and frequency. The rotational sense of the particles on a circular trajectory in the chiral nematic phase is independent of the helicity of the liquid crystalline structure, as is demonstrated by employing a cholesteric twist inversion compound

    A mathematical model for the auxetic response of liquid crystal elastomers

    Get PDF
    We develop a mathematical model that builds on the surprising nonlinear mechanical response observed in recent experiments on nematic liquid crystal elastomers. Namely, under uniaxial tensile loads, the material, rather than thinning in the perpendicular directions, becomes thicker in one direction for a sufficiently large strain, while its volume remains unchanged. Motivated by this unusual large-strain auxetic behaviour, we model the material using an Ogden-type strain-energy function and calibrate its parameters to available datasets. We show that Ogden strain-energy functions are particularly suitable for modelling nematic elastomers because of their mathematical simplicity and their clear formulation in terms of the principal stretches, which have a direct kinematic interpretation. This article is part of the theme issue ‘The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity’

    Liquid crystal blue phases: stability, field effects and alignment

    Get PDF
    The blue phases are fascinating structures in liquid crystals, fluids that exhibit cubic structures that have true crystalline order. The blue phases were discovered in the 1970s and were the subject of extensive research in the 1980s, when a deep understanding of many of their properties was established. The discovery that the blue phases could be stabilised to exist over wide temperature ranges meant that they became more than scientific curiosities and led to a recent resurgence in research into them as they offer some promise in applications. This paper considers some important aspects of the blue phases that are recurrent topics in their research. It describes factors affecting blue phase stability, demonstrating on the role of the bend elastic constant; field effects, including the Kerr effect, electrostriction and relaxation phenomena; and alignment, in particular production and control of blue phase monodomains. The dependence of these phenomena on the physical properties of the liquid crystalline system, including the twist and bend elastic constants and the dielectric anisotropy, is emphasised wherever possible. The paper links work carried out in the 1980s with contemporary research, using a few key examples to show how there is still much to understand in this beautiful topic

    Self-assembling, macroscopically oriented, polymer filaments; a doubly nematic organogel

    Get PDF
    Nanoscale phase separation and self-organisation in liquid crystals leads to the formation of remarkable hierarchical structures. There are several examples of heliconical nanofilament structures including in the nematic twist-bend (NTB) phase, the B4 phase and liquid crystal gels formed from the B4 phase. Both the formation of the polymer-like structures that permeate the soft-solids and their hierarchical structures are fascinating, not least because of the analogies that can be drawn with naturally-occurring structures. Here, we report a remarkably simple binary system formed from a nonsymmetric BC molecule and the rod-like liquid crystal, 5CB. The pure bent-core system exhibits both nematic and dark conglomerate liquid crystal phases. At very low concentrations of the BC material (5-10%) this binary system spontaneously self-assembles into a soft solid formed from nanoscale filaments that are aligned by their nematic environment. Macroscopically, the soft solid shows behaviour that can be associated with both polymers and gels. Interestingly, the sub-micron scale structure of the filaments appears remarkably similar to some organised fibrous structures in nature (e.g. chitin, cellulose, insect cuticle, plant cell walls) something we attribute to self-assembly and selforganisation in an aligned liquid crystalline environment. The nanoscale structure of the filaments show no features that can be associated with heliconical ordering down to length scales of tens of nanometers. However, the x-ray data suggests that a metastable rectangular columnar phase which is highly ordered in one dimension initially forms, changing to a hexagonal lattice on a timescale of tens of minutes

    Dataset associated with "Towards in silico design of highly tuneable liquid crystal elastomers"

    Get PDF
    Dataset contains raw experimental data from this paper, as well as input and parameter files used for dynamics simulations in LAMMP

    Novel switching mode in a vertically aligned liquid crystal contact lens

    Get PDF
    Liquid crystal (LC) contact lenses are emerging as an exciting technology for vision correction. A homeotropically (vertical) aligned LC lens is reported that offers improved optical quality and simplified construction techniques over previously reported LC contact lens designs. The lens has no polarization dependence in the off state and produces a continuous change in optical power of up to 2.00 ± 0.25 D with a voltage applied. The variation in optical power results from the voltage-induced change in refractive index of the nematic LC layer, from 1.52 to a maximum of 1.72. One device substrate is treated with an alignment layer that is a mixture of planar and homeotropic polyimides, rubbed to induce a preferred director orientation in the switched state. Defects that could occur during switching are thus avoided and the lens exhibits excellent optical quality with a continuous variation in focal power

    Liquid-Crystal-Based Controllable Attenuators Operating in the 1-4 Terahertz Band

    Full text link
    Liquid-crystal devices (LCDs) offer a potential route toward adaptive optical components for use in the < 2 THz band of the electromagnetic spectrum. We demonstrate LCDs using a commercially available material (E7), with unbiased birefringence values of 0.14-0.18 in the 0.3-4 THz band. We exploit the linear dichroism of the material to modulate the emission from a 3.4-THz quantum cascade laser by up to 40%, dependent upon both the liquid-crystal layer thickness and the bias voltage applied.Comment: 10 pages, 6 figure

    New insights into the nature of semi-soft elasticity and “mechanical-Fréedericksz transitions” in liquid crystal elastomers

    Get PDF
    The mechanical properties of an all-acrylate Liquid Crystal Elastomer (LCE) with a glass transition of 14±1°C are reported. The highly nonlinear load curve has a characteristic shape associated with semi-soft elasticity (SSE). Conversely, measurements of the director orientation throughout tensile loading instead indicate a “mechanical-Fréedericksz” transition (MFT). Values of the step length anisotropy, r, are independently calculated from the theories of SSE (r= 3.2±0.4), MFT (9.3<r<30.0) and thermally-induced length change (r=3.8±0.5). From simultaneously recorded polarising microscopy textures, the consequences of the above discrepancies are considered. Further, a mechanically-induced negative order parameter is observed. Results show the tensile load curve shape cannot solely be used to determine the underlying physics. Consequently, the LCE properties cannot be fully described by theories of SSE or MFTs alone. This suggests that the theory of LCEs is not yet complete. The conclusions suggest that both the LC order parameter and r must be functions of the mechanical deformation
    corecore