1,840 research outputs found
Constraints on dynamo action in plasmas
Upper bounds are derived on the amount of magnetic energy that can be
generated by dynamo action in collisional and collisionless plasmas with and
without external forcing. A hierarchy of mathematical descriptions is
considered for the plasma dynamics: ideal MHD, visco-resistive MHD, the
double-adiabatic theory of Chew, Goldberger and Low (CGL), kinetic MHD, and
other kinetic models. It is found that dynamo action is greatly constrained in
models where the magnetic moment of any particle species is conserved. In the
absence of external forcing, the magnetic energy then remains small at all
times if it is small in the initial state. In other words, a small "seed"
magnetic field cannot be amplified significantly, regardless of the nature of
flow, as long as the collision frequency and gyroradius are small enough to be
negligible. A similar conclusion also holds if the system is subject to
external forcing as long as this forcing conserves the magnetic moment of at
least one plasma species and does not greatly increase the total energy of the
plasma (i.e., in practice, is subsonic). Dynamo action therefore always
requires collisions or some small-scale kinetic mechanism for breaking the
adiabatic invariance of the magnetic moment
Impurity flows and plateau-regime poloidal density variation in a tokamak pedestal
In the pedestal of a tokamak, the sharp radial gradients of density and
temperature can give rise to poloidal variation in the density of impurities.
At the same time, the flow of the impurity species is modified relative to the
conventional neoclassical result. In this paper, these changes to the density
and flow of a collisional impurity species are calculated for the case when the
main ions are in the plateau regime. In this regime it is found that the
impurity density can be higher at either the inboard or outboard side. This
finding differs from earlier results for banana- or Pfirsch-Schl\"uter-regime
main ions, in which case the impurity density is always higher at the inboard
side in the absence of rotation. Finally, the modifications to the impurity
flow are also given for the other regimes of main-ion collisionality.Comment: 15 pages, 5 figures, submitted to Physics of Plasma
Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma
The accumulation of impurities in the core of magnetically confined plasmas,
resulting from standard collisional transport mechanisms, is a known threat to
their performance as fusion energy sources. Whilst the axisymmetric tokamak
systems have been shown to benefit from the effect of temperature screening,
that is an outward flux of impurities driven by the temperature gradient,
impurity accumulation in stellarators was thought to be inevitable, driven
robustly by the inward pointing electric field characteristic of hot fusion
plasmas. We have shown in Helander et. al. (2017b) that such screening can in
principle also appear in stellarators, in the experimentally relevant mixed
collisionality regime, where a highly collisional impurity species is present
in a low collisionality bulk plasma. Details of the analytic calculation are
presented here, along with the effect of the impurity on the bulk ion flow,
which will ultimately affect the bulk contribution to the bootstrap current
Impurity transport in a mixed-collisionality stellarator plasma
A potential threat to the performance of magnetically confined fusion plasmas
is the problem of impurity accumulation, which causes the concentration of
highly charged impurity ions to rise uncontrollably in the center of the plasma
and spoil the energy confinement by excessive radiation. It has long been
thought that the collisional transport of impurities in stellarators always
leads to such accumulation (if the electric field points inwards, which is
usually the case), whereas tokamaks, being axisymmetric, can benefit from
"temperature screening", i.e., an outward flux of impurities driven by the
temperature gradient. Here it is shown, using analytical techniques supported
by results from a new numerical code, that such screening can arise in
stellarator plasmas too, and indeed does so in one of the most relevant
operating regimes, where the impurities are highly collisional whilst the bulk
plasma is in any of the low-collisionality regimes.Comment: 11 pages, 3 figure
Impurities in a non-axisymmetric plasma: transport and effect on bootstrap current
Impurities cause radiation losses and plasma dilution, and in stellarator
plasmas the neoclassical ambipolar radial electric field is often unfavorable
for avoiding strong impurity peaking. In this work we use a new continuum
drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative
Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014)
042503] which employs the full linearized Fokker-Planck-Landau operator, to
calculate neoclassical impurity transport coefficients for a Wendelstein 7-X
(W7-X) magnetic configuration. We compare SFINCS calculations with theoretical
asymptotes in the high collisionality limit. We observe and explain a
1/nu-scaling of the inter-species radial transport coefficient at low
collisionality, arising due to the field term in the inter-species collision
operator, and which is not found with simplified collision models even when
momentum correction is applied. However, this type of scaling disappears if a
radial electric field is present. We also use SFINCS to analyze how the
impurity content affects the neoclassical impurity dynamics and the bootstrap
current. We show that a change in plasma effective charge Zeff of order unity
can affect the bootstrap current enough to cause a deviation in the divertor
strike point locations.Comment: 36 pages, 13 figure
Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas
In this work, we examine the validity of several common simplifying
assumptions used in numerical neoclassical calculations for nonaxisymmetric
plasmas, both by using a new continuum drift-kinetic code and by considering
analytic properties of the kinetic equation. First, neoclassical phenomena are
computed for the LHD and W7-X stellarators using several versions of the
drift-kinetic equation, including the commonly used incompressible-ExB-drift
approximation and two other variants, corresponding to different effective
particle trajectories. It is found that for electric fields below roughly one
third of the resonant value, the different formulations give nearly identical
results, demonstrating the incompressible ExB-drift approximation is quite
accurate in this regime. However, near the electric field resonance, the models
yield substantially different results. We also compare results for various
collision operators, including the full linearized Fokker-Planck operator. At
low collisionality, the radial transport driven by radial gradients is nearly
identical for the different operators, while in other cases it is found to be
important that collisions conserve momentum
Automatic generation: A way of ensuring PLC and HMI standards
Preparing an automatic production system takes a lot of time and to be able to decrease this time virtual simulation studies are used more and more frequently. However, even if more work is performed in a virtual environment a problem is still that the same work is done more than one time in different software tools due to the lack of integration between them. The present paper presents a case study that investigates how a newly developed tool called SIMATIC Automation Designer can be used in order to close the gap between the mechanical design and the electrical design. SIMATIC Automation Designer is a Siemens software that can generate PLC code and HMI screens. The result shows that by generating PLC code and HMI screens automatically, it is possible to get the same structure and naming standard in every PLC and HMI project. This will ensure a corporate standard and will be a quality assurance of the PLC code and HMI screens
- …