1,840 research outputs found

    Constraints on dynamo action in plasmas

    Full text link
    Upper bounds are derived on the amount of magnetic energy that can be generated by dynamo action in collisional and collisionless plasmas with and without external forcing. A hierarchy of mathematical descriptions is considered for the plasma dynamics: ideal MHD, visco-resistive MHD, the double-adiabatic theory of Chew, Goldberger and Low (CGL), kinetic MHD, and other kinetic models. It is found that dynamo action is greatly constrained in models where the magnetic moment of any particle species is conserved. In the absence of external forcing, the magnetic energy then remains small at all times if it is small in the initial state. In other words, a small "seed" magnetic field cannot be amplified significantly, regardless of the nature of flow, as long as the collision frequency and gyroradius are small enough to be negligible. A similar conclusion also holds if the system is subject to external forcing as long as this forcing conserves the magnetic moment of at least one plasma species and does not greatly increase the total energy of the plasma (i.e., in practice, is subsonic). Dynamo action therefore always requires collisions or some small-scale kinetic mechanism for breaking the adiabatic invariance of the magnetic moment

    Impurity flows and plateau-regime poloidal density variation in a tokamak pedestal

    Get PDF
    In the pedestal of a tokamak, the sharp radial gradients of density and temperature can give rise to poloidal variation in the density of impurities. At the same time, the flow of the impurity species is modified relative to the conventional neoclassical result. In this paper, these changes to the density and flow of a collisional impurity species are calculated for the case when the main ions are in the plateau regime. In this regime it is found that the impurity density can be higher at either the inboard or outboard side. This finding differs from earlier results for banana- or Pfirsch-Schl\"uter-regime main ions, in which case the impurity density is always higher at the inboard side in the absence of rotation. Finally, the modifications to the impurity flow are also given for the other regimes of main-ion collisionality.Comment: 15 pages, 5 figures, submitted to Physics of Plasma

    Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma

    Full text link
    The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et. al. (2017b) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current

    Impurity transport in a mixed-collisionality stellarator plasma

    Get PDF
    A potential threat to the performance of magnetically confined fusion plasmas is the problem of impurity accumulation, which causes the concentration of highly charged impurity ions to rise uncontrollably in the center of the plasma and spoil the energy confinement by excessive radiation. It has long been thought that the collisional transport of impurities in stellarators always leads to such accumulation (if the electric field points inwards, which is usually the case), whereas tokamaks, being axisymmetric, can benefit from "temperature screening", i.e., an outward flux of impurities driven by the temperature gradient. Here it is shown, using analytical techniques supported by results from a new numerical code, that such screening can arise in stellarator plasmas too, and indeed does so in one of the most relevant operating regimes, where the impurities are highly collisional whilst the bulk plasma is in any of the low-collisionality regimes.Comment: 11 pages, 3 figure

    Impurities in a non-axisymmetric plasma: transport and effect on bootstrap current

    Get PDF
    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/nu-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Zeff of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.Comment: 36 pages, 13 figure

    Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas

    Get PDF
    In this work, we examine the validity of several common simplifying assumptions used in numerical neoclassical calculations for nonaxisymmetric plasmas, both by using a new continuum drift-kinetic code and by considering analytic properties of the kinetic equation. First, neoclassical phenomena are computed for the LHD and W7-X stellarators using several versions of the drift-kinetic equation, including the commonly used incompressible-ExB-drift approximation and two other variants, corresponding to different effective particle trajectories. It is found that for electric fields below roughly one third of the resonant value, the different formulations give nearly identical results, demonstrating the incompressible ExB-drift approximation is quite accurate in this regime. However, near the electric field resonance, the models yield substantially different results. We also compare results for various collision operators, including the full linearized Fokker-Planck operator. At low collisionality, the radial transport driven by radial gradients is nearly identical for the different operators, while in other cases it is found to be important that collisions conserve momentum

    Automatic generation: A way of ensuring PLC and HMI standards

    Get PDF
    Preparing an automatic production system takes a lot of time and to be able to decrease this time virtual simulation studies are used more and more frequently. However, even if more work is performed in a virtual environment a problem is still that the same work is done more than one time in different software tools due to the lack of integration between them. The present paper presents a case study that investigates how a newly developed tool called SIMATIC Automation Designer can be used in order to close the gap between the mechanical design and the electrical design. SIMATIC Automation Designer is a Siemens software that can generate PLC code and HMI screens. The result shows that by generating PLC code and HMI screens automatically, it is possible to get the same structure and naming standard in every PLC and HMI project. This will ensure a corporate standard and will be a quality assurance of the PLC code and HMI screens

    Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems

    Get PDF
    201
    • …
    corecore