4 research outputs found

    Levofloxacin prophylaxis in patients with newly diagnosed myeloma (TEAMM): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial.

    Get PDF
    BACKGROUND: Myeloma causes profound immunodeficiency and recurrent, serious infections. Around 5500 new cases of myeloma are diagnosed per year in the UK, and a quarter of patients will have a serious infection within 3 months of diagnosis. We aimed to assess whether patients newly diagnosed with myeloma benefit from antibiotic prophylaxis to prevent infection, and to investigate the effect on antibiotic-resistant organism carriage and health care-associated infections in patients with newly diagnosed myeloma. METHODS: TEAMM was a prospective, multicentre, double-blind, placebo-controlled randomised trial in patients aged 21 years and older with newly diagnosed myeloma in 93 UK hospitals. All enrolled patients were within 14 days of starting active myeloma treatment. We randomly assigned patients (1:1) to levofloxacin or placebo with a computerised minimisation algorithm. Allocation was stratified by centre, estimated glomerular filtration rate, and intention to proceed to high-dose chemotherapy with autologous stem cell transplantation. All investigators, patients, laboratory, and trial co-ordination staff were masked to the treatment allocation. Patients were given 500 mg of levofloxacin (two 250 mg tablets), orally once daily for 12 weeks, or placebo tablets (two tablets, orally once daily for 12 weeks), with dose reduction according to estimated glomerular filtration rate every 4 weeks. Follow-up visits occurred every 4 weeks up to week 16, and at 1 year. The primary outcome was time to first febrile episode or death from all causes within the first 12 weeks of trial treatment. All randomised patients were included in an intention-to-treat analysis of the primary endpoint. This study is registered with the ISRCTN registry, number ISRCTN51731976, and the EU Clinical Trials Register, number 2011-000366-35. FINDINGS: Between Aug 15, 2012, and April 29, 2016, we enrolled and randomly assigned 977 patients to receive levofloxacin prophylaxis (489 patients) or placebo (488 patients). Median follow-up was 12 months (IQR 8-13). 95 (19%) first febrile episodes or deaths occurred in 489 patients in the levofloxacin group versus 134 (27%) in 488 patients in the placebo group (hazard ratio 0·66, 95% CI 0·51-0·86; p=0·0018. 597 serious adverse events were reported up to 16 weeks from the start of trial treatment (308 [52%] of which were in the levofloxacin group and 289 [48%] of which were in the placebo group). Serious adverse events were similar between the two groups except for five episodes (1%) of mostly reversible tendonitis in the levofloxacin group. INTERPRETATION: Addition of prophylactic levofloxacin to active myeloma treatment during the first 12 weeks of therapy significantly reduced febrile episodes and deaths compared with placebo without increasing health care-associated infections. These results suggest that prophylactic levofloxacin could be used for patients with newly diagnosed myeloma undergoing anti-myeloma therapy. FUNDING: UK National Institute for Health Research

    Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations

    Get PDF
    Purpose To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. Patients and Methods One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). Results There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. Conclusion Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit

    Vosaroxin and vosaroxin plus low-dose Ara-C (LDAC) vs low-dose Ara-C alone in older patients with acute myeloid leukemia.

    No full text
    The development of new treatments for older patients with acute myeloid leukemia is an active area, but has met with limited success. Vosaroxin, a quinolone-derived intercalating agent has several properties that could prove beneficial. Initial clinical studies showed it to be well-tolerated in older patients with relapsed/refractory disease. In vitro data suggested synergy with cytarabine (Ara-C). To evaluate vosaroxin, we performed 2 randomized comparisons within the "Pick a Winner" program. A total of 104 patients were randomized to vosaroxin vs low-dose Ara-C (LDAC) and 104 to vosaroxin + LDAC vs LDAC. When comparing vosaroxin with LDAC, neither response rate (complete recovery [CR]/complete recovery with incomplete count recovery [CRi], 26% vs 30%; odds ratio [OR], 1.16 (0.49-2.72); P = .7) nor 12-month survival (12% vs 31%; hazard ratio [HR], 1.94 [1.26-3.00]; P = .003) showed benefit for vosaroxin. Likewise, in the vosaroxin + LDAC vs LDAC comparison, neither response rate (CR/CRi, 38% vs 34%; OR, 0.83 [0.37-1.84]; P = .6) nor survival (33% vs 37%; HR, 1.30 [0.81-2.07]; P = .3) was improved. A major reason for this lack of benefit was excess early mortality in the vosaroxin + LDAC arm, most obviously in the second month following randomization. At its first interim analysis, the Data Monitoring and Ethics Committee recommended closure of the vosaroxin-containing trial arms because a clinically relevant benefit was unlikely
    corecore